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Abstract: We study the six-point NMHV ratio function in planar N = 4 SYM

theory in the context of positive geometry. The Amplituhedron construction of the

integrand for the amplitudes provides a kinematical region in which the integrand

was observed to be positive. It is natural to conjecture that this property survives

integration, i.e. that the final result for the ratio function is also positive in this region.

Establishing such a result would imply that preserving positivity is a surprising property

of the Minkowski contour of integration and it might indicate some deeper underlying

structure. We find that the ratio function is positive everywhere we have tested it,

including analytic results for special kinematical regions at one and two loops, as well

as robust numerical evidence through five loops. There is also evidence for not just

positivity, but monotonicity in a “radial” direction. We also investigate positivity of

the MHV six-gluon amplitude. While the remainder function ceases to be positive at

four loops, the BDS-like normalized MHV amplitude appears to be positive through

five loops.
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1 Introduction

There has been substantial progress from many different perspectives in understanding

and calculating perturbative scattering amplitudes in N = 4 super-Yang-Mills the-

ory [1], particularly in the planar limit of a large number of colors. The standard

Feynman diagram expansion, as well as more modern methods such as generalized uni-

tarity, are based on the expansion of the (multi)loop amplitude in terms of different

sets of building blocks. These pieces are then individually integrated over the loop

momenta, and the final amplitude corresponds to the sum over all terms. In recent

years, it was shown that both the total integrand and the final amplitudes enjoy some

extraordinary properties. As it turns out, there is a completely different way to think

about each quantity, holistically and without reference to any expansion in building

blocks.

For the integrand there exists a complete geometric reformulation in terms of the

Amplituhedron, which is a generalization of projective polygons into Grassmannians [2,

3] (see also refs. [4–9] for recent progress). The idea is to rewrite the kinematical and

helicity variables in terms of bosonized momentum twistors Z serving as vertices of

a geometric object – the Amplituhedron – whose volume is equal to the integrand of

scattering amplitudes in planar N = 4 SYM. The definition of this space involves a

generalization of the positive Grassmannian that appears in the context of on-shell

diagrams [10].

On the other hand, there has also been great progress in understanding the space

of transcendental functions that contains the final amplitudes. In many cases these

functions are iterated integrals [11], also known as multiple polylogarithms [12, 13].

The weight, or number of integrations, is 2` for perturbative amplitudes at loop order

`. While the origin of these functions comes from the “dlog” structure of the integrand,

the precise connection is still not understood in general. For example, there may be

obstructions to carrying out the dlog integrations in terms of iterated integrals. The

two-loop equal-mass sunrise integral is in this elliptic class [14], as is an integral entering

the N3MHV 10-point scattering amplitude in planar N = 4 SYM [15]. However, it has

been argued that MHV and NMHV amplitudes in this theory should be expressible

solely in terms of multiple polylogarithms [10, 16].

A function composed of multiple polylogarithms has a symbol [17], which is con-

structed essentially by repeated differentiation of the function. The alphabet, or set of

letters appearing in the symbol, characterizes the function space. These letters seem

to be closely related to cluster algebras [18, 19]. Once one knows the alphabet, as

well as where the branch cuts are located, one can construct the function space itera-

tively. The number of such functions turns out to be much smaller than the number of
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independent physical constraints on them, allowing for a unique determination of the

amplitude as a whole without ever inspecting the precise integrand or its decomposition

into building blocks. This program has been carried out for the six-point amplitude

through five loops [20–25], and for the symbol of the seven-point amplitude through

three loops [26].

Given this excellent progress in understanding both the integrand and amplitude

holistically, it would be great to bring them together. It is not clear yet how the

properties of the Amplituhedron extend from the integrand to the final amplitudes.

However, there is an extension of the Amplituhedron conjecture, namely the existence

of the dual Amplituhedron, which we will test indirectly in this paper. In ref. [27] it

was argued that if the original Amplituhedron can be reformulated into a dual picture

where the integrand is directly a volume of this space, then this function should be

positive when evaluated inside the Amplituhedron. This positivity property has been

verified explicitly for various integrands up to high loop order. It also turns out to

be true for the integrand of the ratio function – a ratio of amplitudes with different

helicities which is free of infrared (IR) divergences.

It was then conjectured that this positivity property might also hold for the final

transcendental function, rather than just the integrand. In general, the transcendental

functions that determine scattering amplitudes are complex-valued. However, there

exists a Euclidean region in which the amplitude is real-valued, and thus it is possible

to define positivity consistently. For the six-point amplitude, the cross-ratios u, v, w

are all real and positive in this Euclidean region. The conjecture is that the quantities

under consideration are positive in a subregion of this Euclidean region that is selected

by the properties of the Amplituhedron.

This conjecture was explicitly verified at one loop. In this paper we will check

the statement through five loops for the NMHV case, providing strong evidence that

the conjecture is indeed true. In addition, we show that the same is true for the

IR-finite BDS-like normalized MHV amplitude. There are many ways to subtract IR

divergences but the positivity conjecture more or less singles out this function. The

positivity property is very non-trivial and we do not know how to prove it in full

generality even at one loop, not to mention higher-loop examples where our analytic

understanding is even more limited.

To show a simple example, let us consider a function of positive variables u,w > 0,

F (u,w) = Li2(1− u) + Li2(1− w) + log u logw − ζ2 . (1.1)

This function will appear later in this paper in a particular limit of the NMHV one-

loop ratio function, as well as of the BDS-like remainder function. In the first case the

Amplituhedron picture dictates that F (u,w) < 0 whenever u + w > 1, while in the
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second case it requires F (u,w) > 0 for u + w < 1. Even in this simple case positivity

is not manifest, i.e. the answer cannot be decomposed into a sum of obviously positive

terms (although the positivity proof here is simple, see section 3.2). Note that for

w = 1 − u we get the famous dilogarithm identity which sets F (u, 1 − u) = 0, which

also represents a physical vanishing condition on the ratio function in a collinear limit.

In general, positivity relies not only on the sign of transcendental functions like

F (u,w), but also on the sign of rational prefactors. For generic kinematics neither

has uniform sign on its own. Nevertheless, the sign ambiguities of these individual

parts conspire to produce quantities with uniform sign. The statement is even more

interesting because not only the bosonic external data, but also the fermionic variables,

play a crucial role in establishing this surprising and remarkable property. In the rest

of this paper we will flesh out this statement, showcasing numerous regions in which

positivity holds.

In this paper, whenever we refer to positivity, we mean that perturbative coefficients

in the loop expansion of a given quantity are positive when the expansion parameter is

the negative of the ’t Hooft coupling, −λ = −g2Nc. Or, in terms of a standard, positive

’t Hooft coupling (or multiple thereof), we will be testing for strict sign-alternation with

loop order. That is, one-loop terms should be negative, two-loop terms positive, three-

loop terms negative, and so on. From the point of view of the (dual) Amplituhedron,

the overall sign at a given loop order is not dictated; what is really expected is a

uniform sign as a function of the kinematics. However, we know empirically that the

sign alternates for low loop orders, and we also expect it to alternate at very high

loop orders. The reason for the latter statement is that planar N = 4 SYM has

no renormalons and no instantons, and so it is expected to have a finite radius of

convergence of the perturbation theory. For some quantities, the radius of convergence

is known: it is λc = π2 for the light-like cusp anomalous dimension [28], and λc ≈ 14.7

for the Bremsstrahlung function, which is another limit of the velocity-dependent cusp

anomalous dimension [29, 30]. These quantities have no singularity on the positive λ

axis. Hence their finite radius of convergence is controlled by a singularity for negative

λ. This fact implies sign alternation at very large perturbative orders, with successive

perturbative coefficients increasing by a factor that approaches −1/λc.

This paper is organized as follows. We begin in section 2 by describing the regions

in which the Amplituhedron construction leads to positive tree-level amplitudes; these

regions are where we wish to test the corresponding loop amplitudes for positivity.

Section 3 then presents some simple one-loop examples in which this positivity holds

for the NMHV ratio function. We also define the double-scaling limit, in which certain

monotonicity properties of the amplitude are manifest. In section 4 we explore this limit

at higher loops, both analytically on certain special lines and numerically throughout
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the full region. We go on in section 5 to present numerical evidence for positivity

outside of special limits, in the full space of cross-ratios selected by the Amplituhedron

construction. Section 6 discusses the positivity properties of the MHV amplitude, and

we conclude in section 7.

This paper has two appendices. Appendix A provides additional plots on the

line w = 0 within the double-scaling surface, while appendix B proves positivity and

monotonicity for a quantity, c
(2)
1 (u,w), relevant at two loops. We also attach ancillary

files containing expressions for the quantities we consider on special lines threading the

kinematic space.

2 From the Amplituhedron to positive kinematics

In this section we review the essential ingredients of the Amplituhedron construction

of the multi-loop integrand for planar N = 4 SYM, and show how this setup dictates

where we should inspect the multi-loop six-point amplitudes for positivity.

The Amplituhedron space [2, 3] Y is implicitly labeled by n, k, and `, where n is

the number of external legs, k is the number of negative gluon helicities minus 2, and

` is the loop order. The formal definition of Y is given by the matrix multiplication

Y = C · Z, (2.1)

where C is a (k+2`)×n matrix with certain positivity properties, and Z is an n×(4+k)

matrix with all (4+k)× (4+k) minors positive. The matrix Z corresponds to external

data (momentum twistors and Grassmann variables); Z only depends on k while the

C matrix also depends on `. The loop integrand Ω is then a form which behaves

logarithmically on the boundaries of Y .

The conjecture made in ref. [27] is that the form Ω is positive when the measure is

stripped off and it is evaluated inside the Amplituhedron, i.e. for Y satisfying eq. (2.1)

with positive C and Z matrices. This property does not follow from the original Am-

plituhedron proposal. Rather it would provide evidence for the existence of a “dual

Amplituhedron” of which Ω is literally the volume. This space has not been found yet,

but the fact that Ω is observed to be positive is very encouraging.

Let us now consider the final amplitude rather than the integrand. It has a very

complicated branch-cut structure, but no dependence on the loop momenta. If an

Amplituhedron-like construction exists for the final amplitude then it is natural to

impose the same positivity constraints, but now with ` = 0, i.e.

Y = C · Z, (2.2)
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where C is the matrix that appears in the definition of the tree-level Amplituhedron.

The conjecture now is that a properly-defined amplitude must be positive – or rather,

sign-alternating with loop order – if evaluated for Y and Z matrices satisfying the

positivity conditions. We restrict ourselves to our cases of interest, MHV and NMHV

amplitudes (k = 0 and 1), and review what these conditions imply.

2.1 MHV positive kinematics

For MHV amplitudes we have k = 0 and l = 0 so there is no C matrix. That is, the

Y space in eq. (2.2) becomes trivial and the only conditions come from the positivity

of the (4× n) matrix Z. In this case the column vectors composing Z are directly the

4-dimensional momentum twistors Za and we have to keep them positive – in the sense

that the following (4× 4) minors of the Z matrix should be positive:

Z =

 ↑ ↑ ↑ . . . ↑ ↑
Z1 Z2 Z3 . . . Zn−1 Zn
↓ ↓ ↓ . . . ↓ ↓

 with 〈abcd〉 ≡ det(Za, Zb, Zc, Zd) > 0

for a < b < c < d.
(2.3)

Let us now parametrize the positive Z matrix for n = 6. Using a GL(4) trans-

formation we fix the first four columns to be the unit matrix, and parametrize the

remaining two columns with eight positive parameters xa > 0, yb > 0. One solution

that makes all (4× 4) minors positive is

Z =


1 0 0 0 −x1 −y1 − y2 x1x2 − y3

x1
x3
− y4 x1x4

0 1 0 0 x2 y2 + y3
x2
x3

+ y4
x2
x4

0 0 1 0 −x3 −y3 − y4 x3x4
0 0 0 1 x4 y4

 . (2.4)

We can now build three different dual-conformal cross ratios,

u =
〈6123〉〈3456〉
〈6134〉〈2356〉

, v =
〈1234〉〈4561〉
〈1245〉〈3461〉

, w =
〈2345〉〈5612〉
〈2356〉〈4512〉

. (2.5)

We also consider the combinations

ε ≡ 1− u− v − w, ∆ = ε2 − 4uvw. (2.6)

From the positive parametrization (2.4) of the Z matrix we get,

u =
x22x

2
3y1y4
PQ

, v =
x3x4y2
P

, w =
x1x2y3
Q

, (2.7)

ε =
x2x3(x2x4y1y3 + x1x3y2y4)

PQ
, ∆ =

x22x
2
3(x1x3y2y4 − x2x4y1y3)2

P 2Q2
, (2.8)
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where P = x3x4y2 +x2x4y3 +x2x3y4, Q = x2x3y1 +x1x3y2 +x1x2y3. For positive values

of xa, yb the cross ratios u, v, w and ε,∆ are all manifestly positive. These inequalities

combine to define conditions for the MHV positive region,

u, v, w > 0, u+ v + w < 1, (1− u− v − w)2 > 4uvw, (2.9)

which restrict the cross ratios to be relatively close to the origin, in contrast to what

we will find for the NMHV positive region. We refer to this region as Region I (see

ref. [31] and eq. (5.5) below). The only place that ε can approach zero in Region I,

given the constraint on ∆, is for v → 0, u+w → 1, or cyclic permutations of this line.

In this limit, two gluons become collinear.

Now that we have identified MHV positive kinematics, we would like to conjecture

that a properly-defined IR-finite part of the MHV amplitude is positive for any positive

values xa, yb > 0. However, individual on-shell amplitudes are IR divergent, and there

is not a unique way to obtain a finite quantity by removing the IR divergences. The

original way that IR divergences were removed (while preserving dual conformal sym-

metry) was to divide by the BDS ansatz [32]. While this procedure leads to remainder

functions with smooth collinear limits [33], it breaks a global analytic property known

as the Steinmann relations [34]. To preserve the Steinmann relations [25], at six points

(or seven points) one can divide by a unique “BDS-like” ansatz [24, 35]. Yet this proce-

dure sacrifices the vanishing in collinear limits of the six-point BDS remainder function,

and the collinear limits form a boundary of the positive region (e.g. v → 0, u+w → 1

makes ε and ∆ both vanish). There are also dual-conformal IR regulators based on the

Wilson loop interpretation of the amplitude [36], but they break a dihedral symmetry.

In short, there is no unique way to define an IR finite part of the MHV amplitude, nor

one that is clearly optimal. We will discuss the positivity properties of these various

choices in section 6.

2.2 NMHV positive kinematics

In contrast, when we also consider the NMHV amplitude there is a natural way to form

an IR finite quantity, the ratio function, which is defined (at six points) by dividing

the NMHV super-amplitude by the MHV super-amplitude [37]. IR divergences are

helicity-independent and cancel between numerator and denominator. We will inspect

the ratio function for NMHV positive kinematics.

For the NMHV case, k = 1, the Amplituhedron lives in a projective space P4. It is

defined as all points Y that are linear combinations of Za with positive coefficients,

Y = C · Z = c1Z1 + c2Z2 + · · ·+ cnZn with ca > 0, (2.10)
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where the Za are now five-dimensional. They can be written as

Za =

(
za

φ · ηa

)
, (2.11)

where the first four components are momentum twistor variables za associated with

each particle label, a = 1, 2, . . . , n for n-point scattering. The fifth (last) component is

the contraction φ · ηa = εIJφ
IηJa , I, J = 1, 2, 3, 4, of an auxiliary Grassmann variable φI

with the standard Grassmann variable ηJa of on-shell superspace [37–40]. These bosonic

variables then carry all information about the external particles in the scattering. The

bosonized momentum twistors are projective variables, defined up to rescaling Za →
tZa.

Positivity conditions are then imposed directly on the five-dimensional Za rather

than the four-dimensional part za. The (n × 5)-dimensional matrix Z has all (5 × 5)

minors positive; that is,

〈abcde〉 ≡ det(Za, Zb, Zc, Zd, Ze) > 0 for a < b < c < d < e. (2.12)

Geometrically, the Za form a convex configuration in real projective space P4.

In addition to five-brackets containing five Za, we can also have five-brackets includ-

ing the point Y in eq. (2.10), which lies inside the Amplituhedron. The Y -containing

five-brackets are given by.

〈Y abcd〉 ≡ det(Y, Za, Zb, Zc, Zd). (2.13)

A subset of these five-brackets are positive when Y is in the Amplituhedron, specifically

those with two pairs of consecutive indices: 〈Y a a+1 b b+1〉 > 0 for all a, b. The

three-planes (Za Za+1 Zb Zb+1) are boundaries of the Amplituhedron. The condition

〈Y a a+1 b b+1〉 > 0 puts the point Y on the correct side of the boundary, inside the

Amplituhedron. From a physics perspective, the term 〈Y a a+1 b b+1〉 ∼ sa+1...b ≡
(pa+1 + · · ·+ pb)

2 corresponds to a factorization pole of the tree-level amplitude.

For the six-point case, we redefine the three cross ratios defined in eq. (2.5) by

inserting Y into all the four-brackets to make them five-brackets,

u =
〈Y 6123〉〈Y 3456〉
〈Y 6134〉〈Y 2356〉

, v =
〈Y 1234〉〈Y 4561〉
〈Y 1245〉〈Y 3461〉

, w =
〈Y 2345〉〈Y 5612〉
〈Y 2356〉〈Y 4512〉

. (2.14)

The positive parametrization is now much simpler than in the MHV case because the

matrix Z is (6× 5) rather than (6× 4). A natural parametrization of Z in terms of five
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positive parameters xa > 0 is,

Z =


1 0 0 0 0 x1
0 1 0 0 0 −x2
0 0 1 0 0 x3
0 0 0 1 0 −x4
0 0 0 0 1 x5


〈12345〉 = 1, 〈23456〉 = x1
〈13456〉 = x2, 〈12456〉 = x3
〈12356〉 = x4, 〈12346〉 = x5.

(2.15)

Using this parametrization and Y = C ·Z from eq. (2.10), we can compute all
(
6
2

)
= 15

five-brackets 〈Y abcd〉:

〈Y 1234〉 = c5x6 + c6x5, 〈Y 1235〉 = c6x4 − c4x6, 〈Y 6123〉 = c4x5 + c5x4,

〈Y 1245〉 = c3x6 + c6x3, 〈Y 1246〉 = c3x5 − c5x3, 〈Y 1256〉 = c3x4 + c4x3,

〈Y 1345〉 = c6x2 − c2x6, 〈Y 3461〉 = c2x5 + c5x2, 〈Y 1356〉 = c4x2 − c2x4,
〈Y 4561〉 = c2x3 + c3x2, 〈Y 2345〉 = c1x6 + c6x1, 〈Y 2346〉 = c1x5 − c5x1,
〈Y 2356〉 = c1x4 + c4x1, 〈Y 2456〉 = c1x3 − c3x1, 〈Y 3456〉 = c1x2 + c2x1, (2.16)

where x6 ≡ 1 is added to make the expressions more uniform.

From eq. (2.14), the cross ratios are now

u =
(c1x2 + c2x1)(c4x5 + c5x4)

(c2x5 + c5x2)(c1x4 + c4x1)
, v =

(c2x3 + c3x2)(c5x6 + c6x5)

(c2x5 + c5x2)(c3x6 + c6x3)
,

w =
(c1x6 + c6x1)(c3x4 + c4x3)

(c1x4 + c4x1)(c3x6 + c6x3)
. (2.17)

As in the MHV case, the cross ratios are all positive.

Denoting W = (c1x4 + c4x1)(c2x5 + c5x2)(c3x6 + c6x3), we get for the quantities ε

and ∆ defined in eq. (2.6),

ε = −P1(xa, cb)

W
< 0, ∆ =

[P2(xa, cb)]
2

W 2
> 0, (2.18)

where the Pj(xa, cb) are polynomials in xa, cb with positive coefficients. Notice that the

sign condition on ε has flipped from the MHV case, pushing the cross ratios away from

the origin.

The NMHV amplitude also contains R-invariants, defined as the following function

of momentum twistors za and Grassmann variables ηa:

R[a b c d e] =
(ηa〈bcde〉+ ηb〈cdea〉+ ηc〈deab〉+ ηd〈eabc〉+ ηe〈abcd〉)4

〈abcd〉〈bcde〉〈cdea〉〈deab〉〈eabc〉
. (2.19)
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In the bosonized language, the R-invariants become functions of five-brackets, projec-

tive in all variables, which we denote as

[a b c d e] =
〈Y d4Y 〉〈abcde〉4

〈Y abcd〉〈Y bcde〉〈Y cdea〉〈Y deab〉〈Y eabc〉
, (2.20)

where 〈Y d4Y 〉 is the measure in Y . For the six-point case, it is convenient to label this

object by the missing index, and to omit the measure, defining

(1) ≡ [23456]

〈Y d4Y 〉
=

〈23456〉4

〈Y 2345〉〈Y 2346〉〈Y 2456〉〈Y 2356〉〈Y 3456〉
(2.21)

and similarly for (2) = [34561], (3) = [45612], etc.

The form for the tree-level NMHV Amplituhedron is then

Ωtree
6,1 = (1) + (3) + (5) = (2) + (4) + (6). (2.22)

This is also the bosonized version of the tree-level NMHV ratio function Ptree
6,1 , see

section 2.3.

Using the positive parametrization (2.10), we can rewrite the bosonizedR-invariants

as

(1) =
x41

(c1x6 + c6x1)(c1x2 + c2x1)(c1x3 − c3x1)(c1x4 + c4x1)(c1x5 − c5x1)
,

(2) =
x42

(c1x2 + c2x1)(c2x3 + c3x2)(c2x4 − c4x2)(c2x5 + c5x2)(c2x6 − c6x2)
,

(3) =
x43

(c2x3 + c3x2)(c3x4 + c4x3)(c3x5 − c5x3)(c3x6 + c6x3)(c3x1 − c1x3)
,

(4) =
x44

(c3x4 + c4x3)(c4x5 + c5x4)(c4x6 − c6x4)(c1x4 + c4x1)(c4x2 − c2x4)
,

(5) =
x45

(c4x5 + c5x4)(c5x6 + c6x5)(c1x5 − c5x1)(c2x5 + c5x2)(c3x5 − c5x3)

(6) =
x46

(c5x6 + c6x5)(c1x6 + c6x1)(c2x6 − c6x2)(c3x6 + c6x3)(c4x6 − c6x4)
. (2.23)

Five-brackets corresponding to spurious poles can be identified in eq. (2.16) as

the expressions containing minus signs, while those corresponding to physical poles are

manifestly positive. Each R-invariant (a) contains two spurious poles. For example, (1)

has 〈Y 6234〉 and 〈Y 4562〉. The spurious poles do not have a fixed sign for all cb, xa > 0,

e.g. 〈Y 2346〉 = c1x5 − c5x1. Therefore, the invariant (1) also does not have a fixed

sign and it is not a manifestly positive object, and similarly for the other (a). Only in
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the sum (2.22) do these poles cancel, so that Ωtree
6,1 can be positive in the full positive

region.

In fact, we can write the tree amplitude in the form,

Ωtree
6,1 =

N (xa, cb)∏
|j−k|=1or 3

(cjxk + ckxj)
, (2.24)

where N (xa, cb) is a polynomial in xa, cb with all positive coefficients [27].

2.3 The ratio function

Scattering amplitudes of massless particles suffer from IR divergences from both soft

and collinear virtual exchange. It is necessary to introduce a regulator to get a well-

defined answer. In the planar theory, for gauge group SU(Nc) with Nc → ∞, the IR

divergences exponentiate in a relatively simple fashion. In dimensional regularization

with D = 4− 2ε, the poles in ε in planar N = 4 SYM amplitudes are captured by the

BDS ansatz [32],

Mn,k =Mtree
n,k · exp

[
∞∑
`=1

a`
(
f (`)(ε) · A1−loop

n,0 (`ε) + finite
)]

(2.25)

where a = g2Nc/(8π
2) is the ’t Hooft coupling, f (`)(ε) = f

(`)
0 + f

(`)
1 ε + f

(`)
2 ε2 for some

constants f
(`)
k , and A1−loop

n,0 (ε) is the regulated one-loop MHV amplitude M1−loop
n,0 (ε)

divided by the tree-level amplitude Mtree
n,0 .

In the MHV case, k = 0, the finite part in the exponential in eq. (2.25) is called

the remainder function R
(`)
n ,

Mn,0 =Mtree
n,0 ·exp

[
∞∑
`=1

a`
(
f (`)(ε) · A1−loop

n,0 (`ε) +R(`)
n

)]
≡MBDS

n,0 (ε) ·exp[Rn] , (2.26)

and it is dual conformally invariant. However, we can still move finite, dual conformally

invariant terms between the first and second terms in this expression. Correspondingly,

there are a few possible different definitions of the remainder function. In section 6 we

will discuss the possibilities in more detail, and describe one choice which appears to

satisfy MHV positivity properties.

There is a cleaner and less ambiguous way to define an IR-finite object in the

context of scattering amplitudes, simply by taking a ratio of two amplitudes with

different helicities [37]. Because the IR divergences (2.25) are universal, one can divide

any amplitude Mn,k by the MHV amplitude Mn,0 and get an IR finite ratio function
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Pn,k. Expanding the ratio in the coupling constant a, we define the loop expansion

coefficients of the ratio function as,

Pn,k =
Mn,k

Mn,0

= Ptree
n,k + a · P1−loop

n,k + a2 · P2−loop
n,k + . . . , (2.27)

while those of the amplitude normalized by the MHV tree super-amplitude (an IR

divergent quantity) are denoted by

An,k =
Mn,k

Mtree
n,0

= Ptree
n,k + a · A1−loop

n,k + a2 · A2−loop
n,k + . . . . (2.28)

The two sets of expansion coefficients are related by,

P1−loop
n,k = A1−loop

n,k − Ptree
n,k · A

1−loop
n,0 ,

P2−loop
n,k = A2−loop

n,k − Ptree
n,k · A

2−loop
n,0 − P1−loop

n,k · A1−loop
n,0 , (2.29)

and so on.

The ratio function P`−loopn,k corresponds to a linear combination of products of am-

plitudes with different signs. Therefore, it would be quite surprising if it had any

positivity properties. However, numerical checks performed in ref. [27] for the one-loop

NMHV n-point amplitude for n ≤ 12, and for the one-loop N2MHV amplitude for

n ≤ 9 show that this is indeed true!

Let us now focus on the six-point case in more detail. As was pointed out in

ref. [37], the ratio function can be expressed in terms of two transcendental functions,

V (u, v, w) and Ṽ (yu, yv, yw),

P6,1 =
1

2

(
[(1) + (4)]V (u, v, w) + [(2) + (5)]V (v, w, u) + [(3) + (6)]V (w, u, v)

+ [(1)− (4)]Ṽ (yu, yv, yw)− [(2)− (5)]Ṽ (yv, yw, yu) + [(3)− (6)]Ṽ (yw, yu, yv)
)
,

(2.30)

where the cross ratios u, v, w are written in terms of our bosonized variables in

eq. (2.14), and the extended cross ratios yu, yv, yw [21] are also bosonized:

yu =
〈Y 1345〉〈Y 2456〉〈Y 1236〉
〈Y 1235〉〈Y 3456〉〈Y 1246〉

, yv =
〈Y 1235〉〈Y 2346〉〈Y 1456〉
〈Y 1234〉〈Y 2456〉〈Y 1356〉

,

yw =
〈Y 2345〉〈Y 1356〉〈Y 1246〉
〈Y 1345〉〈Y 2346〉〈Y 1256〉

. (2.31)

The function V is even under a parity symmetry that inverts yi ↔ 1/yi, and leaves

u, v, w invariant. The function Ṽ is parity-odd, changing sign under this inversion. For

this reason, it is better to think of Ṽ as a function of yu, yv, yw rather than u, v, w.
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Note that the extended cross ratios do not have any positivity properties due to

the presence of spurious poles. Under a cyclic shift Za → Za+1 they transform as

yu →
1

yv
, yv →

1

yw
, yw →

1

yu
, (2.32)

and the standard cross ratios transform as u→ v, v → w, w → u. The ratio function is

symmetric under both cyclic shifts and dihedral flips. The combined symmetry group

is D6, although acting on the cross ratios u, v, w it reduces to S3, i.e. all permutations

of u, v, w. The individual functions V and Ṽ are (anti)symmetric under a Z2 subgroup

of S3 that leaves v fixed:

V (u, v, w) = V (w, v, u), Ṽ (yu, yv, yw) = −Ṽ (yw, yv, yu). (2.33)

The transcendental functions V and Ṽ have a Euclidean sheet for which they are

real, when the cross ratios lie in the positive octant u, v, w > 0. We evaluate them

on this sheet, with the cross ratios and R-invariants further restricted by the positive

parametrization cb, xa > 0. (In some physical scattering regions V and Ṽ would acquire

imaginary parts, which would make discussing positivity difficult.)

3 One-loop ratio function

At one loop, the parity-odd part vanishes, Ṽ (1) = 0, and the full ratio function can be

written as

2P1−loop
6,1 = [(1)+(4)]V (1)(u, v, w)+[(2)+(5)]V (1)(v, w, u)+[(3)+(6)]V (1)(w, u, v), (3.1)

where the one-loop function V (1)(u, v, w) is given by

V (1)(u, v, w) =
1

2

[
Li2(1− u) + Li2(1− v) + Li2(1− w)

+ log u log v − log u logw + log v logw − 2ζ2

]
. (3.2)

Our claim is that eq. (3.1) is negative (because the loop order is odd) within the

positive region. Note that the individual pieces in this formula do not have definite

signs, neither the R-invariants (a), nor the function V (1) which has both plus and minus

signs in front of individual terms. Depending on the values of u, v, w, different terms

can dominate.

For some purposes it is convenient to separate out the Li2 part of the expression.

Note that the Li2 part is invariant under S3 permutations, and therefore it multiplies

all R-invariants (a), which can be assembled into the tree-level amplitude,

2P1−loop
6,1 = Ptree

6,1 · [Li2(1− u) + Li2(1− v) + Li2(1− w)− 2ζ2]

– 13 –



+ [(1)− (2) + (3)] log u log v + [(2)− (3) + (4)] log v logw

+ [(3)− (4) + (5)] logw log u , (3.3)

where we have used the identity (1) + (3) + (5) = (2) + (4) + (6). For some purposes

it is more convenient to use eq. (3.1), for others eq. (3.3).

3.1 Simple examples of positivity

Let us give a few examples where the overall sign can be easily understood.

Example 1

Our first case is the point (u, v, w) = (1, 1, 1), which was studied in detail in ref. [27].

To reach this point, we set c3 = c1x3/x1 and c5 = c1x5/x1. This preserves positivity of

cb, xa, and so it is inside the Amplituhedron. Kinematically, it corresponds to setting

〈Y 2456〉 = 〈Y 2346〉 = 0, which is a spurious boundary of the tree-level Amplituhedron,

so we are not on the true physical boundary. Therefore, the tree-level term Ptree
6,1 is

completely regular and positive here. However, individual R-invariants (a) do blow up.

In order to approach this point, we first set all cross-ratios to be equal, u = v = w, and

then take u→ 1,

P1−loop
6,1 −−−−→

u=v=w

1

2
Ptree

6,1 ·
[
3Li2(1− u) + log2 u− 2ζ2

]
−−→
u=1
−Ptree

6,1 · ζ2 < 0. (3.4)

Thus we obtain the desired negative value. In section 5.1 we will study the point

(1, 1, 1) at higher loops.

Example 2

Another interesting case is the point (u, v, w) = (1, 0, 0), which can be reached by

setting c2 = c3 = c4 = 0. Naively, the term log v logw dominates, but there is a

conspiracy of prefactors which makes the situation more complicated. We can approach

this limit by setting c2 → εc2, c3 → εc3, c4 → εc4 and then letting ε → 0. There are

many ways to approach the point (u, v, w) = (1, 0, 0), but this limit always keeps us in

the positive region.

For analyzing the one-loop ratio function in this limit, it is good to use the second

representation (3.3). The relevant combinations of R-invariants behave in this limit as

Ptree
6,1 =

1

ε2
· x3
c1c5c6(c3x2 + c2x3)(c4x3 + c3x4)

,

(1)− (2) + (3) = − 1

ε2
· x4
c1c5c6(c4x2 − c2x4)(c4x3 + c3x4)

,
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(3)− (4) + (5) =
1

ε2
· x2
c1c5c6(c3x2 + c2x3)(c4x2 − c2x4)

. (3.5)

while the term (2)− (3) + (4) = O(1) is subleading. Combining these limits with those

of the polylog parts, the individual pieces in eq. (3.3) behave like

Ptree
6,1 · (. . . ) =

log ε

ε
· X

c21c
2
5c

2
6x2x4(c3x2 + c2x3)(c4x3 + c3x4)

, (3.6)

[(1)− (2) + (3)] · (. . . ) = − log ε

ε
· c1x5 − c5x1
c21c

2
5c6x2(c4x3 + c3x4)

, (3.7)

[(3)− (4) + (5)] · (. . . ) =
log ε

ε
· c1x5 − c5x1
c21c

2
5c6x4(c3x2 + c2x3)

, (3.8)

where

X = c4c5x2x3(c6x1 + c1x6) + c1c2x3x4(c6x5 + c5x6) + c3x2x4(c5c6x1 + c1c6x5 + 2c1c5x6),

(3.9)

while the last term is subleading in this limit, [(2)− (3) + (4)] · (. . . ) = O(log2 ε). This

suppression may be counter-intuitive (as that term had the dominant logarithms), but

the rational prefactor is regular in this limit, while the prefactors of other terms diverge.

We see that the terms (3.7) and (3.8) do not have fixed sign, but if we combine all three

pieces together we get

P1−loop
6,1 =

log ε

ε
· Y

2c21c
2
5c

2
6x2x4(c3x2 + c2x3)(c4x3 + c3x4)

, (3.10)

where

Y = c5c6x1x4(c3x2 + c2x3) + c1c6x2x5(c4x3 + c3x4) + c1c5x6(c4x2x3 + 2c3x2x4 + c2x3x4),

(3.11)

which is manifestly negative for ε → 0 while keeping ca, xb > 0. The negativity of the

final expression requires a conspiracy between the rational prefactors and the polylog

part, as well as between different parts of the answer in eq. (3.3). We can also start

with representation (3.1), but in this case the cancellation is even more complicated.

Individual pieces would also contain logs of ca, xb as prefactors of log ε
ε

. These logs would

all cancel when taking the sum, leaving us with the rational expression (3.10).

3.2 Double-scaling limit

In the previous examples the rational prefactors played a central role in proving pos-

itivity. Let us now discuss an example where positivity relies on a relation between

polylogarithms. Such a case can be found near the boundary 〈Y 1234〉 = 0, which we
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can approach by setting c5 = εĉ5, c6 = εĉ6 and taking the limit ε→ 0 with ĉ5, ĉ6 fixed.

As can be seen from eq. (2.23), the two dominant R-invariants are equal to each other

in this limit,

(5) = (6) =
1

ε
· 1

c1c2c3c4(ĉ6x5 + ĉ5x6)
, (3.12)

while the R-invariants (1), (2), (3) and (4) remain finite. Similarly, the cross ratios

become

u =
c4(c2x1 + c1x2)

c2(c4x1 + c1x4)
, v = O(ε), w =

c1(c4x3 + c3x4)

c3(c4x1 + c1x4)
(3.13)

in this limit.

Thus this limit sends the cross ratio v → 0, but leaves u,w fixed. This limit

has been studied in the context of the operator product expansion (OPE), where it

is referred to as the double-scaling limit and corresponds to contributions with the

maximum number of gluonic flux-tube excitations [41–43]. While the conventional

OPE addresses configurations near the collinear limit v → 0, u + w → 1, the double-

scaling limit allows u and w to be generic.

For NMHV positive kinematics, u and w are not totally generic, because we have

[u+ w]c5,c6→0 = 1 +
c1c4(c2x3 + c3x2)

c2c3(c1x4 + c4x1)
> 1. (3.14)

This turns out to be the only additional constraint; that is, the correct NMHV positive

region within the double-scaling limit is the semi-infinite plane

u > 0, w > 0, u+ w > 1. (3.15)

In order to show that the entire region (3.15) corresponds to positive kinematics, we use

the fact that the lines u = 1 and w = 1 divide the region (3.15) into four subregions.

Each of the four subregions corresponds to solving eq. (3.13) for two of the cb, b =

1, 2, 3, 4, in terms of u,w and the remaining cb, xa, in a manifestly positive manner.

There are six possible pairs of cb, but the pairs {c1, c3} and {c2, c4} do not work. For

example, solving eq. (3.13) for c2, c3 gives

c2 =
c1c4x2

uc1x4 + (u− 1)c4x1
, c3 =

c1c4x3
wc4x1 + (w − 1)c1x4

, (3.16)

which is manifestly positive in the subregion u > 1, w > 1. This solution shows that

this entire subregion is covered. The other subregions work in the same way.

Since polylogarithms can generate at most log ε behavior, the one-loop ratio func-

tion in the double-scaling limit becomes dominated by terms involving the singular

(and equal) R-invariants (5) and (6):

P1−loop
6,1

∣∣∣
c5,c6→0

=
1

2ε
· 1

c1c2c3c4(ĉ6x5 + ĉ5x6)
· C(1)(u,w), (3.17)
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where

C(1)(u,w) = Li2(1− u) + Li2(1− w) + log u logw − ζ2 . (3.18)

While the rational prefactor in this expression is manifestly positive for all positive

values of the ca, it’s not yet obvious what can be said about the sign of the poly-

logarithmic part C(1)(u,w) in region (3.15). In fact, P1−loop
6,1 |c5,c6→0, and hence also

C(1)(u,w), is required to vanish on the boundary u + w = 1, because this line corre-

sponds to a limit in which two adjacent particles become collinear. In general, this

would mean that the six-point ratio function should match onto the five-point ratio

function – but the five-point ratio function receives no loop-level corrections [32]. The

vanishing boundary condition holds to all loop orders. At one loop, it is a trivial dilog

identity, Li2(1− u) = ζ2 − log u log(1− u)− Li2(u).

Given a vanishing boundary condition at the boundary u + w = 1, we can learn

about the sign of the one-loop ratio function throughout the NMHV positive region by

looking instead at the radial derivative of C(1)(u,w),(
u∂u + w∂w

)
C(1)(u,w) =

log u

1− u
+

logw

1− w
. (3.19)

This derivative is manifestly negative for all u,w > 0. Also, radial flow can be used

to reach any point (u,w) starting from some point on the boundary, namely the

point ( u
u+w

, w
u+w

). Thus C(1)(u,w) and P1−loop
6,1 |c5,c6→0 must be negative throughout

region (3.15).

4 Positivity in the double-scaling limit

We now begin to extend our investigation of positivity from one loop to higher loop

orders. In this section, we focus on the double-scaling limit just discussed in section 3.2.

Because the R-invariants are independent of loop order, the only difference in going to

higher loops is that the transcendental function C(1)(u,w) in eq. (3.18) is replaced by

the sum of the coefficients of the R-invariants (5) and (6), in eq. (2.30) for P6,1. Up to

a factor of 1/2, we denote this sum by C(u, v, w). In terms of the functions V and Ṽ ,

it is given by

C(u, v, w) = V (v, w, u) + V (w, u, v) + Ṽ (yv, yw, yu)− Ṽ (yw, yu, yv) . (4.1)

The limit v → 0 with u,w held fixed (or c5, c6 → 0 in the positive parametrization)

acts on the extended cross ratios yi by sending

yu →
1− w
u

, yv →
(1− u− w)2

v(1− u)(1− w)
, yw →

1− u
w

. (4.2)
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(Because u, v, w remain stationary under parity, while yu, yv, yw invert, one might think

that one could send the yi variables instead to the reciprocal of the three values chosen in

eq. (4.2). However, this choice is inconsistent with the positive parametrization (2.31).)

In general, the functions V and Ṽ diverge logarithmically in this limit, because

the amplitude has a physical branch cut at v = 0, where the Mandelstam variables

s23 and s56 vanish. We therefore parametrize the limiting behavior of C(u, v, w) as an

expansion in powers of log(1/v) as well as loop order,

C(u, v → 0, w) =
∞∑
`=0

`−1∑
n=0

(−a)`c(`)n (u,w) logn(1/v), (4.3)

up to power-suppressed terms. The upper limit on the sum over n reflects the empirical

observation that the leading-logarithmic contribution is log`−1(1/v) at ` loops. We

expect that this observation should have a OPE-based explanation.

The one-loop case studied in the previous section is the only one with no logarithmic

divergence:

C(1)(u, v → 0, w) = C(1)(u,w) = −c(1)0 (u,w). (4.4)

The use of (−a) in eq. (4.3) ensures that all the coefficients c
(`)
n (u,w) will be empirically

positive, given the overall sign alternation with loop order discussed in the introduction.

The boundary condition discussed in the previous subsection, that the ratio function

vanishes in the collinear limit, tells us that

c(`)n (u, 1− u) = 0, (4.5)

for all ` and n.

The limiting values (4.2) for the yi imply that the coefficient functions c
(`)
n (u,w)

in eq. (4.3) can be expressed as multiple polylogarithms [12, 13] of weight 2`− n with

symbol letters drawn from the set [22, 43]

SDS = {u,w, 1− u, 1− w, 1− u− w}, (4.6)

and branch cuts only in the letters u and w. This “double-scaling” function space is a

subspace of the 2dHPL function space introduced by Gehrmann and Remiddi [44] for

four-point scattering with one massive leg and three massless legs.

The c
(`)
n (u,w) can be computed from V and Ṽ by expressing them as multiple poly-

logarithms and taking the double scaling limit directly using the replacements (4.2) for

the yi variables. In this process, one can also extract the log(1/v) dependence. Alter-

natively, one can construct the double-scaling function space more abstractly at first,

using the set of relations between derivatives and coproducts implied by the symbol
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alphabet SDS. These relations are limiting versions of the coproduct relations used in

the hexagon function bootstrap. Then one can find matching conditions between these

functions and the v → 0 limit of one’s basis of hexagon functions. For an example of

the latter procedure see Appendix D of ref. [24].

In the latter approach, at high loop order it may be preferable to perform interme-

diate steps using the BDS-like normalized MHV and NMHV amplitudes that satisfy

the Steinmann relations, because the space of Steinmann-satisfying hexagon functions

is much smaller [25]. The limiting behavior of the (non-Steinmann) functions V and Ṽ

can then be computed from the limiting values of the Steinmann functions.

In section 4.2 we will show plots for the coefficient functions c
(`)
n (u,w) on the full

two-dimensional double-scaling surface (3.15). First, however, we would like to examine

their behavior on three one-dimensional lines that trace through this surface.

4.1 Positivity along lines in the double-scaling limit

The space of functions relevant for six-gluon scattering amplitudes simplifies further

in three one-dimensional subspaces of the double-scaling limit, where everything can

be expressed in terms of harmonic polylogarithms (HPLs) of a single variable [45].

On these lines, we can evaluate the ratio function numerically in Mathematica using

the HPL package [46]. Correspondingly, we first explore the behavior of the functions

c
(`)
n (u,w) in these special kinematic regions, before enlarging the scope of our study to

the full double-scaling limit. As we will see later, these lines turn out to capture most

of the interesting information about the ratio function in the double-scaling limit.

4.1.1 The line w = 1

The first simple line in the double-scaling limit corresponds to setting w = 1. This

collapses SDS to the simpler set of letters {u, 1 − u}, which implies that the functions

c
(`)
n (u, 1) can be written as a sum of HPLs with argument 1 − u. This representation

can be built up through iterative integrations, using the fact that the u derivative of a

generic hexagon function F collapses to

∂F

∂u

∣∣∣∣
v→0;w=1

=
F u − F yu + 2F yv

u
− F 1−u − F yv + F yw

1− u
(4.7)

along this line. To carry out this integration on a generic hexagon function, one must

also set the integration constant at each weight. This can be done by integrating from

the point (u, v, w) = (1, 1, 1), where the additive constants of hexagon functions are

usually defined, to the point (1, 0, 1) along the line (1, v, 1). Hexagon functions all

collapse to HPLs with argument 1− v along the line (1, v, 1), so this integration is also

simple [31]. Using this procedure, we have computed the functions c
(`)
n (u, 1) through

– 19 –



��-� ��� ��� ���

��-�

����

�

���

���

���

���

��-� ��� ��� ���

��-�

����

�

���

���

���

���

��-� ��� ��� ���

��-�

����

�

���

���

���

���

��-� ��� ��� ���

��-�

����

�

���

���

���

���

��-� ��� ��� ���

��-�

����

�

���

���

���

���

Figure 1: The coefficient functions c
(`)
n (u, 1) that multiply logn(1/v) in the double-

scaling limit at ` loops. Five loops is shown in blue, four loops in yellow, three loops

in green, two loops in red, and one loop in purple.

five loops, which we plot in figure 1. We also provide their HPL expressions in an

ancillary file.

The vanishing of the ratio function along the collinear line u + w = 1, eq. (4.5),

requires that the c
(`)
n (u, 1) all vanish at the point u = 0. We can also check the behavior

of these functions as u→∞, where they reduce to polynomials in log u. For instance,

the coefficient functions c
(`)
0 (u→∞, 1) become

c
(1)
0 (u→∞, 1) =

1

2
log2 u+ 2ζ2 , (4.8)

c
(2)
0 (u→∞, 1) =

1

12
log4 u+

7

4
ζ2 log2 u+

1

2
ζ3 log u+

59

4
ζ4 , (4.9)

c
(3)
0 (u→∞, 1) =

1

80
log6 u+

25

48
ζ2 log4 u+

1

24
ζ3 log3 u+

287

16
ζ4 log2 u

+
7

4
ζ5 log u+

3

2
ζ23 +

6303

64
ζ6 , (4.10)

c
(4)
0 (u→∞, 1) =

37

20160
log8 u+

11

96
ζ2 log6 u− 1

480
ζ3 log5 u+

459

64
ζ4 log4 u

−
(

1

2
ζ2ζ3 +

19

48
ζ5

)
log3 u+

(
3

2
ζ23 +

108763

768
ζ6

)
log2 u
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+

(
381

128
ζ7 −

443

32
ζ4ζ3 −

107

16
ζ5ζ2

)
log u

− 1

4
ζ5,3 +

3299555

4608
ζ8 +

63

4
ζ5ζ3 +

85

16
ζ23ζ2 , (4.11)

c
(5)
0 (u→∞, 1) =

13

48384
log10 u+

899

40320
ζ2 log8 u− 7

5760
ζ3 log7 u+

2559

1280
ζ4 log6 u

−
(

223

960
ζ3ζ2 +

71

320
ζ5

)
log5 u+

(
103

192
ζ23 +

105113

1536
ζ6

)
log4 u

−
(

1613

96
ζ4ζ3 +

1769

192
ζ2ζ5 +

1913

256
ζ7

)
log3 u

+

(
691

64
ζ2ζ

2
3 +

659

32
ζ5ζ3 −

3

8
ζ5,3 +

21436813

18432
ζ8

)
log2 u

−
(

79

48
ζ33 +

60801

256
ζ6ζ3 +

3209

16
ζ4ζ5 +

6913

64
ζ7ζ2 +

66545

1152
ζ9

)
log u

− 101

160
ζ2ζ5,3 −

543

512
ζ7,3 +

10267

128
ζ4ζ

2
3 +

2707

32
ζ2ζ5ζ3

+
1717

16
ζ7ζ3 +

28635

512
ζ25 +

592519707

102400
ζ10 , (4.12)

which all approach positive infinity, as expected. More generally, we have checked that

c
(`)
n (u→∞, 1)→ +∞ for all ` ≤ 5 and for all n between 0 and `− 1.

Since v is very small, positivity strictly requires only the leading-log coefficients

c
(`)
`−1(u, 1) to be positive. However, we find a much stronger result: The coefficients

c
(`)
n (u, 1) are all positive for u > 0 and for any n between 0 and ` − 1. Furthermore,

figure 1 shows that they all increase monotonically with u.

4.1.2 The line w = 0

The second simple line we will look at is w = 0. It forms an edge of the positive double-

scaling region (3.15). As was the case for the w = 1 line, SDS collapses to {u, 1 − u}.
However, c

(`)
n (u,w → 0) diverges logarithmically in w due to a physical branch cut

analogous to the branch cut in v. The functions c
(`)
n (u,w → 0) are therefore expressible

as an expansion in powers of log(1/w),

c(`)n (u,w → 0) =
`−n∑
k=0

c̃
(`)
n,k(u) logk(1/w). (4.13)

The coefficients c̃
(`)
n,k(u) are drawn from the space of HPLs with argument 1 − u, and

empirically they vanish unless k is between 0 and `− n, where we recall that n is the

power of log(1/v) in the expansion (4.3).
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Figure 2: The coefficient functions c̃
(`)
0,k(u) for the w → 0 edge of the double-scaling

limit at ` loops. Five loops is shown in blue, four loops in yellow, three loops in green,

two loops in red, and one loop in purple.

The derivative of a generic hexagon function F along the line (u,w → 0) is given

by

∂F

∂u

∣∣∣∣
v,w→0

=
F u − F yu

u
− F 1−u + F yv + F yw

1− u
. (4.14)

The integration constant can be set at u = 1, using the v → 0 endpoint of the line

(u, v, w) = (1, v, 0), which is just an S3 permutation of the line (u, 0, 1) considered in

the previous subsection.

We have carried out the corresponding integration through five loops and we include

HPL representations of all the c̃
(`)
n,k(u) in an ancillary file. The functions c̃

(`)
0,k(u), which

multiply different powers of log(1/w) in the non-log(1/v) part, are plotted in figure 2.

Due to the large number of independent functions multiplying different powers of large

logs on this line, we have relegated plots of the other c̃
(`)
n,k(u) functions to appendix A.

The vanishing of the ratio function along the collinear line u + w = 1, eq. (4.5),

requires these coefficient functions to become zero at u = 1. We have also checked

analytically that each of these functions approaches positive infinity in the limit u→∞.

Once again, we observe that all the coefficient functions – not just the leading-log ones

– are positive, and furthermore that they are monotonically increasing with u.
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Interestingly, there is an HPL representation in which the positivity and monotonic-

ity of the c̃
(`)
n,k(u) is almost manifest. We let the argument of the HPLs be z = 1− 1/u.

As u increases from 1 to ∞, z increases from 0 to 1. In this range of z, the HPLs with

trailing 1’s in their weight vectors are manifestly positive and monotonic, simply from

their integral definition,

H0, ~w(z) =

∫ z

0

dt

t
H~w(t), H1, ~w(u) =

∫ z

0

dt

1− t
H~w(t), (4.15)

because the integrand is a lower-weight HPL of the same form, H~w(t), multiplied by a

kernel that is positive for 0 < t < 1. Hence if the c̃
(`)
n,k(u) could be written in terms of

such HPLs with only positive coefficients, positivity and monotonicity would both be

manifest.

At one and two loops, this is the case; the non-vanishing coefficients are

c̃
(1)
0,1 = H1 ,

c̃
(1)
0,0 = H0,1 +H1,1 ,

c̃
(2)
1,1 =

1

2
H0,1 +

1

2
H1,1 ,

c̃
(2)
1,0 = H0,0,1 +H0,1,1 +

1

2
H1,0,1 +

1

2
H1,1,1 ,

c̃
(2)
0,2 =

1

4
H0,1 +

1

2
H1,1 ,

c̃
(2)
0,1 = 2H0,0,1 +

5

2
H0,1,1 +

3

2
H1,0,1 + 2H1,1,1 + ζ2H1 ,

c̃
(2)
0,0 =

9

2
H0,0,0,1 + 5H0,0,1,1 + 3H0,1,0,1 +

7

2
H0,1,1,1 + 2H1,0,0,1 +

5

2
H1,0,1,1

+
3

2
H1,1,0,1 + 2H1,1,1,1 + ζ2

(1

2
H0,1 +H1,1

)
, (4.16)

where we have suppressed the argument z = 1 − 1/u of the HPLs H~w(z), displaying

only their weight vector ~w.

Since all the coefficients in eq. (4.16) are positive, positivity and monotonicity on

the line w = 0 is manifest through two loops. However, the plot thickens at three loops.

All 9 nonzero coefficient functions c̃
(3)
n,k have positive coefficients in their representations,

except for c̃
(3)
1,0 and c̃

(3)
0,0. The only negative coefficients in these functions are those in

terms containing ζ3 – for example,

c̃
(3)
1,0 = 6H0,0,0,0,1 +

45

4
H0,0,0,1,1 + 6H0,0,1,0,1 +

45

4
H0,0,1,1,1 + 4H0,1,0,0,1 +

31

4
H0,1,0,1,1

+ 4H0,1,1,0,1 +
23

4
H1,0,1,1,1 + 2H1,1,0,0,1 + 4H1,1,0,1,1 + 2H1,1,1,0,1 + 4H1,1,1,1,1
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+
31

4
H0,1,1,1,1 + 3H1,0,0,0,1 +

23

4
H1,0,0,1,1 + 3H1,0,1,0,1

+ ζ2

(3

2
H0,0,1 +

7

4
H0,1,1 +

3

4
H1,0,1 +H1,1,1

)
− 1

2
ζ3H0,1 . (4.17)

Because the numerical coefficient in front of the ζ3 is relatively small, it doesn’t change

the actual positivity or monotonicity properties; it just makes them less manifest.

Continuing on to four and five loops, there are 14 and 20 nonzero coefficient func-

tions, respectively, with weights that range from 4 up to 10. The sign in front of each

HPL in each coefficient function is completely predictable: positive, unless the term

has an odd number of odd zeta values, in which case it is negative. The (mostly)

consistent signs for the HPL coefficients are reminiscent of the behavior found for the

velocity-dependent cusp anomalous dimension Ω0(x) in ref. [47].

4.1.3 The line u = w

The final simple line in the double-scaling limit is given by setting u = w. Here, the

symbol letters in SDS collapse to the set {u, 1 − u, 1 − 2u}. This makes the functions

c
(`)
n (u, u) expressible as HPLs of argument x ≡ 1 − 2u with weight vectors involving

−1, 0, and 1. The derivative of a generic hexagon function F along this line takes the

form

∂F

∂x

∣∣∣∣
v→0;u,w=(1−x)/2

=
2F yv

x
+
F 1−u + F 1−w + F yu + F yw − 2F yv

1 + x

− F u + Fw − F yu − F yw

1− x
, (4.18)

while the integration constant can be set by matching to the v → 0 endpoint of the

line (u, v, w) = (1, v, 1). This requires setting the argument x = −1, which introduces

transcendental constants beyond the multiple zeta values ζm and ζm,n. At low weights,

there are identities relating these new constants to multiple zeta values, log 2, and

Lin(1/2) with n ≥ 4, but starting at weight 6 new alternating sums alt~w ≡ H~w(−1) are

needed [48]. The numerical value of these constants can be calculated using the HPL

package.

We have computed the functions c
(`)
n (u, u) through five loops and include their HPL

representations in an ancillary file. The functions governing the leading-log and next-

to-leading-log contributions in 1/v are plotted in figure 3. These functions must vanish

at u = 1
2

where they intersect the collinear line u + w = 1. While c
(`)
n (u,w) diverges

at large u along the w = 1 and w = 0 lines, it has a finite large u limit along the line

u = w. That is, figure 3 shows that the coefficient functions c
(`)
n (u, u) all asymptote

to a constant as u → ∞. This constant can be computed analytically using our HPL
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Figure 3: The functions c
(`)
`−1(u, u) and c

(`)
`−2(u, u) governing the leading-log and next-

to-leading-log behavior of the ratio function at ` loops in the double scaling limit. The

variable u has been shifted by 1
2

to make it possible to plot on a log scale. Five loops

is shown in blue, four loops in yellow, three loops in green, two loops in red, and one

loop in purple.

representation; for instance, the constants for n = 0 are given through four loops by

c
(1)
0 (u, u)|u→∞ = 3ζ2 ,

c
(2)
0 (u, u)|u→∞ = 27ζ4 + 6ζ2 log2 2− 6Li4(1/2)− 1

4
log4 2 ,

c
(3)
0 (u, u)|u→∞ = 213ζ6 +

55

16
ζ23 +

341

64
ζ5 log 2 +

2835

32
ζ4 log2 2 +

23

16
ζ2 log4 2

− 51

2
ζ2Li4(1/2)− 30Li6(1/2)− 1

24
log6 2− 11

4
alt5,1 ,

c
(4)
0 (u, u)|u→∞ =

2714608937

1474560
ζ8 +

6793

512
ζ2ζ

2
3 +

10285

4096
ζ3ζ5 −

11683

20480
ζ5,3 +

20489

512
ζ3ζ4 log 2

+
2871

64
ζ2ζ5 log 2 +

354801

16384
ζ7 log 2− 729

512
ζ23 log2 2 +

477873

512
ζ6 log2 2

+
787

192
ζ2ζ3 log3 2 +

2015

384
ζ5 log3 2 +

7423

128
ζ4 log4 2− 221

960
ζ3 log5 2

− 457

720
ζ2 log6 2 +

11

768
log8 2− 5231

16
Li4(1/2)ζ4 −

43

2
Li4(1/2)ζ2 log2 2

+
43

48
Li4(1/2) log4 2 +

43

4
Li4(1/2)2 +

221

8
Li5(1/2)ζ3

+
9

2
Li5(1/2)ζ2 log 2− 135Li6(1/2)ζ2 − 175Li8(1/2)− 67

16
alt5,1,1,1

+
193

64
alt4,2,1,1 +

5281

256
alt7,1 −

327

16
alt5,1ζ2 +

67

16
alt5,1,1 log 2

– 25 –



− 193

64
alt4,2,1 log 2− 65

8
alt5,1 log2 2 , (4.19)

while the five loop expression c
(5)
0 (u, u)|u→∞ proves too unwieldy to present. At one loop

this constant is manifestly positive. Evaluating the higher-loop expressions numerically

confirms that they are positive as well:

c
(1)
0 (u, u)|u→∞ = 4.93480220054 . . . ,

c
(2)
0 (u, u)|u→∞ = 30.8020253462 . . . ,

c
(3)
0 (u, u)|u→∞ = 235.199512804 . . . ,

c
(4)
0 (u, u)|u→∞ = 2091.54312703 . . . ,

c
(5)
0 (u, u)|u→∞ = 22406.9101345 . . . . (4.20)

Indeed, numerical checks reveal that the functions c
(`)
n (u, u) are positive throughout the

positive region, and increase monotonically with u. This has been checked exhaustively

through four loops and for n > 1 at five loops. The higher-weight expressions c
(5)
1 (u, u)

and c
(5)
0 (u, u) are more computationally challenging to check at finite u, and have only

been checked in the limit u→∞.

4.2 The full double-scaling surface

Figures 1, 2 and 3, as well as those in appendix A, exhibit a remarkable feature – the

functions c
(`)
n (u,w) are not only positive along these lines, but increase monotonically

as they move away from the u + w = 1 line. We proved this radial monotonicity at

one loop, for c
(1)
0 (u,w), in section 3.2. In appendix B we show it for the next simplest

case, c
(2)
1 (u,w), a weight-3 function. These results make it natural to conjecture that

the monotonicity of c
(`)
n (u,w) holds to all loop orders.

In the rest of this section we check the monotonicity of the c
(`)
n (u,w) numerically

throughout the double-scaling surface. This can be done by expressing the functions

in terms of Goncharov polylogarithms, which can be numerically evaluated using the

program GiNaC [49, 50] wherever these functions admit a convergent series expansion.

The convergence condition for a Goncharov polylogarithm G(~a, z) is that |z| ≤ |ai| for

all nonzero ai. This condition is satisfied in the triangle subregion u + w > 1, u < 1,

w < 1 if we work in the following basis of Goncharov polylogarithms:

GDS =

{
G(~a; 1− w)

∣∣∣ai ∈ (0, u, 1)

}
∪
{
G(~a; 1− u)

∣∣∣ai ∈ (0, 1)

}
. (4.21)

This basis can also be used in the remainder of the NMHV positive region, where u

and/or w is larger than 1, because GiNaC automatically employs identities to relate
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functions outside their region of convergence to ones that do admit a convergent ex-

pansion. This procedure can generate imaginary parts for individual G functions, but

the imaginary parts cancel out in the final result.

0

2

4

6

0

1

2

3

4

5

0

1

2

3

Figure 4: The three-loop coefficient functions c
(3)
n (u,w) in the double-scaling limit,

shifted to make it possible to plot them on a log scale. By plotting these functions

against log u and logw we deform the u+ w = 1 line to the concave boundary seen in

each plot.

All the numerical checks we have performed on the double-scaling surface support

both positivity and monotonic radial growth for every function c
(`)
n (u,w). We plot the

functions, rather than their radial derivatives, in order to make interpretation of the
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magnitudes appearing in these plots more clear. In particular, we provide two sequences

of plots that illustrate the trends the functions c
(`)
n (u,w) exhibit as n and ` are varied.

The first sequence, in figure 4, shows how the three-loop result c
(3)
n (u,w) changes as we

move from the coefficient of the next-to-next-to-leading log in 1/v (n = 0) to the leading

log in 1/v (n = 2) in the expansion (4.3). The plots all display the u↔ w symmetry of

C(u, v, w), which is manifest from its definition (4.1) and the (anti)symmetry properties

of V and Ṽ , eq. (2.33). More interestingly, the coefficient of the leading log term grows

the most slowly in the radial direction at a given loop order, particularly near the line

of symmetry, u = w, where it asymptotes to a constant. This result holds at least

through four loops. (The five loop expressions proved too computationally taxing to

explore exhaustively.)

In figure 5 we plot the slowest-growing, leading-log coefficient functions c
(`)
`−1(u,w)

from one to four loops. As the loop order increases, the functions experience slower

radial growth. Moreover, the functions c
(`)
n (u,w) interpolate smoothly between the

lines u = w and w = 0, implying that most of the interesting information about these

functions in present on these two lines. In particular, the functions always grow the

most slowly along the line u = w.

5 Bulk positivity at higher loops

The previous sections verified the positivity of the ratio function in various limits, nearly

all of which were on the boundary of the positive octant, i.e. the double-scaling limit.

In this section, we check the positivity of the ratio function in the bulk, where all three

cross ratios are bounded away from zero. Except for the point (u, v, w) = (1, 1, 1), the

topic of the next subsection, our investigations will be numerical. After a brief review

of our procedure for numerically evaluating hexagon functions, we outline the checks

performed. Positivity appears to continue to hold in the bulk through at least four

loops, after which it gets too computationally taxing to check.

5.1 The point (u, v, w) = (1, 1, 1)

The parity-odd functions Ṽ (`) all vanish at the point (1, 1, 1), because they are odd

about the surface ∆(u, v, w) = 0, which includes this point. Thus we can repeat the

analysis from Example 1 in section 3.1, obtaining

P`−loop6,1 −−−−→
u=v=w

Ptree
6,1 × V (`)(1, 1, 1). (5.1)

So all we need to do is check that the sign of V (`)(1, 1, 1) alternates with loop order

`. The value of the functions V (`)(1, 1, 1) were supplied through four loops in ref. [24],
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Figure 5: The leading-log coefficient functions c
(`)
`−1(u,w) in the double-scaling limit

from one to four loops, shifted to make it possible to plot them on a log scale. By

plotting these functions against log u and logw we deform the u + w = 1 line to the

concave boundary seen in each plot.

and we have extracted the five-loop value from ref. [25]:

V (1)(1, 1, 1) = −ζ2 ,
V (2)(1, 1, 1) = 9 ζ4 ,

V (3)(1, 1, 1) = −243

4
ζ6 ,

V (4)(1, 1, 1) =
5051

12
ζ8 + 3 ζ2 (ζ3)

2 − 15 ζ3 ζ5 − 3 ζ5,3 ,

– 29 –



V (5)(1, 1, 1) = −244257

80
ζ10 −

93

2
ζ4 (ζ3)

2 − 21 ζ2 ζ3 ζ5 +
399

2
ζ3 ζ7 +

777

8
(ζ5)

2

+
9

2
ζ2 ζ5,3 +

57

4
ζ7,3 . (5.2)

The desired sign alternation is manifest from eq. (5.2) through three loops; after that

it relies on the numerical values of the multiple zeta values:

V (1)(1, 1, 1) = −1.64493406684 . . . ,

V (2)(1, 1, 1) = +9.74090910340 . . . ,

V (3)(1, 1, 1) = −61.8035910155 . . . ,

V (4)(1, 1, 1) = +410.9535753669 . . . ,

V (5)(1, 1, 1) = −2825.3845732862 . . . . (5.3)

We remark that the numerical result for V (`)(1, 1, 1) is dominated by the ζ2` term

through five loops (it gives the correct value to within 10%).

5.2 Method for obtaining bulk numerics and positivity tests

Next we turn to numerical evaluation of the ratio function at random points in the

bulk of the NMHV positive region. To evaluate the ratio function numerically at

higher loops, we followed the procedure pioneered in ref. [31].

Representing the ratio function in terms of multiple polylogarithms allows us to

evaluate them using powerful existing code like GiNaC [49, 50]. In order to do this,

we choose a representation in which the multiple polylogarithms have convergent series

expansions. We also prefer our representations to be manifestly real to reduce the

potential for numerical error.

These conditions lead to two conditions on our multiple polylogarithms. For a

multiple polylogarithm G(w1, . . . , wn; z), we obtain a convergent series expansion when

|z| ≤ |wi| for all nonzero wi, and our result is manifestly real if z and all wi are real

and positive.

In order to avoid square roots and their attendant branch-cut ambiguities, we work

in the variables (yu, yv, yw). Following ref. [31], we find four different multiple polylog

representations, corresponding to four different kinematic regions. In particular, for

MHV studies we use

GLI =

{
G(~w; yu)|wi ∈ (0, 1)

}
∪
{
G(~w; yv)

∣∣∣wi ∈ (0, 1,
1

yu

)}
∪
{
G(~w; yw)

∣∣∣wi ∈ (0, 1,
1

yu
,

1

yv
,

1

yuyv

)} (5.4)
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which is manifestly convergent for points in Region I, the MHV positive kinematic

region defined by

Region I :

{
∆ > 0 , 0 < ui < 1 , and u+ v + w < 1,

0 < yi < 1 .
(5.5)

For studying the ratio function in NMHV positive kinematics, we use

GLII =

{
G
(
~w;

1

yu

)∣∣∣wi ∈ (0, 1)

}
∪
{
G
(
~w;

1

yv

)∣∣∣wi ∈ (0, 1, yu)

}
∪
{
G(~w; yw)

∣∣∣wi ∈ (0, 1,
1

yu
,

1

yv
,

1

yuyv

)} (5.6)

for points in Region II:

Region II :

{
∆ > 0 , 0 < ui < 1 , and u+ v − w > 1,

0 < yw <
1

yuyv
< 1

yu
, 1
yv
< 1 .

(5.7)

Cycling the yi in Region II lets us define two other regions, Region III and Region IV,

where we have multiple polylog representations in the bulk. Because the bosonized

ratio function is S3 symmetric, Regions III and IV do not add any new information.

The NMHV positive region always has ∆ > 0 (see eq. (2.18)). However, Region II lies

entirely within the unit cube in (u, v, w), and the bulk NMHV positive region extends

well beyond it (as is clear from the double-scaling plots in the previous section). So

our bulk positivity tests will be confined to points inside the unit cube.

In order to perform this test, we randomly generate a phase-space point in the

NMHV positive region by picking eleven random values of the positive parameters

(cb, xa), each between 0 and 100 (x6 is set to 1, as discussed in 2.2). For each set of

values we use eqs. (2.16) and (2.14) to compute the three cross ratios u, v, w. If the

point (u, v, w) is not inside the unit cube, we stop and generate a new point. If it is

inside the unit cube, we use eqs. (2.23) and (2.31) to compute the R-invariants and

extended cross ratios yu, yv, yw. We plug the latter into the arguments of the multiple

polylogarithms in our Region II (or III or IV) representation of the ratio function,

performing the numerical evaluation with GiNaC. We examined 585 points at loop

orders from one through four, and the ratio function always has the expected sign,

alternating with loop order.

6 MHV positivity

Having found strong evidence that the NMHV ratio function is positive through five

loops in the NMHV positive region, we now return to studying various IR-finite versions

of the MHV amplitude in the MHV positive region.
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6.1 The remainder function fails

As mentioned in section 2.1, there are a variety of possibilities. They are all fairly

simply related to each other analytically, but they still can have different positivity

properties. First we consider the six-point remainder function R6, which is defined as

the logarithm of the MHV amplitude divided by the BDS ansatz, as in eq. (2.26),

exp[R6] =
M6,0

MBDS
6,0

. (6.1)

The remainder function vanishes at one loop by construction. Its positivity in the

MHV positive region (2.9) was investigated at two loops [27], three loops [31], and four

loops [23]. All points investigated numerically were found to have the correct sign.

However, it turns out that there are regions close to the origin in (u, v, w) that

have the wrong sign for R
(4)
6 . To exhibit such points, we consider the same line v = 0,

w = 0 on which the ratio function was studied for u > 1 in section 4.1.2, but now we

take 0 < u < 1 in order to be in the MHV positive region. As was true for the ratio

function, the remainder function develops logarithmic singularities in both v and w as

they approach zero,

R6(u, v → 0, w → 0) =
∞∑
`=2

`−1∑
n,k=0

(−a)` r
(`)
n,k(u) logn(1/v) logk(1/w), (6.2)

up to power-suppressed terms in v and w. Since R6 is S3 permutation symmetric,

rk,n(u) = rn,k(u). Also, the coefficient functions vanish unless n+ k ≤ `.

At two and three loops, there are no problems in this region. The independent

nonzero coefficient functions are given by,

r
(2)
1,1 =

1

4
H0,1 ,

r
(2)
1,0 =

1

4

[
2H0,0,1 +H1,0,1

]
,

r
(2)
0,0 =

1

4

[
6H0,0,0,1 + 3H0,1,0,1 + 4H1,0,0,1 + 2H1,1,0,1 − 2ζ2(H0,1 +H1,1)

]
, (6.3)

and

r
(3)
2,1 =

1

16

[
H0,0,1 −H0,1,1

]
,

r
(3)
2,0 =

1

16

[
3H0,0,0,1 − 2H0,0,1,1 +H0,1,0,1 +H1,0,0,1 −H1,0,1,1

]
,

r
(3)
1,1 =

1

4

[
3H0,0,0,1 − 2H0,0,1,1 +H1,0,0,1 −H1,0,1,1 + 2ζ2H0,1

]
,
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r
(3)
1,0 =

1

8

[
18H0,0,0,0,1 − 9H0,0,0,1,1 + 3H0,0,1,0,1 + 7H0,1,0,0,1 − 4H0,1,0,1,1 +H0,1,1,0,1

+ 9H1,0,0,0,1 − 6H1,0,0,1,1 +H1,0,1,0,1 + 3H1,1,0,0,1 − 3H1,1,0,1,1

+ ζ2(5H0,0,1 −H0,1,1 + 2H1,0,1)
]
,

r
(3)
0,0 =

1

4

[
30H0,0,0,0,0,1 − 12H0,0,0,0,1,1 + 6H0,0,0,1,0,1 + 12H0,0,1,0,0,1 − 5H0,0,1,0,1,1

+ 2H0,0,1,1,0,1 + 15H0,1,0,0,0,1 − 8H0,1,0,0,1,1 + 2H0,1,0,1,0,1 + 5H0,1,1,0,0,1

− 4H0,1,1,0,1,1 + 18H1,0,0,0,0,1 − 9H1,0,0,0,1,1 + 3H1,0,0,1,0,1 + 7H1,0,1,0,0,1

− 4H1,0,1,0,1,1 +H1,0,1,1,0,1 + 9H1,1,0,0,0,1 − 6H1,1,0,0,1,1 +H1,1,0,1,0,1

+ 3H1,1,1,0,0,1 − 3H1,1,1,0,1,1

+ ζ2(3H0,0,0,1 − 2H0,0,1,1 +H0,1,0,1 +H1,0,0,1 −H1,0,1,1)

− 2ζ3(H0,0,1 +H0,1,1)− 11ζ4(H0,1 +H1,1)
]
, (6.4)

where the suppressed HPL argument is 1 − u. It can be checked that they are all

positive for 0 < u < 1.

The problem starts at four loops with the leading log coefficients,

r
(4)
3,1(u) =

1

96

[
H0,0,0,1 − 2H0,0,1,1 − 2H0,1,0,1 +H0,1,1,1

]
,

r
(4)
2,2(u) =

1

32

[
H0,0,0,1 − 5H0,0,1,1 −H0,1,0,1 +H0,1,1,1

]
, (6.5)

which turn negative for u < 0.15 and u < 0.2, respectively, and stay negative as u→ 0.

The leading terms in their expansions around u = 0 are clearly negative:

r
(4)
3,1(u) ∼ − u

96

[1

6
log3(1/u) +

1

2
log2(1/u)− (2ζ2 − 1) log(1/u) + 3ζ3 − 2ζ2 + 1

]
,

r
(4)
2,2(u) ∼ − u

32

[1

6
log3(1/u) +

1

2
log2(1/u)− (ζ2 − 1) log(1/u)− 2ζ3 − ζ2 + 1

]
, (6.6)

Thus R
(4)
6 (u, v, w) is negative for very small v and w and u < 0.14.

6.2 Logarithmic fixes fail

One might first try to fix the problem with R
(4)
6 at the logarithmic level. Consider the

logarithm of the BDS-like normalized amplitude,

E =
M6,0

MBDS−like
6,0

= exp

[
R6 −

γK
8
Y

]
, (6.7)

where γK is the cusp anomalous dimension and

Y (u, v, w) = Li2(1− u) + Li2(1− v) + Li2(1−w) +
1

2

(
log2 u+ log2 v+ log2w

)
, (6.8)
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so that

log E(u, v, w) = R6(u, v, w)− γK
8
Y (u, v, w). (6.9)

This attempt immediately runs into trouble, because the limiting behavior of Y ,

Y (u, v → 0, w → 0) ∼ 1

2
log2 v +

1

2
log2w +

1

2
log2 u+ Li2(1− u) + 2ζ2 , (6.10)

like that of any one-loop function, does not have enough logarithms of v or w to compete

with the four powers of logs in the problematic terms in R
(4)
6 .

One can also consider the logarithm of the hexagonal Wilson loop framed by two

pentagons and a box [36, 51],

Wratio =
〈Whex〉〈Wbox〉
〈Wpent〉〈Wpent′〉

= exp

[
R6 +

γK
8
X

]
, (6.11)

where

X(u, v, w) = −Li2(1− u)− Li2(1− v)− Li2(1− w)

− log

(
uv

w(1− v)

)
log(1− v)− log u logw + 2ζ2 . (6.12)

Since X is a one-loop function, it cannot produce enough logs in the limit to compete

with R
(4)
6 , and thus logWratio cannot be strictly positive either by four loops.

6.3 Other fixes fail

Next we turn to functions that are defined at the level of the MHV amplitude, rather

than its logarithm. First we consider the BDS-normalized amplitude exp[R6]. At one

and two loops, it is the same as R6, while its four-loop coefficient receives an extra

positive contribution: [
exp[R6]

](4)
= R

(4)
6 +

1

2

[
R

(2)
6

]2
. (6.13)

Taking into account eq. (6.3), the leading-log [r
(2)
1,1]

2 part of [R
(2)
6 ]2 can and does flip

the sign of the log2(1/v) log2(1/w) coefficient function to positive. But it clearly leaves

the log3(1/v) log(1/w) term unaltered. So the addition of [R
(2)
6 ]2 cannot cancel the

negative behavior of R
(4)
6 for kinematics with 0 < v � w � u < 0.14, for which

log3(1/v) log(1/w)� log2(1/v) log2(1/w).

Can the negative behavior be fixed by the framed Wilson loop Wratio defined in

eq. (6.11)? Now X is not S3 symmetric, and the three cyclically-related line segments

all belong to the MHV positive regions: v, w → 0, 0 < u < 1; w, u → 0, 0 < v < 1;

u, v → 0, 0 < w < 1. We need to ensure positivity along all three lines and for both
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orderings of the two vanishing cross ratios. Equivalently, since R6 is S3 symmetric, we

should consider the v, w → 0, 0 < u < 1 limits of all six permutations of X. The

original orientation X(u, v, w) already reveals a problem:

X(u, v → 0, w → 0) ∼ − log(1/w) log(1/u)− Li2(1− u) . (6.14)

Because there are no log(1/v)’s in this expression, powers of X cannot fix the sign

problem that exp[R6] still has in the region 0 < v � w � u < 0.14.

6.4 BDS-like normalized amplitude works

Finally, we consider the BDS-like normalized amplitude itself, E(u, v, w) defined in

eq. (6.7). Since the limiting behavior of Y in eq. (6.10) contains both log2(1/v) and

log2(1/w), it can potentially fix the negative behavior. Indeed it does fix the problem

through five loops, at least for v, w → 0, 0 < u < 1, or (by symmetry) on cyclic

permutations of this line segment. It also leads to monotonically increasing behavior

as u decreases from 1. The expansion on this line segment now contains many higher

powers of the singular logs, all the way up to 2`,

E(u, v → 0, w → 0) =
∞∑
`=0

2∑̀
n,k=0

(−a)` ẽ
(`)
n,k(u) logn(1/v) logk(1/w), (6.15)

up to power-suppressed terms. Here ẽ
(`)
k,n = ẽ

(`)
n,k and n+k ≤ 2` for a nonzero coefficient.

As was the case for the NMHV ratio function on the continuation of this line to

u > 1, discussed in section 4.1.2, there is an HPL representation which almost makes

manifest the positivity and monotonicity. In this case we use the argument 1−u rather

than 1 − 1/u, since the argument 1 − u runs from 0 to 1 as u runs from the collinear

point u = 1 down to the origin. Positivity is manifest from the signs in front of the

HPLs at one and two loops:

ẽ
(1)
2,0 =

1

4
, ẽ

(1)
1,1 = 0 , ẽ

(1)
1,0 = 0 , ẽ

(1)
0,0 =

1

2

[
H0,1 +H1,1 + 2ζ2

]
, (6.16)

ẽ
(2)
4,0 =

1

32
, ẽ

(2)
3,1 = 0 , ẽ

(2)
2,2 =

1

16
, ẽ

(2)
3,0 = 0 , ẽ

(2)
2,1 = 0 ,

ẽ
(2)
2,0 =

1

8

[
H0,1 +H1,1 + 4ζ2

]
, ẽ

(2)
1,1 =

1

4
H0,1 , ẽ

(2)
1,0 =

1

4

[
2H0,0,1 +H1,0,1

]
,

ẽ
(2)
0,0 =

1

4

[
6H0,0,0,1 + 2H0,0,1,1 + 4H0,1,0,1 + 3H0,1,1,1 + 4H1,0,0,1 + 2H1,0,1,1

+ 3H1,1,0,1 + 3H1,1,1,1 + 2ζ2(H0,1 +H1,1) + 15ζ4

]
. (6.17)
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At three loops the HPL representation no longer makes manifest the positivity of

all terms; for example,

ẽ
(3)
2,1 =

1

16

[
3H0,0,1 +H1,0,1 −H0,1,1

]
,

ẽ
(3)
1,0 =

1

8

[
18H0,0,0,0,1 + 3H0,0,0,1,1 + 9H0,0,1,0,1 + 6H0,0,1,1,1 + 9H0,1,0,0,1 + 2H0,1,0,1,1

+ 5H0,1,1,0,1 + 9H1,0,0,0,1 + 2H1,0,0,1,1 + 5H1,0,1,0,1 + 3H1,0,1,1,1 + 5H1,1,0,0,1

+H1,1,0,1,1 + 3H1,1,1,0,1 + ζ2(9H0,0,1 + 4H1,0,1 −H0,1,1)
]
. (6.18)

In both of these cases, it is easy to see that the terms with a minus sign are over-

powered by the previous term. At higher-loop orders, positivity and monotonicity of

the coefficient functions becomes tricky to prove analytically, but we have verified it

numerically for all ẽ
(`)
n,k coefficients through five loops.

What about positivity of E in other parts of the MHV positive region? The double-

scaling limit intersects this region in the triangle,

u > 0, w > 0, u+ w < 1. (6.19)

which is the complement of the NMHV double-scaling positive region (3.15) in the

positive quadrant. The expansion of E in this limit is

E(u, v → 0, w) =
∞∑
`=0

2∑̀
n=0

(−a)` e(`)n (u,w) logn(1/v). (6.20)

The one-loop coefficient functions are,

e
(1)
2 (u,w) =

1

4
,

e
(1)
1 (u,w) = 0 ,

e
(1)
0 (u,w) =

1

4
log2(u/w) + ζ2 +

1

2
C(1)(u,w). (6.21)

Now C(1)(u,w) is negative in the NMHV positive region, but the same radial-derivative

argument shows that it flips sign around the collinear boundary, where it vanishes. So

C(1)(u,w) is positive in the MHV positive region, and the representation (6.21) makes

manifest the desired sign (and monotonicity) for E (1)(u, v, w) in the double-scaling limit

of the MHV positive region.

Similarly at two loops we have,

e
(2)
4 (u,w) =

1

32
,
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e
(2)
3 (u,w) = 0 ,

e
(2)
2 (u,w) =

1

4

[
e
(1)
0 (u,w) + ζ2

]
,

e
(2)
1 (u,w) = −1

2
c
(2)
1 (u,w), (6.22)

where e
(1)
0 (u,w) was just argued to be positive. The positivity of c

(2)
1 (u,w) was proved

in the NMHV positive region in appendix B. But again the argument did not rely

on u + w > 1 – except for the overall sign, which flips when crossing the collinear

boundary dividing the MHV and NMHV positive regions. Hence c
(2)
1 (u,w) is negative

in the MHV positive region, implying that e
(2)
1 (u,w) is positive.

The positivity and monotonicity of the last two-loop coefficient, e
(2)
0 (u,w), is not

as simple to prove, but has been confirmed numerically with GiNaC using the basis

of multiple polylogarithms given in eq. (4.21). Similar numerical checks confirm the

positivity and monotonicity of all the three loop coefficient functions e
(3)
n (u,w); we plot

the functions governing the leading-log and next-to-leading log behavior in figure 6. As

can be seen in these plots, E is not generically required to vanish on the line u + w =

1. However, the collinear vanishing of R6 on this line is inherited by the coefficient

functions e
(`)
n (u,w) that multiply odd powers of logs. This is due to the fact that the

function Y that converts between E and R6 in eq. (6.7) can only provide even powers of

logs, as can be seen from its definition in eq. (6.8). Correspondingly, e
(3)
3 (u,w) vanishes

along the line u+ w = 1 while e
(3)
4 (u,w) does not. These plots also exhibit the u↔ w

symmetry that the functions e
(`)
n (u,w) inherit from the total symmetry of E .

Finally, we examined the values for E (`)(u, v, w) in the bulk MHV positive region

(Region I), from one to four loops, using the representations for E (`) in terms of multiple

polylogarithms referred to in section 5.2. After randomly generating 1608 points in

this region, we found that E (`) had the correct sign through four loops for every point

examined.

7 Conclusion

In this paper we have demonstrated that the positivity properties of the Amplituhedron

persist after momentum integration, at least in some cases. In particular, the ratio

function (the IR-finite ratio of the NMHV and MHV amplitudes) has uniform sign in

the same region in which the Amplituhedron is positive. The MHV amplitude also

has uniform sign provided that we normalize by a “BDS-like” ansatz. In both cases, it

appears that the Minkowski contour of integration preserves positivity more completely

than would have been expected.

– 37 –



0

0.1

0.2

0.3

0.4

0.5

0

0.1

0.2

0.3

0.4

0.5

Figure 6: The three-loop coefficient functions e
(3)
3 (u,w) and e

(3)
4 (u,w) in the double-

scaling limit, shifted to make it possible to plot them on a log scale. By plotting these

functions against log u and logw we deform the u+w = 1 line to the convex boundary

seen in each plot.

While we have not provided a general proof, we do provide analytic evidence on

a variety of lines, as well as numerical checks through the bulk of kinematic space, all

of which support positivity. In doing so, we have observed that the ratio function and

E both appear to be not just of uniform sign but, at least in the double-scaling limit,

they are monotonic in a radial direction away from the collinear limit. This property

appears to be quite robust, and falls in line with older observations of ratio function

numerics, all of which suggest that the ratio function is significantly simpler than the

complicated expressions used to represent it might imply.

In the future, it would be interesting to explore whether a more general proof of

positivity can be devised. It seems possible that one could find rules for which positive

integrands result in positive amplitudes, and such rules would likely be useful in much

broader contexts. This would likely involve finding some contour of integration that,

unlike the usual Minkowski contour, manifestly preserves positivity. Understanding

such a contour could also shed new light on the Amplituhedron, suggesting that there

could be an Amplituhedron-like construction of finite quantities such as ratio functions

or BDS-like normalized MHV amplitudes, both for the integrands and the final results.
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A More results for the double-scaling line w = 0

This appendix provides additional plots of the coefficient functions c̃
(1)
n,k(u) describing

the behavior of the ratio function on the w → 0 edge of the double-scaling limit,

beyond the case n = 0 already plotted in figure 2. Figure 7 gives the remaining cases

n = 1, 2, 3, 4. Again all coefficient functions are positive and monotonically increasing

for the u > 1 region of NMHV positive kinematics.

�� ��� ���� ��� ��� ���

����

��

���

���

�� ��� ���� ��� ��� ���

����

��

���

���

�� ��� ���� ��� ��� ���

���

��

����

���

���

�� ��� ���� ��� ��� ���

����

���

���

���

�� ��� ���� ��� ��� ���

�����

�����

��

����

�� ��� ���� ��� ��� ���

���

��

����

���

���

�� ��� ���� ��� ��� ���
���

��

����

���

�� ��� ���� ��� ��� ���

����

���

���

���

�� ��� ���� ��� ��� ���

�����

�����

��

����

�� ��� ���� ��� ��� ���

����

���

���

�� ��� ���� ��� ��� ���

����

���

���

�� ��� ���� ��� ��� ���

����

���

���

�� ��� ���� ��� ��� ���

�����

�����

�����

��

���

����

�� ��� ���� ��� ��� ���

��-�

�����

�����

�����

��

���

Figure 7: The coefficient functions c̃
(`)
n,k(u) for the w → 0 edge of the double-scaling

limit at ` loops. Five loops is shown in blue, four loops in yellow, three loops in green,

and two loops in red.
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B Proof that c
(2)
1 (u,w) is positive and monotonic

The coefficient function c
(2)
1 (u,w) has weight 3, which guarantees that it can be rep-

resented in terms of classical polylogarithms. From its coproduct representation we

found that

c
(2)
1 (u,w) = −Li3

(
u+ w − 1

uw

)
+ Li3

(
u+ w − 1

u

)
+ Li3

(
u+ w − 1

w

)
− logw Li2

(
u+ w − 1

u

)
− log uLi2

(
u+ w − 1

w

)
− 1

2
log(uw)

(
Li2(1− u) + Li2(1− w)− ζ2

)
− 1

2

(
log2 u log(1− u) + log2w log(1− w)

)
. (B.1)

Note that it vanishes on the collinear boundary u + w = 1: c
(2)
1 (u, 1 − u) = 0. The

representation (B.1) is manifestly real for u,w > 0 and u,w < 1. It can acquire

an imaginary part in other regions, so another representation might be preferable in

principle.

However, we are going to take its radial derivative now, and write the result in a

manifestly real form:

c
(2)
1,r(u,w) ≡ (u∂u+w∂w)c

(2)
1 (u,w) =

c
(1)
0 (u,w)

u+ w − 1
−1

2

[
1

1− u
+

1

1− w

]
log u logw , (B.2)

where

c
(1)
0 (u,w) = −C(1)(u,w) = −Li2(1− u)− Li2(1− w)− log u logw + ζ2 (B.3)

is positive and monotonically increasing, from the previous one-loop analysis.

Although the first term in eq. (B.2) is positive in the positive double-scaling re-

gion (3.15), the second term can be negative (say, for u < 1 and w < 1). So we have

to show that the second term is outweighed by the first term.

Rather than working with dilogarithms, we take another radial derivative. First

we multiply by the quantity (u + w − 1), which is uniformly positive in the positive

region. So if we can show that (u+ w − 1)c
(2)
1,r is positive, it’s the same as showing c

(2)
1,r

is positive. It’s easy to see that c
(2)
1,r(u,w) is regular on the collinear boundary, because

c
(1)
0 (u,w) vanishes there. Hence (u + w − 1)c

(2)
1,r vanishes there, which allows a radial

flow argument to work. Multiplication by (u+w− 1) before differentiating also allows

the radial derivative to kill the polylogarithms:

c
(2)
1,rr(u,w) ≡ (u∂u + w∂w)

[
(u+ w − 1)c

(2)
1,r(u,w)

]
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= −1

2

[
u

(1− w)2
+

w

(1− u)2

]
log u logw

− 1

2

[
u

1− w
+
w + 2u

1− u

]
log u− 1

2

[
w

1− u
+
u+ 2w

1− w

]
logw .

=
1

2
log u

[
− u logw

(1− w)2
− u

1− w
− w + 2u

1− u

]
+ (u↔ w). (B.4)

In the second form, it is enough to show that the term shown is positive everywhere

in the positive region; the same will then be true of the term obtained by (u ↔ w)

reflection.

Note that the contribution of the third term in brackets, −(w+ 2u)(log u)/(1−u),

always has the desired sign, positive. Suppose first that u > 1. Then we combine the

first two terms to get (−u)×(logw+1−w)/(1−w)2. The last factor is always negative,

including w = 1 where it approaches a finite limit. So we are done with the u > 1 case.

Now let u < 1. In this case we have to combine all three terms, and use the identity,

u

1− w
+
w + 2u

1− u
>

u

w(1− w)
, (B.5)

which can be established by writing the difference, left minus right, as

w(w + u) + u(u+ w − 1)

w(1− u)
> 0. (B.6)

Therefore

u logw

(1− w)2
+

u

1− w
+
w + 2u

1− u
>

u logw

(1− w)2
+

u

w(1− w)
= u×

logw + 1−w
w

(1− w)2
. (B.7)

The last factor is always positive, so the quantity in brackets in eq. (B.4) is negative

for u < 1. Combined with the fact that log u < 0 for u < 1, we are done proving

that c
(2)
1,rr > 0 in the positive region. This in turn proves that c

(2)
1,r > 0, and hence that

c
(2)
1 (u,w) itself is positive.

For the next simplest quantity, the weight-4 function c
(2)
0 (u,w), we tried to apply

the same method of taking repeated radial derivatives, but we were unable to remove

all the trilogarithms in the second iteration, because they come with different rational

prefactors. So an analytic proof would probably require another method. However, we

could establish numerically that the second such derivative, c
(2)
1,rr(u,w) was positive in

the positive region, consistent with the more general numerical study in section 4.2.
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