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Abstract

In this paper the dynamical spin effects of the light-front holographic wavefunctions for

light pseudoscalar mesons are studied using two different assumptions. These improved

wavefunctions are then confronted with a number of sensitive hadronic observables: the

decay constants of π and K mesons, their ξ-moments, the pion-to-photon transition form

factor, and the pure annihilation B̄s → π+π− and B̄d → K+K− decays. Taking fπ, fK

and their ratio fK/fπ as constraint conditions, the χ2 analyses for holographic parameters,

including the mass scale parameter
√
λ and effective quark masses, are all consistent with

the mass scale which controls the slopes of the light-quark hadronic Regge trajectories. In

addition, we also show how the improved light-front holographic distribution amplitudes

regulate the end-point divergences which appear in the annihilation amplitudes of B →

PP decays.

PACS numbers: 12.38.Aw, 11.25.Tq, 14.40.Nd, 13.25.Hw
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1 Introduction

Light-front (LF) quantization is the natural frame-independent framework for the description

of non-perturbative relativistic bound-state structure in quantum field theory. In principle, one

can solve QCD by diagonalizing the LF QCD Hamiltonian HLF , by using, for example, the

discretized light-cone quantization method [1]. The spectrum and LF wavefunctions (LFWFs),

which contain hadronic information, are then obtained from the eigenvalues and eigenfunctions

of the Heisenberg equation HLF |ψ〉 = M2|ψ〉. The result is an infinite set of coupled integral

equations for the LF components in a Fock expansion [1]. Unfortunately, solving these equations

is a formidable computational task for the case of a non-abelian quantum field theory such as

QCD in four-dimensional space-time. Consequently, alternative methods are necessary; for a

recent comprehensive review, see Refs. [1, 2] for details.

In recent years, a semiclassical first approximation to strongly coupled QCD – light-front

holographic AdS/QCD – has been developed [3–7]. This color-confining approach predicts the

spectroscopy of light-quark hadrons, dynamical observables such as form factors and structure

functions, and the behavior of the running coupling in the nonperturbative domain. Only one

mass scale in addition to the quark masses appears. This approach to hadron dynamics in

physical four-dimensional spacetime at fixed LF time τ = x+ = x0 + x3 is holographically dual

to the dynamics of a gravitational theory in five-dimensional anti-de Sitter (AdS) space. The LF

eigenvalue equation can be reduced in this theoretical framework to an effective single-variable

quantum-mechanical wave equation for φ(ζ) which is given by [7](
− d2

dζ2
− 1− 4L2

4ζ2
+ U(ζ)

)
φ(ζ) = M2φ(ζ) . (1)

The function U(ζ) is the effective potential acting on the valence states [8]; it is holographically

related to a unique dilation profile in AdS space. As a result, one arrives at a concise form of a

color-confining harmonic oscillator in impact space after the holographical mapping, U(ζ, J) =

λ2ζ2 + 2λ(J − 1). The emergence of the mass scale λ is consistent with the procedure of de

Alfaro, Fubini, and Furlan [9] in which a mass scale can appear in a Hamiltonian without

affecting the conformal invariance of the action [2].

The eigenvalues of the light-front Schrödinger equation, Eq. (1), are the squares of the meson

masses. The remarkably simple features of the empirical Regge trajectories for both meson and
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baryon families are reproduced by LF holographic QCD with only one parameter, the mass

scale λ [10–14]. The predictions are in good agreement with the observed spectroscopy. The

eigensolutions of Eq. (1) provide the qq̄ light-front wavefunctions which control the dynamics

of the mesons. After factoring out the longitudinal and orbital dependence, the LFWF can be

written as

ψ(x, ζ, ϕ) = eiLϕX(x)
φ(ζ)√

2πζ
, (2)

where ζ2 = x(1− x)b2
⊥ is the Poincare’ invariant radial variable of LF Hamiltonian, and b⊥ is

the invariant transverse impact variable. The hadronic LFWF φ(ζ) in the soft-wall holographic

model encodes the dynamical properties of the mesons. If one also includes the light quark

masses, it is given by [5, 15]

ψ(x, ζ) =

√
λ

π

√
x(1− x) e−

λζ2

2 e−
1

2λ
(
m2
q
x

+
m2
q̄

1−x ) (3)

in impact space. Note that the LF kinetic energy
∑

i(
k2
⊥+m2

x
)i is also the invariant mass squared

M2 = (
∑

i k
µ
i )2 of the hadronic constituents.

The holographic LFWF given by Eq. (3) has been successfully used to describe diffractive ρ

meson electroproduction at HERA [16] as well as the spectroscopy and distribution amplitudes

of light and heavy mesons [17–19]. After introducing the LF spinor structure of the wavefunc-

tions for light vector mesons in analogy with that of the photon, the authors of Refs [20, 21]

have predicted the light-front distribution amplitudes (LFDAs) of the ρ and K∗ vector mesons

and have used them to evaluate the branching fractions of B → ργ and B → K∗γ decays. In

addition, the B → ρ ,K∗ form factors are computed and applied to rare B → K∗µ+µ− and

B → ρ`ν̄` decays [22–26]. The helicity dependence of the LFWFs for the vector mesons is intro-

duced in these analyses [16, 20–26] in order to predict specific helicity dependent observables.

The helicity dependence of the holographic LFWF is assumed to decouple from the dynamics,

which in turn leads to simple factorizable formulae for physical quantities, such as the decay

constants.

In the past few years, several QCD-inspired approaches, such as QCD factorization (QCDF)

[27–29], perturbative QCD (pQCD) [30,31] and soft-collinear effective theory (SCET) [32–35],

have been developed in order to evaluate the hadronic matrix elements of local operators which

control two-body nonleptonic B decays. However, the convolution integrals of the hard kernels
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with the asymptotic form of distribution amplitudes of light final states suffer from an end-

point divergence, such as
∫ 1

0
du/u and

∫ 1

0
du/(1 − u). This divergence limits the prediction

power of the theoretical approaches and prevents reliable results. At present, the dynamical

origin of the end-point divergence is still unclear, even though there are conjectures about the

reliability of the collinear approximation and concerns about our limited understanding of the

QCD dynamics of hadrons.

In this paper, we will explore helicity-improved LFWFs for light pseudoscalar mesons, and

then test their predictions for hadronic observables including the decay constants of π and K

mesons, their ξ-moments and the pion-to-photon transition form factor. We will also explore

new applications to two-body nonleptonic B decays, focusing especially on the measured pure

annihilation B̄s → π+π− and B̄d → K+K− decay channels. We will also show that the problem

of end-point divergences in the annihilation amplitudes is mitigated by the improved behavior

of the LFDAs near their end-points.

Several schemes for regulating the end-point divergences have been previously proposed.

In the SCET approach, a zero-bin subtraction [36] is assumed. The annihilation diagrams

are found to be factorizable and bring no any strong phase in the leading terms of order

O(αs(mb)ΛQCD/mb) [37]. In the QCDF approach, the end-point divergent integrals are treated

as signals of infrared-sensitive contributions which can be regularized by introducing a com-

plex quantity XA [38, 39]. Alternatively, one can introduce an infrared-finite dynamical gluon

propagator which moves the end-point singularity into an integral over the time-like gluon mo-

mentum; the divergence then vanishes, and a large strong phase is predicted [40, 41]. In the

pQCD approach, the end-point singularity is avoided by introducing parton transverse momen-

tum kT , but at the expense of having to model the additional kT dependence of the meson

distributions; this again predicts a large complex annihilation correction [30,31,42].

In contrast, in the framework of the LF holographic QCD, the end-point contribution is

naturally suppressed by the exponential factor in LFWF due to non-vanishing effective quark

masses, mq and mq̄. In this paper we will test if the effective quark mass regulation of the

end-point divergences in the annihilation amplitudes obtained from LF holographic QCD can

provide viable predictions for pure annihilation heavy hadron decays.

Our paper is organized as follows. In section 2, the connections between holographic LFWFs
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and LFDAs for light pseudoscalar mesons are explored within the framework of LF quantiza-

tion, based on two different assumptions for the helicity-dependence of the hadronic LFWFs.

Sections 3 and 4 are devoted to numerical results and discussions in which the decay con-

stants, the ξ-moments and the pion-to-photon transition form factor are evaluated using the

helicity-improved LFWFs and LFDAs. In section 5, the annihilation amplitudes and the pure

annihilation B̄s → π+π− and B̄d → K+K− decays are studied in detail using the LFDAs

predicted by LF holographic QCD. Finally, we give our summary in section 6.

2 The holographic light-front wavefunctions and distri-

bution amplitudes

Our starting point is the definition of the distribution amplitudes (DAs) of light pseudoscalar

meson [1, 43]. The DAs parameterize the operator product expansion of meson-to-vacuum

matrix elements [44],

〈0|q̄(0)γµγ5q(x)|P (p)〉 = ifPpµ

∫ 1

0

du e−iup·xΦ(u) , (4)

〈0|q̄(0)iγ5q(x)|P (p)〉 = fPµP

∫ 1

0

du e−iup·xφ(u) , (5)

where µP = m2
P/(m̄q + m̄q̄), fP is the decay constant of a pseudoscalar meson (P ), Φ(u) and

φ(u) are twist-2 and twist-3 DAs, respectively.

In the following derivation, we will adopt Lepage-Brodsky (LB) convention [1,43] and assume

light-front gauge, A+ = 0. At equal LF time, the DAs can be expressed using Eqs. (4) and (5)

as

fPΦ(z, µ) = − i
2

∫
dx−eizp

+x−/2〈0|q̄(0)γ+γ5q(x
−)|P (p)〉 , (6)

µPfPφ(z, µ) =
i

2
p+

∫
dx−eizp

+x−/2〈0|q̄(0)γ5q(x
−)|P (p)〉 , (7)

by performing the Fourier transformation with respect to x− = x0 − x3. The main remaining

task is to deal with the hadronic matrix elements in Eqs. (6) and (7).

In the framework of LF quantization [1, 43], a hadronic eigenstate |P 〉 can be expanded on
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a complete Fock-state basis of noninteracting 2-particle states as

|P 〉 =
√

4πNc

∑
h,h̄

∫
dk+d2k⊥

(2π)32
√
k+(p+ − k+)

ΨP
h,h̄

(
k+/p+,k⊥

)
|k+, k⊥, h; p+ − k+,−k⊥, h̄〉 , (8)

in which, ΨP
h,h̄

is the LFWF of the pseudoscalar meson with helicity-dependence included; h and

h̄ are the helicities of quark and anti-quark, respectively; and the one-particle state is defined,

for instance, by |k+〉 =
√

2k+b†|0〉. The Dirac (quark) field is expanded in terms of particle

creation and annihilation operators as

ψ+(x) =

∫
dk+

√
2k+

d2k⊥
(2π)3

∑
h

[bh(k)uh(k)e−ik·x + d†h(k)vh(k)eik·x] , (9)

assuming LF helicity spinors uh and vh. The equal LF-time anti-commutation relations are

{b†h(k), bh′(k
′)} = {d†h(k), dh′(k

′)} = (2π)3δ(k+ − k′+)δ2(k⊥ − k′⊥)δhh′ . (10)

Equipped with the above formulae, the hadronic matrix element in Eqs. (6) and (7) can be

expressed as

〈0|q̄(0)Γq(x−)|P (p)〉 =
√

4πNc

∑
h,h̄

∫
dk+d2k⊥Θ(|k⊥| < µ)

(2π)32
√
k+(p+ − k+)

ΨP
h,h̄(k

+/p+,k⊥)

×v̄h̄(p+ − k+,−k⊥)Γuh(k
+,k⊥)e−ik

+x−/2 , (11)

in which Γ = γ+γ5 and γ5, and the scale µ is introduced as an ultraviolet cut-off on transverse

momenta. Using Eq. (11) and integrating over x− and k+, we can further obtain a general

expression for the RHS of Eqs. (6) and (7),∫
dx−eizp

+x−/2〈0|q̄(0)Γq(x−)|P (p)〉 =

√
4πNc

p+

∑
h,h̄

∫ |k⊥|<µ d2k⊥
(2π)3

ΨP
h,h̄(z,k⊥) (12)

×

{
v̄h̄((1− z)p+,−k⊥)√

(1− z)
Γ
uh(zp

+,k⊥)√
z

}
.

To proceed with the derivation, we will need the explicit form of the holographic LFWF,

ΨP
h,h̄

. As mentioned in the introduction, the helicity-dependence of the holographic LFWF has

been assumed in previous works to decouple from the dynamics, and therefore ΨP
h,h̄

(z,k⊥) =

ψ(z,k⊥), where ψ(z,k⊥) is given by the Fourier transformation of Eq. (3). This assumption

leads to a universal formula for predicting physical quantities for different kinds of mesons;

however, it is obviously disfavored by experiment.
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In order to restore the proper helicity dependence, the holographic LFWF in the k⊥ space

needs to be modified as

Ψh,h̄(z,k⊥) =
N√
4π
Sh,h̄(z,k⊥)ψ(z,k⊥) , (13)

where Sh,h̄(z,k⊥) is the helicity-dependent wavefunction, N is the normalization factor deter-

mined by the normalization condition∑
h,h̄

∫
dz

d2k⊥
(2π)2

|Ψh,h̄(z,k⊥)|2 =
∑
h,h̄

∫
dzd2b⊥|Ψh,h̄(z,b⊥)|2 = 1 , (14)

and ψ(z,k⊥) is the radial wavefunction obtained by performing the Fourier transformation of

Eq. (3),

ψ(z,k⊥) =
4π√
λ

1√
z(1− z)

e−
k2
⊥

2λ z(1−z) e−
1

2λ
(
m2
q
z

+
m2
q̄

1−z ) . (15)

In the case of a vector meson, one can work in analogy with the lowest-order helicity

structure of the photon LFWF in QED; the following structure of SV
h,h̄

is thus assumed [16]

SV,λ
h,h̄

(z,k⊥) = ūh(zp
+,k⊥) 6ελvh̄((1− z)p+,−k⊥) . (16)

This form has been successfully used to study the production of the ρ and K∗ vector mesons

and the decays related to B → ρ,K∗ transitions [22,23].

In the case of a pseudoscalar meson, following such a strategy, 6 ελ in Eq. (16) would be

replaced simply by γ5 [47–49]. Very recently, this spin structure has been used to evaluate

the holographic DA of π meson in Ref. [19]. The helicity-dependent wavefunction is written

explicitly as

SPh,h̄(z,k⊥) = ūh(zp
+,k⊥)(iγ5)vh̄(z̄p

+,−k⊥) , Scenario 1 (17)

where the factor “i” is now added to be consistent with the convention for the definition in

Eqs. (4) and (5), and the abbreviation z̄ = 1 − z is used for convenience. An additional

multiplying factor “MP”, which is added in Ref. [19], has been absorbed into the normalization

constant. It should be noted, however, that this spin structure corresponds to light quark and

antiquark of the pseudoscalar meson, such as the pion, to have parallel spin projections, and

thus Lz = ±1. This state has twist= 2 + L = 3, and it is thus not the meson eigenstate of
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the AdS/QCD theory. Instead of γ5, the Dirac structure like 6pγ5 is also allowed. We therefore

consider an alternative form of SP
h,h̄

:

SPh,h̄(z,k⊥) = ūh(zp
+,k⊥)(i

m̃P

2p+
γ+γ5 + iγ5)vh̄(z̄p

+,−k⊥) , Scenario 2 (18)

in which, the structure γ+γ5 implies that the light quark and antiquark have only opposite

helicities. This is the helicity assignment that couples the pion to the axial-vector current and

thus pion decay constant fπ in: π− → W− → `−ν̄. It is thus the leading-twist LFWF, and is

the solution from AdS/QCD for light quarks. Since m̃P is the invariant mass of qq̄ pair in the

P meson, the dimensions of the two terms in SP
h,h̄

, Eq. (18), are consistent.

In the following, for convenience of discussion, the two helicity-dependent wavefunctions

defined by Eqs. (17) and (18) will be referred to as Scenario 1 (S1) and Scenario 2 (S2),

respectively. They are related by the Gell-Mann-Oakes-Renner (GMOR) relation and are thus

not independent [50]. Using LB convention [43], the two helicity-dependent wavefunctions SP
h,h̄

are given explicitly as

SPh,h̄(z,k⊥) =


i√
zz̄

[
−|k⊥|e∓iθkδh±,h̄± ± (zmq̄ + z̄mq) δh±,h̄∓

]
, Scenario 1

i√
zz̄

[
−|k⊥|e∓iθkδh±,h̄± ± (zmq̄ + z̄mq + zz̄m̃P ) δh±,h̄∓

]
, Scenario 2

(19)

and the spinor currents in Eq. (12) can be written as

v̄h̄√
z̄
γ+γ5

uh√
z

= ± 2p+δh±,h̄∓ , (20)

v̄h̄√
z̄
γ5
uh√
z

=
1

zz̄

[
|k⊥|e±iθkδh±,h̄± ∓ (zmq̄ + z̄mq) δh±,h̄∓

]
, (21)

in which, k⊥ = |k⊥|e±iθk is specified.

Finally, in the k⊥ space, using the building blocks given above, the holographic DAs of P

meson can be written as

Φ(z, µ)[S1] =

√
Nc

πfP

∫ |k|<µ d2k⊥
(2π)2

N1

(zz̄)1/2
(z̄mq + zmq̄)ψ(z,k⊥) , (22)

φ(z, µ)[S1] =

√
Nc

2πµPfP

∫ |k|<µ d2k⊥
(2π)2

N1

(zz̄)3/2

{
k2
⊥ + (zmq̄ + z̄mq)

2
}
ψ(z,k⊥) , (23)
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in the case of S1 1, and

Φ(z, µ)[S2] =

√
Nc

πfP

∫ |k|<µ d2k⊥
(2π)2

N2

(zz̄)1/2
(z̄mq + zmq̄ + zz̄m̃P )ψ(z,k⊥) , (24)

φ(z, µ)[S2] =

√
Nc

2πµPfP

∫ |k|<µ d2k⊥
(2π)2

N2

(zz̄)3/2

{
k2
⊥ + (zmq̄ + z̄mq)(zmq̄ + z̄mq + zz̄m̃P )

}
ψ(z,k⊥) ,

(25)

in the case of S2, where N1 and N2 are the corresponding normalization factors determined by

Eq. (14). The expression in the impact space can be obtained through Fourier transformation.

These formulae, which exhibit the connections between holographic LFDAs and LFWFs, are

one of the main theoretical results in this paper. Using the theoretical framework given above,

we will present numerical results and applications of these holographic LFDAs and LFWFs in

the following sections.

3 Input parameters and decay constants

3.1 Inputs

Before presenting our numerical results, we now clarify the values of input parameters used in

our evaluation. One of the most important inputs is the mass scale parameter
√
λ 2, which

could be extracted from many observables. For example, to fit the light-quark mass spectrum,

the values
√
λ = 0.59 GeV and 0.54 GeV are suggested in Ref. [2] for light pseudoscalar and

vector mesons, respectively. A mean value,
√
λ = 0.523 GeV, is obtained in Ref. [13] by

fitting all of the slopes of the different Regge trajectories for mesons and baryons including

all excitations. This result is also favored by the recent high accuracy computation of the

perturbative QCD scale parameter ΛMS [51]. The fit to the Bjorken sum-rule data at low

Q2 yields
√
λ = 0.496 ± 0.007 GeV [53]. In Ref. [54], the value

√
λ = 0.51 ± 0.04 GeV is

used for determining the freezing value of αs(Q
2) and the interface between perturbative and

nonperturbative QCD. In addition, in order to describe the HERA data on diffractive ρ and φ

electroproduction, the values
√
λ = 0.55 GeV and 0.56 GeV are suggested [16,55]. Besides

√
λ,

1Very recently, in Ref. [19], the twist-2 holographic LFDA of π meson is also evaluated with a SP
h,h̄

similar

to S1. Our result is more general in comparison with that of Ref. [19].
2In some references, the parameter κ =

√
λ is used.
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the light-quark masses appearing in the holographic LFWFs are the other important inputs,

which will be specified below.

In this paper, for S1, we follow entirely the inputs suggested by the recent study of holo-

graphic DA of π meson with a similar LFWF of S1 [19]. Explicitly, the following input values

are used [19]:

√
λ = 523 MeV , ms = 450 MeV , mu,d = 330 MeV , Scenario 1 (26)

where the constituent quark masses are adopted, and are also used for studying the ρ and K∗

mesons [22, 23]. It should be noted that, as pointed out in Ref. [2], the light-quark masses

introduced in the holographic LFWF are not the traditional constituent masses in the non-

relativistic theories, but are the effective quark masses from the reduction of higher Fock states

as functionals of the valence states. Such effective quark masses, in principle, should be universal

in a specific theoretical framework of holographic QCD.

For S2, on the other hand, we take

√
λ = 590± 15 MeV , ms = 272+69

−37 MeV , mu,d = 79+7
−5 MeV , Scenario 2 (27)

which will be further explained in detail in the next subsection. It should be noted that such

input values are very similar to the results [2],

√
λ = 590 MeV , ms = 357 MeV , mu,d = 46 MeV , (28)

obtained by fitting the Regge trajectories of pseudoscalar mesons in the framework of LF

holographic QCD [2].

3.2 Decay constants

The values of holographic parameters are constrained by the decay constants. So, first, we

present our predictions for the decay constant of pseudoscalar meson, which is defined as

〈0|q̄γµγ5q|P (p)〉 = ifPp
µ . (29)

Expanding the hadronic state in the same manner as in section 2, we can finally arrive at

fP =

√
Nc

π

∫ 1

0

dz

∫
d2k⊥
(2π)2

z̄mq + zmq̄√
zz̄

N1ψ(z,k⊥) , Scenario 1 (30)

fP =

√
Nc

π

∫ 1

0

dz

∫
d2k⊥
(2π)2

z̄mq + zmq̄ + z̄zm̃P√
zz̄

N2ψ(z,k⊥) . Scenario 2 (31)

10



Table 1: Numerical results of decay constants of π− and K− mesons in unit of MeV.

Exp. S1 S2 ETM HPQCD FL/MILC LQCD Ave.

[56] [57] [58] [59] [56,60]

fπ 130.28± 0.26 132.84 130.10+3.23
−3.77 — 130.39± 0.20 — 130.2± 1.7

fK 156.09± 0.49 136.04 156.04+5.09
−4.45 154.1± 2.1 155.37± 0.34 155.92+0.43

−0.36 155.6± 0.4

fK
fπ

1.198± 0.004 1.024 1.199+0.032
−0.030 1.184± 0.016 1.1916± 0.0022 1.1956+0.0028

−0.0021 1.1928± 0.0026

With the inputs mentioned above, our numerical results for fπ, fK and their ratio fK/fπ

are summarized in Table 1, in which the theoretical errors in S2 are obtained by evaluating

separately the uncertainties induced by each input parameter in Eq. (27) and then adding them

in quadrature. For comparison, the latest experimental data [56] 3, the recent results based

on lattice QCD (LQCD) with Nf = 2 + 1 + 1 obtained by ETM [57], HPQCD [58], Fermilab

Lattice (FL) and MILC Collaborations [59], and the world averaged results of LQCD [56, 60]

are also listed in Table 1.

In S1, our result fπ = 132.84 MeV is comparable with the data and, as found in Ref. [19],

achieves a much better agreement than the result without helicity improvement. However, S1

results in very small results for fK = 136.04 MeV and fK/fπ = 1.024, which deviates far from

the data. In fact, no matter what values of the light-quark masses are used, the predicted

fK/fπ in S1 is always much smaller than the data and the LQCD results. This implies that

S1 cannot provide sufficient flavor-asymmetry resources. It is very interesting to note that this

deficiency in S1 can be remarkably improved in S2. From Table 1, it can be seen that all the

results in S2 are in good agreement with the data and the LQCD results.

The decay constants fπ and fK are very sensitive to the holographic parameters,
√
λ, ms

and mu,d, and we can, therefore, perform a χ2-fit for these parameters using the experimental

data on fπ, fK and fK/fπ listed in Table 1. Our fitting results for
√
λ, ms and mu,d at 95% C.L.

are shown in Fig. 1 (a). Even though the parameter spaces could not be seriously constrained

due to the limited constraining conditions, we do obtain some useful bounds, ms & 100 MeV,

3The values |Vud| = 0.9758± 0.0016 and |Vus| = 0.2248± 0.0006 [56] are used to obtain the data of fπ and

fK .
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Figure 1: The fitted spaces for the holographic parameters in S2 under the constraints from the

decay constants fπ and fK and their ratio fK/fπ. Fig. (a): the allowed spaces of
√
λ, ms and

mu,d at 95% C.L.; Fig. (b): the allowed spaces of ms and mu,d with
√
λ = 0.590± 0.015 GeV.

mu,d . 100 MeV and
√
λ > 550 MeV. The bound

√
λ > 550 MeV confirms the finding in Ref. [2]

that a relatively larger
√
λ ∼ 590 MeV for pseudoscalar mesons is required compared with

√
λ ∼ 540 MeV for vector mesons. Thus, in our evaluation, we take the value

√
λ = 590 MeV

and assign a conservative uncertainty ±15 MeV.

With
√
λ fixed at

√
λ = 590 ± 15 MeV, our fitted results for ms and mu,d are shown in

Fig. 1 (b), and the corresponding numerical results are given by Eq. (27); another solution with

unacceptably large ms ∼ 700 MeV, which is allowed in principle (see Fig. 1 (a)), is discarded.

It can be seen from Fig. 1 (b) that the allowed spaces are strongly constrained. Comparing

Eqs. (27) with (28), we note that the fitted results for the holographic parameters match the

parameters obtained by fitting the Regge trajectories of pseudoscalar mesons [2] (the small

difference is acceptable due to the modified LFWFs used in this paper).

4 Holographic DAs and pion-to-photon form-factor

4.1 The results of holographic DAs

Using the decay constants obtained above and the formulae given in section 2, we now present

in Fig. 2 our predictions for the LF holographic DAs of π and K mesons at µ = 1 GeV and

12
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Figure 2: The holographic DAs of π and K mesons in S1 (blue) and S2 (red) at 0.5 GeV (dashed)

and 1 GeV (solid), compared with the asymptotic DAs (black dashed) and the DAs at 1 GeV

in QCDSR approach (black solid).

0.5 GeV in both S1 and S2. For comparison, the asymptotic forms of DAs, Φ(z) = 6zz̄ and

φ(z) = 1 , and the DAs predicted by QCD sum rule (QCDSR) approach [61] (see Ref. [61] for

detail) are also plotted in Fig. 2.

Using the normalization factor N determined by the normalization condition for LFWF,

Eq. (14), and the decay constant given by Eqs. (30) and (31), we find that our extracted

holographic DA, Φ(z, µ), for both S1 and S2 automatically satisfy the normalization condition∫ 1

0
dzΦ(z, µ) = 1. However, the extracted twist-3 holographic DAs only satisfy the normal-

ization condition approximately. One of the main reasons is that, in contrast to the case of
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twist-2 DAs, the normalization of twist-3 holographic DAs is affected by the scale-dependent

running masses of light quarks, m̄q,q̄(µ), appearing in µP , which have large uncertainties and

are not well determined at low scales. In our evaluation, the values m̄s(1GeV) = 128 MeV and

m̄s/m̄u,d = 24 are used. It should be noted that, in the evaluation of hadronic matrix elements

using the holographic DAs, the effect of m̄q(µ) vanishes because the factor µP is cancelled,

which can be clearly seen from, for instance, Eqs. (5) and (23). Moreover, we find that the

decay constant is also cancelled, as is generally expected since all of the hadronic information

is encoded in the LFWFs. All the above findings could also be clearly seen from our following

discussions of pure annihilation B̄s → π+π− and B̄d → K+K− decays.

From Fig. 2, comparing the curves of holographic DAs at µ = 0.5 GeV and 1 GeV with each

other, it can be seen that the effect of evolution is significant at low scale. The evolution at

large scale is not obvious, as found also in the previous works [20, 21], and the perturbative

evolution could be in principle recovered through the Efremov-Radyushkin-Brodsky-Lepage

(ERBL) equation [62–64] as has been done in Ref. [65].

Comparing the DAs, we can see from Fig. 2 that the twist-2 holographic DA in S2 is con-

siderably broader than the asymptotic form as expected in the other theories such as QCDSR,

while the one in S1 is much narrower than in S2. For the twist-3 holographic DA, the behavior

in S2 at low scale is similar to the QCDSR result; at large scale it is similar to the asymp-

totic form except at the regions near end-point; while the twist-3 DA in S1 is suppressed for

z, z̄ . 0.2.

In contrast to the DAs of asymptotic form and the QCDSR results, the essential feature of

LF holographic DAs is that all of the DAs fall rapidly to zero when z → 0 and 1, which is due

to the exponential term, e−
1

2λ
(
m2
q
x

+
m2
q̄

1−x ), in the LFWF given by Eq. (15). This implies that the

light-front holographic DAs could provide a way to regulate the end-point divergence in the

annihilation amplitudes of heavy hadron weak decays.

4.2 The moments and inverse moment

In order to further compare the predictions based on the holographic DAs with the ones from

the other non-perturbative methods, we compute the expectation values of the longitudinal
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Table 2: The (inverse) moments of π− meson at 1 GeV while for Refs. [66,67] at 2 GeV.

S1 S2 Asym. LFQM QCDSR QCDSR LQCD NLCQM DES RM

[49] [61] [66] [67] [68] [69] [70]

〈ξ2〉 0.172 0.238 0.2 0.24 0.286 0.343 0.269 0.21 0.28 0.28

〈ξ4〉 0.062 0.116 0.086 0.11 0.143 0.181 — 0.09 0.15 0.13

〈z−1〉 2.61 3.50 3 — 3.75 4.25 — — 5.5 —

Table 3: The (inverse) moments of K− meson at 1 GeV while for Ref. [67] at 2 GeV.

S1 S2 Asym. LFQM [49] QCDSR [61] LQCD [67] NLCQM [68]

〈ξ1〉 0.060 0.010 0 0.06 0.036 — 0.057

〈ξ2〉 0.155 0.212 0.2 0.21 0.286 0.260 0.182

〈ξ3〉 0.025 0.014 0 0.03 0.015 — 0.023

〈ξ4〉 0.052 0.093 0.086 0.09 0.143 — 0.070

〈z−1〉 2.28 2.79 3 — 3.57 — —

momentum, the ξ-moments and the inverse moment, which are defined, respectively, by

〈ξn〉 =

∫ 1

0

dz (2z − 1)nΦ(z, µ) , 〈z−1〉 =

∫ 1

0

dz z−1Φ(z, µ) . (32)

Using the central values of input parameters, our numerical results are listed in Tables 2 (for

π−) and 3 (for K−). The theoretical predictions based on the LF quark model (LFQM) [49], the

QCDSR [61, 66], the LQCD [67], the nonlocal chiral quark model (NLCQM) [68], the Dyson-

Schwinger equations (DSE) [69] and the renormalon method (RM) [70] are also summarized in

Tables 2 and 3 for comparison.

Comparing with the predictions for moments in the other theoretical models, although

the results based on the holographic DA in S1 result in a better agreement than the ones

without helicity-improvement as found in Ref. [19], they are still very small (even smaller than

the results using the asymptotic DA) which can be seen from Tables 2 and 3. As argued in
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Figure 3: Theoretical predictions for Q2 Fπγ(Q
2) with asymptotic DA (black dashed), holo-

graphic DAs of S1 (blue) and S2 (red), together with the comparison to the experimental data

from CELLO (green) [71], CLEO (cyan) [72], BaBar (Purple) [73] and Belle (orange) [74].

Ref. [19], such discrepancies might be attributed to the fact that the dynamical spin effects

are not fully captured by S1. Fortunately, as exhibited in Tables 2 and 3, we find that such

discrepancies are eliminated by adopting the holographic DA in S2.

4.3 Pion-to-photon transition form factor

The pion-to-photon transition form factor can be extracted from the process γ∗(q1)γ∗(q2)→ π.

In the case of only one photon being off-shell the transition form factor is denoted as Fπγ(Q
2)

and, to the leading order in αs, is given as [43,65]

Q2 Fπγ(Q
2) =

√
2

3
fπ

∫ 1

0

dz
Φπ(z, zQ)

z
. (33)

Using the asymptotic DA and the holographic DAs of S1 and S2, the dependence of the

rescaled form factor, Q2 Fπγ(Q
2), on the photon virtuality, Q2, are plotted in Fig. 3, in which

the data from CELLO [71], CLEO [72], BaBar [73] and Belle [74] Collaborations are also shown

for comparison. Even though the holographic DA of S1 does a better job than the traditional

one [19], its prediction for Q2 Fπγ(Q
2) is always smaller than the one obtained with asymptotic

DA, which is disfavored by the BaBar [73] and Belle [74] data at large Q2 domain. Such an
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Figure 4: The leading-order Feynman diagrams for pure annihilation B-meson decays.

inconsistency could be significantly improved by the holographic DA of S2. As shown clearly

in Fig. 3, it can be also found that the holographic DA of S2 does a good job explaining the

current data in the whole Q2 domain, except for the result of BaBar Collaboration 4.

5 Pure annihilation B̄s → π+π− and B̄d → K+K− decays

The two-body pure annihilation B-meson decays have attracted much theoretical attention dur-

ing the past years, for instance, in Refs. [41,75–86]. The experimental evidence for pure annihi-

lation B̄s → π+π− and B̄d → K+K− decays was reported first by the CDF Collaboration [87],

and was soon confirmed and updated by both Belle [88] and LHCb Collaborations [89, 90].

The Heavy Flavor Averaging Group (HFAG) presents the following averaged results for the

branching ratios [91]:

B(B̄s→π+π−) = (6.71±0.83)×10−7 , (34)

B(B̄d→K+K−) = (0.84± 0.24)×10−7, (35)

with the corresponding significances at the levels of about 5σ and 3σ, respectively. These

measurements require accurate theoretical evaluations. However, due to the appearance of

end-point singularities, the annihilation amplitudes cannot be reliably calculated. Motivated

by the end-point behavior of the LF holographic DAs, we now try to evaluate the annihilation

contributions with LF holographic DAs and check if the end-point divergence can be properly

regulated.

4It should be noted that the BaBar and Belle measurements for Q2 Fπγ(Q2) at large Q2 domain are not

consistent with each other.
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Following the prescription proposed in Ref. [43], the hadronic matrix elements of annihilation

topologies can be written as the convolution integrals of the scattering kernel with the DAs of

the participating mesons [27],

〈P1P2|Oi|B̄〉 = fBfP1fP2

∫
dxdydξ Ti(x, y, ξ)ϕP1(x)ϕP2(y)ϕB(ξ) , (36)

where Oi is the local four-quark operator, x , y and ξ are (anti-)quark momentum fractions,

and the kernel Ti(x, y, ξ) is obtained by calculating the leading-order Feynman diagrams shown

in Fig. 4. In the heavy quark limit and the collinear factorization scheme, the non-zero basic

building blocks relevant to B̄s → π+π− and B̄d → K+K− decays can be written as [38]

A1 = παs

∫ 1

0

dxdy

{
Φ̃P2(x)Φ̃P1(y)

[ 1

y(1− xȳ)
+

1

x̄2y

]
+

4

m̄2
b(µ)

2φ̃P2(x)φ̃P1(y)

x̄y

}
, (37)

A2 = παs

∫ 1

0

dxdy

{
Φ̃P2(x)Φ̃P1(y)

[ 1

x̄(1− xȳ)
+

1

x̄y2

]
+

4

m̄2
b(µ)

2φ̃P2(x)φ̃P1(y)

x̄y

}
, (38)

in which,

Φ̃P (z) ≡ fPΦP (z) , φ̃P (z) ≡ fPµPφP (z) , (39)

and the subscripts 1 and 2 correspond to the Dirac current structures of Oi, (V −A)⊗ (V −A)

and (V − A) ⊗ (V + A), respectively. The full amplitudes of B̄s → π+π− and B̄d → K+K−

decays are given as

A(B̄ → PP ) =
∑
p=u,c

Bp
PP

[ (
δpub

p
1 + bp4 + bp4,EW

)
P−P+

+

(
bp4 −

1

2
bp4,EW

)
P+P−

]
, (40)

with P± = π± , K± and

Bp
ππ = i

GF√
2
VpbV

∗
psfBs , Bp

KK = i
GF√

2
VpbV

∗
pdfBd , (41)

bp1 =
CF
N2
c

C1A1 , bp4 =
CF
N2
c

[
C4A1 + C6A2

]
, bp4,EW =

CF
N2
c

[
C10A1 + C8A2

]
, (42)

in which, VpbV
∗
pd (p = u, c) is the product of the Cabibbo-Kobayashi-Maskawa (CKM) matrix

elements [92,93], and Ci the scale-dependent Wilson coefficients. We use the subscripts P−P+

and P+P− in Eq. (40) to indicate that the first meson contains the antiquark emitted from the

weak vertex having momentum fraction ȳ, while another quark emitted from the weak vertex

has momentum fraction x.
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Table 4: The CP-averaged branching ratios of B̄s → π+π− and B̄d → K+K− decays in

unit of 10−7. For the results of S2, the first, second and third theoretical errors are caused by

uncertainties of the CKM parameters and B-meson decay constants, the holographic parameters

in Eq. (27), and the renormalization scale µ, respectively.

Decay Mode Exp. [91] S1 S2 QCDF [38] pQCD [76]

B̄s → π+π− 6.71±0.83 0.220 6.81+0.54+1.33+18.41
−0.46−1.29− 3.44 0.24+0.03+0.25+1.63

−0.03−0.12−0.21 5.10+1.96+0.25+1.05+0.29
−1.68−0.19−0.83−0.20

B̄d → K+K− 0.84± 0.24 0.023 0.23+0.03+0.06+0.42
−0.02−0.06−0.09 0.13+0.05+0.08+0.87

−0.05−0.05−0.11 1.56+0.44+0.23+0.22+0.13
−0.42−0.22−0.19−0.09

As mentioned already, using the LF holographic DAs, Eqs. (22) and (23) in S1, and (24)

and (25) in S2, one can see that both the decay constants of light mesons and the chiral factor

µP in A1 and A2 cancel out. Thus, the hadronic matrix elements do not depend on the decay

constants of light mesons and the light-quark running masses when one uses the extracted LF

holographic DAs; The hadronic information of light mesons are encoded in the LFWFs.

From Eqs. (37) and (38), taking the twist-3 part as an example, one finds that the end-

point divergence appears when the asymptotic DA, φ(z) = 1, or any other forms of DA having

non-vanishing end-point behavior are adopted, i.e.,

lim
x̄ or y→0

φP2(x)φP1(y)

x̄y
= lim

x̄ or y→0

1

x̄y
= ∞ . (43)

Traditionally, the corresponding integrals are usually parameterized by a complex parameter

XA, according to
∫ 1

0
dx/x→ XA = (1+ρAe

iφA) ln(mB/Λh) [38]. As we have emphasized, in the

framework of LF holographic QCD, such an end-point divergence does not exist because it is

regulated naturally by the exponential factor in LFWF; the contributions near the end-point,

such as z . m2
q/(2λ) and z̄ . m2

q̄/(2λ) for S2, are suppressed (see Fig. 2).

In the numerical evaluations, we will use the values of CKM parameters fitted by the

CKMfitter group [94],

A = 0.8227+0.0066
−0.0136, λ = 0.22543+0.00042

−0.00031, ρ̄ = 0.1504+0.0121
−0.0062, η̄ = 0.3540+0.0069

−0.0076, (44)

the averaged values of the B-meson decay constants [56],

fBs = 227.2± 3.4 MeV , fBd = 190.9± 4.1MeV , (45)
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and the central values of the other inputs, such as the well-determined masses and lifetimes of

B mesons, and the Fermi constant etc., given by PDG [56]. Using these inputs, our numerical

results for the CP-averaged branching ratios of B̄s → π+π− and B̄d → K+K− decays are

listed in Table 4, in which the experimental data and the previous theoretical results based

on the QCDF with parameterization scheme [38] and the pQCD approach [76] are also given

for comparison. Our results are evaluated at the renormalization scale µ ∼ m̄b/2 = 2.09 GeV

with an assigned uncertainty ±1 GeV. For the case of S2, the theoretical errors caused by the

CKM parameters and B-meson decay constants, the holographic inputs given by Eq. (27), and

the renormalization scale µ are obtained by evaluating separately the uncertainties induced by

each input parameter and then adding them in quadrature.

From Table 4, we find that the results in S1 are similar to the central values obtained in

QCDF [38] with traditional parameterization scheme, but are about one order of magnitude

smaller than the data, which is mainly due to the fact that the holographic DAs in S1 are

relatively narrow as shown in Fig. 2, and the contributions with z and z̄ . 0.2 are strongly

suppressed. In contrast, our prediction for B(B̄s → π+π−) in S2 is in good agreement with the

data; within the experimental and theoretical uncertainties our prediction for B(B̄d → K+K−)

in S2 also agrees with the data. This implies that, compared to S1, S2 is much more favored

by the data of B(B̄s → π+π−) and B(B̄d → K+K−). In the following discussions, we will focus

only on the results using S2.

Comparing with the previous evaluations in QCDF with parameterization scheme for the

end-point divergence, we find that the theoretical predictions are remarkably improved by using

the holographic DAs. Moreover, the predicting power is retained. Comparing our predictions

with the ones in pQCD, we find good agreement for B(B̄s → π+π−); however, our result for

B(B̄d → K+K−) is smaller than that obtained in pQCD. The significant difference between

B(B̄s → π+π−) and B(B̄d → K+K−) in our evaluation is easily understandable due to the

following facts:

(i) For the B̄s → π+π− decay, because |VubV ∗us| ∼ |Aλ4(ρ − iη)| � |VcbV ∗cs| ∼ Aλ2, its decay

amplitude, Eq. (40), can be simplified as

A(B̄s → π+π−) ∼ Bc
ππ2 (bc4)π−π+ , (46)

in which (bc4)π−π+ = (bc4)π+π− because the u- and d-quark difference is not distinguished
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in this paper. For the B̄d → K+K− decay, on the other hand, its amplitude can be

simplified as

A(B̄d → K+K−) ∼ Bu
KK (bu1)K−K+ +Bc

KK

[
(bc4)K−K+ + (bc4)K+K−

]
. (47)

Comparing with Eq. (46), one can easily find that the first and second terms in Eq. (47) are

relatively suppressed by additional Cabibbo factors λ ∼ 0.2 and λ2 ∼ 0.048, respectively.

Thus, a large ratio Rπ/K = B(B̄s → π+π−)/B(B̄d → K+K−) is generally expected.

(ii) Moreover, for the K−(+) meson, as shown by Fig. 2, the holographic DAs near the end-

point where the (anti-)strange quark carries small momentum fraction is suppressed due to

ms > mu,d. As a result, both twist-2 and twist-3 contributions are relatively suppressed

for the B̄d → K+K− decay compared to the B̄s → π+π− decay. In addition, since

fBs > fBd and the phase space of B̄s → π+π− decay is larger than that of B̄d → K+K−

decay, the ratio Rπ/K is further enhanced.

It should be noted that our evaluations are performed at leading order and the theoretical

uncertainties, especially the one induced by the renormalization scale, are still quite large.

Moreover, the refined measurements, especially for the B̄d → K+K− decay, are required for a

definite conclusion.

From the phenomenological point of view, an annihilation amplitude with a large strong

phase is generally welcome in order to fit experimental data and to explain some puzzles ob-

served in B-meson decays [79–84]. As a result, a complex parameter XA has been introduced

in the traditional parameterization scheme within the framework of QCDF [38]. By using the

dynamical gluon mass mg(q
2) in QCDF approach [41] or by introducing transverse momentum

kT degree in pQCD approach [30, 31, 42], a large imaginary part in the annihilation ampli-

tudes is also obtained because the singularities exist in the integral over momentum fractions.

In contrast to the above regulation schemes, the leading-order annihilation contributions are

real by using the holographic DAs. This result is understandable due to the fact that, al-

though the leading-order annihilation corrections are evaluated at the order αs, they are in

fact “tree” contributions and there is no independent internal momentum; while, the strong

phases are generally induced by the loop integration, such as in the vertex and penguin dia-

grams. In the SCET approach, real annihilation contributions for the leading terms of order
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O(αs(mb)ΛQCD/mb) have also been predicted [37]. In addition, it should be noted that com-

plex annihilation contributions are of course possible if, for instance, final-state interactions or

higher-order corrections are taken into account.

6 Summary

Motivated by the rapid development of the LF holographic QCD, the LFWFs for light pseu-

doscalar mesons and their applications are studied in this paper. In order to restore the dy-

namical spin effects of quarks and to improve the predictability of LFWFs for different pseu-

doscalar mesons, the traditional LFWFs are modified according to two assumptions for the

helicity-dependent wavefunctions, corresponding to the structures ūh(iγ5)vh̄ (named as S1) and

ūh(
m̃P
2p+ iγ

+γ5 + iγ5)vh̄ (named as S2), respectively. The LF holographic DAs of pseudoscalar

mesons are then extracted using the helicity-improved LFWFs. The decay constants, the ξ-

moments, the pion-to-photon transition form factor and the B̄s → π+π− and B̄d → K+K−

decays are then evaluated and compared with experiment. Our main findings are summarized

as follows:

• In contrast to the LFWF for S1, we find that the LFWF for S2 can provide sufficient flavor-

asymmetry resources for predicting the decay constants of π and K mesons. Moreover,

the results based on S2 for all of the observables considered in this paper are in a much

better agreement with experiment than the ones based on S1.

• Taking the decay constants of π and K mesons as constraints, we perform a χ2-fit for

the holographic parameters,
√
λ and effective quark masses mu,d and ms. Interestingly,

our fitted results are remarkably consistent with the ones obtained by fitting the Regge

trajectory of light-quark pseudoscalar mesons.

• A new scheme with LF holographic DAs for regulating the end-point divergence in the

annihilation amplitudes of B → PP decays is presented. In this scheme, the leading-

order annihilation contributions are real. Numerically, our predictions for the branching

fractions B(B̄s → π+π−) and B(B̄d → K+K−) using the LF holographic DAs in S2 agree

well with current data and result in a relatively large flavor-symmetry breaking effect.

These predictions will be further tested by future refined measurements.
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