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The Generalized Scheme-Independent Crewther Relation in QCD
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The Principle of Maximal Conformality (PMC) provides a systematic way to set the renormal-
ization scales order-by-order for any perturbative QCD process. The resulting predictions are inde-
pendent of the choice of renormalization scheme, a requirement of renormalization group invariance.
The Crewther relation, which was originally derived for conformal theory, provides a remarkable
connection between two observables when the β function vanishes: one can show that the prod-
uct of the Bjorken sum rule for spin-dependent deep inelastic lepton-nucleon scattering times the
Adler function, defined from the cross section for electron-positron annihilation into hadrons, has
no pQCD radiative corrections. The “Generalized Crewther Relation” relates these two observables
for physical QCD with nonzero β function; specifically, it connects the non-singlet Adler function
(Dns) to the Bjorken sum rule coefficient for polarized deep-inelastic electron scattering (CBjp) at
leading twist. A scheme-dependent ∆CSB-term appears in the analysis in order to compensate for
the conformal symmetry breaking (CSB) terms from perturbative QCD. In conventional analyses,
this normally leads to unphysical dependence in both the choice of the renormalization scheme and
the choice of the initial scale at any finite order. However, by applying PMC scale-setting, we can
fix the scales of the QCD coupling unambiguously at every order of pQCD. The result is that both
Dns and the inverse coefficient C−1

Bjp have identical pQCD coefficients, which also exactly match the
coefficients of the corresponding conformal theory. Thus one obtains a new generalized Crewther
relation for QCD which connects two effective charges, α̂d(Q) =

∑
i≥1

α̂i
g1
(Qi), at their respective

physical scales. This identity is independent of the choice of the renormalization scheme at any
finite order, and the dependence on the choice of the initial scale is negligible. Similar scale-fixed
commensurate scale relations also connect other physical observables at their physical momentum
scales, thus providing convention-independent, fundamental precision tests of QCD.

PACS numbers: 12.38.-t, 12.38.Bx, 11.10.Gh

I. INTRODUCTION

The Crewther relation [1, 2] was originally derived as
a remarkable consequence of conformally invariant field
theory. It provides a nontrivial relation for three funda-
mental constants of a gauge theory with zero β function
and zero fermion masses:

3S = KR′, (1)

where S is the anomalous constant governing π0 → γγ
decay [3], K is the coefficient of the Bjorken sum rules for
the polarized deep-inelastic electron scattering [4], and
R′ is the isovector part of the cross-section ratio for the
electron-positron annihilation into hadrons [5].
In QCD [6, 7], the logarithmic derivative of the run-

ning coupling, the β function, is nonzero and negative;
thus the strong coupling αs becomes small at short dis-
tances due to asymptotic freedom, allowing the pertur-
bative calculation of high-momentum transfer processes.
Since physical QCD is non-conformal, the Crewther rela-
tion will be explicitly broken by the β-dependent terms
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arising from pQCD radiative corrections. However, one
can define a “Generalized Crewther Relation (GCR)” by
incorporating perturbative QCD (pQCD) approximants
to each observable, where each observable is evaluated at
corresponding physical scales [8–10]; i.e.,

Dns(as)CBjp(as) = 1 +∆csb, (2)

where as = αs/π, D
ns is the non-singlet Adler function,

and CBjp is the coefficient in the Bjorken sum rule for
polarized deep-inelastic electron scattering. The ∆csb-
term is introduced in order to compensate for the con-
formal symmetry breaking (CSB)-terms from both Dns

and CBjp(as). Using the renormalization group equation
(RGE), it can be written in the form

∆csb =
β(as)

as

∑

i≥1

Kns
i ais = −

∑

i≥2

i−1∑

k=1

Kns
k βi−1−ka

i
s,(3)

where the β-function, β(as) = −
∑

i≥0 βia
i+2
s ; the coef-

ficients Kns
k are independent of the {βi}. Thus ∆csb, as

constructed in Eq.(3), is a linear function of the {βi}-
terms. The β0 and β1 terms are universal, whereas all
high-order {βi≥2}-terms are scheme-dependent.
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II. RELATIONS BETWEEN PHYSICAL

OBSERVABLES AND EFFECTIVE CHARGES

An essential requirement of the renormalization group
is that relations between physical observables cannot de-
pend on a theoretical convention such as the choice of the
renormalization scheme. This property is called “renor-
malization group invariance” (RGI) [11, 12]. It is usu-
ally argued that the GCR only becomes renormalization
scheme-and-scale independent at infinite order, leaving
renormalization scheme-and-scale dependence at any fi-
nite order [13]. For example, as will be shown later, the
linear property of ∆csb persists only when both Dns and
CBjp are renormalized using the MS-scheme. The utility
of the GCR (2) at finite order in pQCD is thus greatly
constrained.
Does there exist a general scheme-independent GCR

for pQCD theory at any fixed order? In fact, as we shall
show in this article, a fundamental scheme-independent
scale-fixed GCR can be achieved at each finite order
by applying the “Principle of Maximal Conformality”
(PMC) [14–17].
The PMC is designed to eliminate renormalization

scheme-and-scale ambiguities simultaneously. The PMC
has a rigorous theoretical foundation and satisfies the es-
sential properties of RGI [18, 19]. It provides the under-
lying principle for the Brodsky-Lepage-Mackenzie (BLM)
method [20], and it reduces to the standard Gell Mann-
Low method [11] in the NC → 0 Abelian limit [21]. As in
QED, separate renormalization scales and effective num-
bers of quark flavors (nf ) appear for each skeleton graph,
reflecting their differing virtualities at each perturba-
tive order. The coefficients of the resulting pQCD se-
ries match the coefficients of the corresponding conformal
theory with β = 0, ensuring the scheme-independence of
the PMC predictions at any fixed order. The usual di-
vergent n!αn

sβ
n
0 renormalon terms in the pQCD series

do not appear. Furthermore, the PMC predictions have
negligible dependence on the choice of the initial renor-
malization scale.

An important concept in QCD is the “effective
charge” [22, 23] – running couplings which can be de-
fined from any perturbatively calculable observable. In
the case of the GCR, we will introduce two effective cou-
plings defined by the non-singlet Adler function Dns and
the Bjorken sum rules CBjp,

Dns(as) = 1 + α̂d(Q), (4)

CBjp(as) = 1− α̂g1(Q), (5)

where Q is the mass scale of the observable – the kine-
matic value at which it is measured. Substituting Eqs.(4,
5) into Eq.(2), we obtain

[1 + α̂d(Q)][1 − α̂g1(Q)] = 1 +∆csb. (6)

An effective coupling is by definition pQCD calculable;
the β-pattern for its perturbative series at each order is
a superposition of all of the {βi}-terms which govern the
evolution of the lower-order αs contributions appearing
at this particular order. More explicitly, the β-patterns
for the pQCD approximants of these two effective cou-
plings α̂d(Q) and α̂g1(Q) are

α̂g1 = rC1,0as + (rC2,0 + β0r
C
2,1)a

2
s

+(rC3,0 + β1r
C
2,1 + 2β0r

C
3,1 + β2

0r
C
3,2)a

3
s

+(rC4,0 + β2r
C
2,1 + 2β1r

C
3,1 +

5

2
β1β0r

C
3,2

+3β0r
C
4,1 + 3β2

0r
C
4,2 + β3

0r
C
4,3)a

4
s + · · · (7)

and

α̂d = rD1,0as + (rD2,0 + β0r
D
2,1)a

2
s

+(rD3,0 + β1r
D
2,1 + 2β0r

D
3,1 + β2

0r
D
3,2)a

3
s

+(rD4,0 + β2r
D
2,1 + 2β1r

D
3,1 +

5

2
β1β0r

D
3,2

+3β0r
D
4,1 + 3β2

0r
D
4,2 + β3

0r
D
4,3)a

4
s + · · · , (8)

where the rC,D
i,j=0 are conformal coefficients and rC,D

i,j 6=0 are
non-conformal ones. Thus we obtain

∆csb =
(
rD1,0 − rC1,0

)
as +

[
rD2,0 − rC1,0r

D
1,0 − rC2,0 + (rD2,1 − rC2,1)β0

]
a2s +

[
rD3,0 − rC2,0r

D
1,0 − rC1,0r

D
2,0 − rC3,0

+(2rD3,1 − rC2,1r
D
1,0 − rC1,0r

D
2,1 − 2rC3,1)β0 + (rD2,1 − rC2,1)β1 + (rD3,2 − rC3,2)β

2
0

]
a3s

+

[
rD4,0 − rC3,0r

D
1,0 − rC2,0r

D
2,0 − rC1,0r

D
3,0 − rC4,0 +

(
3rD4,1 − 2rC3,1r

D
1,0 − rC2,1r

D
2,0 − rC2,0r

D
2,1 − 2rC1,0r

D
3,1 − 3rC4,1

)
β0

+
(
−rC2,1r

D
1,0 − rC1,0r

D
2,1 − 2rC3,1 + 2rD3,1

)
β1 +

(
rD2,1 − rC2,1

)
β2 +

5

2
(rD3,2 − rC3,2)β1β0

+
(
3rD4,2 − rC3,2r

D
1,0 − rC2,1r

D
2,1 − rC1,0r

D
3,2 − 3rC4,2

)
β2
0 + (rD4,3 − rC4,3)β

3
0

]
a4s +O(a5s). (9)

The coefficients of βi−2a
i
s (i ≥ 2), the coefficients of βi−3a

i
s (i ≥ 3), etc., also follow from the PMC degen-
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eracy relations among different orders [16, 17], as shown
explicitly by Eqs.(7, 8). The degeneracy relations explain
why one only needs to introduce one new parameter at
each new order in the perturbative series (3) for ∆csb.
The above formulae are general and applicable for any

renormalization scheme. However, If one uses dimen-
sional regularization, specifically, the MS-scheme, the
form of ∆csb will be greatly simplified. For example,
the conformal coefficients of Dns and CBjp in the MS-
scheme can be derived from the pQCD series derived in
Refs.[24–27] which have been computed up to four-loop
level. They satisfy the following relations

rDn,0 −

i+j=n∑

i=1,j=1

rCi,0r
D
j,0 − rCn,0 = 0. (n ≥ 1) (10)

There are also simple relations among the non-conformal
coefficients when one uses the MS-scheme,

rD3,2 − rC3,2 = 0, rD4,3 − rC4,3 = 0, (11)

3rD4,2 − rC3,2r
D
1,0 − rC2,1r

D
2,1 − rC1,0r

D
3,2 − 3rC4,2 = 0. (12)

Comparing with Eq.(3), we obtain

Kns
1 = rC2,1 − rD2,1, (13)

Kns
2 = 2rC3,1 + rC2,1r

D
1,0 + rC1,0r

D
2,1 − 2rD3,1, (14)

Kns
3 = 3rC4,1 + 2rC3,1r

D
1,0 + rC2,1r

D
2,0 + rC2,0r

D
2,1

+2rC1,0r
D
3,1 − 3rD4,1. (15)

This confirms the linear features of ∆csb using the MS-
scheme. The PMC degeneracy relations among different
orders ensure the linear property of ∆csb; one can then
derive the coefficients rCi,j and rDi,j from the dependence
of the βi on nf with the help of the degeneracy relations.

III. GENERALIZED ANOMALOUS

DIMENSIONS

It should be noted that the simplifying linear proper-
ties of ∆csb are not obtained in general. We will illustrate
this by using the generalized dimensional regularization
Rδ-scheme introduced in Ref.[16]. In the Rδ-scheme one
defines the UV regularization by subtracting an extra ar-
bitrary constant δ: ln 4π−γE− δ. The conventional MS-
scheme corresponds to δ = 0. The resulting β-function
is the same for all Rδ-schemes. Thus a scale transforma-
tion between different Rδ-schemes corresponds simply to
a scale displacement, such as µ2

δ = µ2 exp(δ) [17], where µ

stands for the scale of the MS-scheme. The displacement
relation implies

as = aδ +

∞∑

n=1

1

n!

dnas
(d lnµ2)n

∣∣∣∣
δ

(−δ)n, (16)

where as = as(µ) and aδ = as(µδ). The conformal-
breaking term under the Rδ-scheme thus becomes

∆csb[δ] = −

∞∑

i=2

i−1∑

k=1

Kns
k [δ]βR

i−1−ka
i
s, (17)

in which the first three coefficients are

Kns
1 [δ] = Kns

1 , (18)

Kns
2 [δ] = Kns

2 + 2δβ0K
ns
1 , (19)

Kns
3 [δ] = Kns

3 + 3δβ0K
ns
2 + 3(δβ1 + δ2β2

0)K
ns
1 . (20)

Here Kns
i ≡ Kns

i [0] corresponds to the case of the MS-
scheme. Obviously, for any other Rδ 6=0-scheme, the δ 6=
0-terms explicitly break the linear property of ∆csb. In
other words, the scheme-dependence of the fixed-order
pQCD series breaks the generality of ∆csb and hence the
generality of the GCR (2).
In contrast, as we shall show, the PMC sets the op-

timal scale for each pQCD approximant at each order
by absorbing every β term of the pQCD series into
its respective running coupling, thus providing scheme-
independent fixed-order pQCD predictions. In partic-
ular, we will obtain a generalized scheme-independent
Crewther relation (GSICR) for QCD.
As an illustration, we will derive the PMC predictions

for Dns and C−1
Bjp. The non-singlet Adler function is de-

fined as [5],

Dns(as) = −12π2Q2 d

dQ2
Πns(L, as), (21)

where L = lnµ2/Q2, µ encodes the renormalization scale.
The coefficient Πns(L, as) is the non-singlet part of the
polarization function for a flavor-singlet vector current.
The running behavior of Πns(L, as) is controlled by

(
µ2 ∂

∂µ2
+ β(as)

∂

∂as

)
Πns(L, as) = γns(as), (22)

where Πns(L, as) =
∑
i≥0

Πns
i ais/16π

2. The Adler function

depends on the anomalous dimension of the photon field
γns(as) =

∑
i≥0

γns
i ais/16π

2; its perturbative coefficients

γns
i using the MS-scheme up to four-loop level can be

found in Ref.[27].
Thus we obtain

Dns(as) = 12π2

[
γns(as)− β(as)

∂

∂as
Πns(L, as)

]
. (23)

Since dDns/dµ2 = 0 at any fixed order, the pQCD ap-
proximant Dns is a local RGI quantity.
It should be emphasized that the anomalous dimension

γns(as) is associated with the renormalization of the QED
coupling, it ensures that Dns satisfy the local RGI, but
not the standard RGI [19]. This explains why the QED
anomalous dimension γns, which appears in the definition
of the Adler function, cannot be used to set the pQCD
renormalization scales for Dns.

IV. THE RATIO Dns(as)/C
−1
Bjp(as) BEFORE AND

AFTER PMC SCALE-SETTING

The dependence of the ratio Dns(as)/C
−1
Bjp(as) on the

momentum scale Q which is predicted using conven-
tional scale-setting is illustrated in Fig.(1). One observes
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FIG. 1. Numerical predictions for the ratio Dns(as)/C
−1
Bjp(as)

up to the four-loop level using conventional scale-setting.

a small deviation of the ratio from unity, which can-
not be diminished even by including more loop correc-
tions. At Q ∼ 100 GeV, the ratio is ≃ 0.997 for the
two-loop corrections, which changes to ≃ 0.996 for the
three- and four-loop corrections. This small derivation
occurs because the non-zero ∆csb starts at α2

s -order,
as shown by Eq.(3). The scheme-dependent conformal-
breaking term ∆csb accounts for the scheme-dependence
of Dns(as)/C

−1
Bjp(as) as predicted by the GCR (2); it also

explains why the ratio deviates from unity.
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FIG. 2. Numerical predictions for the ratio Dns(as)/C
−1
Bjp(as)

up to four-loop level after applying PMC scale-setting.

The scheme dependence of the generalized Crewther
relation is eliminated when one applies PMC scale-
setting. The PMC utilizes the RGE recursively to iden-
tify the β-pattern of any pQCD expansion. Eq.(23)
shows that, except for the anomalous coefficient γns,
which is associated with the renormalization of αQED,
the only remaining terms in Dns are the pQCD RGE
βi-terms. After shifting the nonconformal βi terms into
the scales of QCD coupling, one recovers the conformal
series and determines the optimal scales of the running

10 20 30 40 50 60 70 80 90 100
10

0

10
1

10
2

10
3

10
4

10
5

10
6

Q(GeV)

P
M

C
sc

a
le

s
(G

eV
)

 

 

µ1

µ2

µ3

µ̃1

µ̃2

µ̃3

FIG. 3. The six PMC scales µi and µ̃i versus the kinematic
scale Q of Dns(as) and C−1

Bjp(as).

coupling at each order.
Thus, after applying the PMC [16], we obtain

Dns(as)|PMC = 12π2γns(µ1, µ2, µ3, · · ·). (24)

Similarly, after applying PMC scale-setting to C−1
Bjp(as),

we obtain

C−1
Bjp(as)|PMC = 12π2γns(µ̃1, µ̃2, µ̃3, · · ·). (25)

Here C−1
Bjp is introduced for convenience. It has the

same scheme-independent conformal coefficients as those
of Dns, as ensured by the relations (10).
The first three PMC scales µ1,2,3 or µ̃1,2,3 can be de-

rived from the pQCD series for Dns and C−1
Bjp given in

Refs.[24, 27]. The dependence of the PMC scales on Q
are presented in Fig.(3). The conformal coefficients of
the scheme-independent Dns(as)|PMC and C−1

Bjp(as)|PMC

are identical, but their PMC scales differ: µi 6= µ̃i; thus,
as is the case for the conventional prediction shown in
Fig.(1), one also has a small deviation from unity, as
shown in Fig.(2):

Dns(as)|PMC

C−1
Bjp(as)|PMC

≈ 1. (26)

This result shows that by applying PMC scale-setting,
one can systematically improve the pQCD predictions
for Dns(as) and C−1

Bjp(as), although, due to the conformal
breaking of QCD, they cannot be exactly equal.
We shall demonstrate in the next section that a new

scheme-independent GCR can be achieved by using the
effective coupling approach.

V. THE SCHEME-INDEPENDENT

GENERALIZED CREWTHER RELATION

Following Eqs.(7, 8), the effective coupling α̂d(Q) can
be expanded in terms of α̂g1(Q),

α̂d(Q) = α̂g1(Q) + (r2,0 + β0r2,1)α̂
2
g1(Q) + (r3,0 +
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β1r2,1 + 2β0r3,1 + β2
0r3,2)α̂

3
g1(Q) +

(r4,0 + βg1
2 r2,1 + 2β1r3,1 +

5

2
β0β1r3,2 +

3β0r4,1 + 3β2
0r4,2 + β3

0r4,3)α̂
4
g1 (Q) + · · · .(27)

Here the {βg1
i } are the β-terms for the g1-scheme, which

can be related to the MS coefficients by using βg1 =
∂αg1

∂α
MS

βMS. The coefficients ri,j are functions of r
C/D
i,j ,

whose expressions are given in Refs.[16] together with

the conformal coefficients ri,0 ≡ 1 (i = 1, 2, · · ·).

After applying PMC scale-setting, we obtain a new
scheme-independent GCR (GSICR) up to nth-order,

α̂d(Q) =

n∑

i=1

α̂i
g1(Qi). (28)

At the known four-loop level (n = 4), the first three PMC
scales are

ln
Q2

1

Q2
= −r2,1 + α̂g1(Q)β0(r

2
2,1 − r3,2) + α̂2

g1(Q)

[
3

2
β1(r

2
2,1 − r3,2) + β2

0(−r32,1 + 2r2,1r3,2 − r4,3)

]
+O(α̂3

g1 ),

ln
Q2

2

Q2
= −

r3,1
r2,0

+ α̂g1(Q)β0

(
3r4,2
2r2,0

−
3r3,1

2

2r2,02

)
+O(α̂2

g1 ),

ln
Q2

3

Q2
= −

r4,1
r3,0

+O(α̂g1). (29)

Eq.(28) shows that the relation between α̂d and α̂g1

is independent of the renormalization scheme used to
renormalize them. Together with the optimal scales set
by the RGE, the GSICR is both scheme-and-scale inde-
pendent at any fixed order. Such scale-fixed relations
between physical observables are also called “Commen-
surate Scale Relations” (CSRs) [29] 1. In the conformally
invariant limit where all {βi}-terms tend to zero, we have
Qi ≡ Q and we recover the scheme-independent confor-
mal Crewther relation [8]

[1 + α̂d(Q)][1− α̂g1 (Q)] = 1. (30)

In conventional analyses, the ∆csb-term is introduced
into the original GCR, Eq.(2), to collect all of pQCD
conformal breaking terms. The resulting ∆csb-term is
scheme dependent and only in the MS-scheme is it a lin-
ear expansion of {βi}-functions.
However, by applying the PMC, we achieve a new fun-

damental scheme-independent GSICR, Eq.(28), which is
scheme-and-scale independent at any fixed order.

VI. CONCLUSION

The PMC provides a systematic method to set the
renormalization scale of high-energy processes, thus solv-
ing the conventional renormalization scheme-and-scale

1 The CSRs given in Ref.[29] agree with ours in form. The relation
(10) (28) also holds. However, these CSRs are derived without
determining whether the nf -terms at high orders pertain to the
RGE or not; thus one cannot be certain that one obtains the
correct running behavior at each order.

ambiguities. There is negligible dependence in the choice
of the initial renormalization scale.

The scheme-independent GCR given in Eq.(28) pro-
vides a remarkable direct connection between deep inelas-
tic neutrino-nucleon scattering and hadronic e+e− anni-
hilation. Similar scheme-independent GCRs can also be
derived for many other physical observables, such as:

I) the connection of the Adler function D = 1+ α̂D(Q)
to the Gross-Llewellyn Smith (GLS) sum rule CGLS =
1− α̂F3

(Q) [30],

α̂D(Q) =
∑

i≥1

α̂i
F3
(Q̃i). (31)

and

II) the CSR connection between the GLS sum rule
and the e+e− annihilation ratio Re+e−(Q) = 3

∑
q2f (1 +

α̂R(Q)),

α̂F3
(Q) =

∑

i≥1

(−1)i+1α̂i
R(

˜̃Qi). (32)

The PMC scales Q̃i and
˜̃Q can be determined using the

standard PMC scale-setting procedure.

As is the case of the scheme-independent generalized
Crewther relation, these scheme-and-scale independent
commensurate scale relations also provide fundamental,
high precision tests of nonconformal QCD.

Acknowledgement: This work was supported in part
by the National Natural Science Foundation of China
under Grant No.11275280 and No.11625520, and the De-
partment of Energy Contract No.DE-AC02-76SF00515.
SLAC-PUB-16845. PITT-PACC-1612.
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APPENDIX: COMPARISON OF THE

“TWO-FOLD” PERTURBATION WITH THE

PMC

We end with a comment on the use of the “two-fold”
perturbative expansion, which has been suggested for de-
termining the β-pattern of a pQCD approximant [31, 32].
Using this procedure, a physical observable ρ can be ap-
proximated by the perturbative expansion

ρ =
∑

n≥0,m≥1

(
β(as)

as

)n

pm+n,na
m
s

= p1,0as(µ) + (p2,0 + β0p2,1)a
2
s(µ) +

(p3,0 + β1p2,1 + β0p3,1 + β2
0p3,2)a

3
s(µ) +

(p4,0 + β2p2,1 + β1p3,1 + 2β1β0p3,2 +

β0p4,1 + β2
0p4,2 + β3

0p4,3)a
4
s(µ) +O(a5s), (33)

where the coefficients pm+n,n are free from {βi}-terms.
The two-fold perturbation expansion generates the same
β-pattern as that of PMC Rδ-scheme at each order [33].

However, in comparison with the PMC expansion, such
as Eqs.(7, 8), the degeneracy relations introduced by
the two-fold perturbation expansion is different from the
PMC ones, even at order a4s.
The degeneracy relations introduced by the PMC are

required by the conformality of the final series [28]; they
show that the β-pattern for the pQCD series at each
order is a superposition of the {βi}-terms which govern
the evolution of all of the lower-order αs contributions.
Conversely, they determine the correct running behavior
of αs at each order.
In contrast, the β-pattern of the two-fold perturbation

expansion can only yield an approximate running behav-
ior at the contributing order; in effect it is equivalent to
using the following approximate solution of the RGE to
set the scale of the running coupling:

as(µ) =
as(µ0)

1− β(as(µ0))/as(µ0) ln
µ2

µ2
0

, (34)

where µ0 is some initial scale. Using the scale displace-
ment equation, one obtains the approximate β-pattern
and degeneracy relations of Eq.(33).
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