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Motivating compact electron accelerators 

• High gradients enable compact linear accelerators 
 

~MeV m-1 
~GeV m-1 

1947 2016 

SLAC Archives, ARC127 
SLAC National Accelerator Laboratory 

Applications: 
• Radiotherapy 
• Industrial/security 
• Attosecond science 

This material is based upon work supported by the U.S. Department of Energy, 
Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-76SF0051 and NSF.
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Accelerator on a Chip International Program (ACHIP) 

• Stanford 
• FAU 

Erlangen 
• Purdue 
• UCLA 

• EPFL 
• TU 

Darmstadt 
• Tech-X 

• SLAC • DESY • PSI 

PIs: R. L. Byer (Stanford) 
& P. Hommelhoff (FAU Erlangen) 
$2.7M per annum 
5 year programme (2015-2020) 

In-kind contributions: 

https://sites.stanford.edu/achip/ 
This material is based upon work supported by the U.S. Department of Energy, 

Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-76SF0051 and NSF.
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Dielectric Laser Accelerators (DLA) 

Primary components needed: 
1. Low emittance electron 

emitter 
2. Buncher/Injector section 
 (40 keV  1 MeV) 
3. Multi-stage speed-of-light 

accelerator 
 (1 MeV  ≥20 MeV) 
4. Laser-driven dielectric 

deflector/undulator 

Demonstrate the key scientific milestones 
needed for a laser-driven electron source 
based on DLA 

This material is based upon work supported by the U.S. Department of Energy, 
Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-76SF0051 and NSF.
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Dielectric laser accelerator structures 

• Dielectric-
vacuum 
structures 

• Laser provides 
accelerating field 

• Recent 
subrelativistic 
structures 
 

J. McNeur, 
Mon WG3 4:20 

1-D 2-D 3-D 

Plettner, et al., PRSTAB, 9, 111301 (2006) 

Peralta, et al., Nature, 
503, p. 91 (2013) 

Noble, et al., PRSTAB, 14, 121303 (2011) Cowan, PRSTAB, 11, 011301 (2008) 

Wu, et al., IEEE JSTQE, 22, 
4400909 (2016) 

Noble, et al., PRSTAB, 14, 121303 (2011) 
This material is based upon work supported by the U.S. Department of Energy, 

Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-76SF0051 and NSF.
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DLA – Dual grating 

• Lawson-
Woodward 

• Plane wave 
• No acceleration 
 

SLAC National Accelerator Laboratory https://youtu.be/V89qvy8whxY 
This material is based upon work supported by the U.S. Department of Energy, 

Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-76SF0051 and NSF.
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SLAC National Accelerator Laboratory https://youtu.be/V89qvy8whxY 
This material is based upon work supported by the U.S. Department of Energy, 

Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-76SF0051 and NSF.
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DLA – Dual grating 

• Lawson-
Woodward 

• Plane wave 
• No acceleration 
• Near field 

structure 
• Refractive index 

modifies phase 
• Acceleration SLAC National Accelerator Laboratory https://youtu.be/V89qvy8whxY 

This material is based upon work supported by the U.S. Department of Energy, 
Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-76SF0051 and NSF.
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This material is based upon work supported by the U.S. Department of Energy, 
Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-76SF0051 and NSF.
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Accelerating structure 

• ‘Phase reset’ 
structure 

• Fused silica dual 
grating 

• UV lithography 
fabrication 

• 800 nm period 
• Designed for 800 nm 

wavelength SLAC National Accelerator Laboratory 

Peralta, et al., Nature, 503, p. 91 
(2013) 

This material is based upon work supported by the U.S. Department of Energy, 
Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-76SF0051 and NSF.
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High-gradient DLA – previous experiments 

Peralta, et al., Nature, 503, p. 91 (2013) Leedle, et al., Opt. Lett., 40, p. 4344 (2015) 

A. Ceballos, Mon WG3 4:40 
This material is based upon work supported by the U.S. Department of Energy, 

Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-76SF0051 and NSF.
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Material damage fluence 

• Plateau in single pulse 
dielectric damage 
threshold below ~ps pulse 
duration 

• Highest electric 
(accelerating) field implies 
shortest pulse duration A.-C. Tien, et al., Phys. Rev. Lett., 82, p. 3883 (1999) 

This material is based upon work supported by the U.S. Department of Energy, 
Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-76SF0051 and NSF.
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Present experiment 

• Single acceleration stage 
Goal 
• Demonstration that structure 

supports GV m-1 accelerating 
gradient 

Measure 
• Electron energy increase 
• Incident laser electric field 

K. P. Wootton, et al., Opt. Lett., 41, p. 2696-2699 (2016) 
This material is based upon work supported by the U.S. Department of Energy, 

Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-76SF0051 and NSF.
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Experimental arrangement at NLCTA (SLAC) 

• 60 MeV electrons from linac, 170 fs bunch length (60 cycles) 
• Electron beam emittance larger than optimal  J. Maxson, Tue WG5 11:30 
• 800nm wavelength laser, 90 fs pulse duration 
• Bending magnet spectrometer 

This material is based upon work supported by the U.S. Department of Energy, 
Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-76SF0051 and NSF.
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Determining accelerating gradient 

• Previous studies assume 
Gaussian laser distribution* 

 
 
• More generally, laser 

distribution could deviate from 
this 

• Use measured laser temporal 
distribution to determine 
gradient 

Measured change in 
energy (keV) 

Change in energy 
arising from interaction 
with an accelerating 
gradient of 1 GV m-1 

* J. Breuer, et al., Phys. Rev. ST Accel. Beams, 17, 021301 (2014). 
This material is based upon work supported by the U.S. Department of Energy, 

Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-76SF0051 and NSF.
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Laser pulse measurement 

• FROG (GRENOUILLE) 
• Measurement of SHG 

intensity interferogram 
in time and wavelength 

• Reconstruction of fs 
pulse amplitude and 
phase using phase 
retrieval algorithm 

http://www.swampoptics.com/ 

16 
This material is based upon work supported by the U.S. Department of Energy, 

Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-76SF0051 and NSF.
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Laser pulse 

• Conservatively assume 
flat phase 

• Assume electric field 
contributes constructively 
to acceleration 

• Integrate measured laser 
pulse electric field 
envelope for energy gain K. Wootton, Tues WG3 1:30 

This material is based upon work supported by the U.S. Department of Energy, 
Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-76SF0051 and NSF.
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Model – Electron beam response to DLA 

• Electron bunch approximately 
60 optical cycles long 

• Electrons accelerated or 
decelerated with respect to 
laser phase 

• Modulation of measured 
electron beam energy 
spectrum 

• Width corresponds to energy 
gain 

This material is based upon work supported by the U.S. Department of Energy, 
Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-76SF0051 and NSF.
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Measured energy spectrum 

• Electron beam energy 
profile, laser on and off 

• Measurements, model 
• VSim simulations using 

fitted laser-off spectrum, 
measured laser parameters 

B. Cowan, Tue WG2 11:10 

• Using model, 
  

This material is based upon work supported by the U.S. Department of Energy, 
Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-76SF0051 and NSF.
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Time of arrival of laser pulse 

This material is based upon work supported by the U.S. Department of Energy, 
Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-76SF0051 and NSF.
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In terms of gradients, where to? 

This material is based upon work supported by the U.S. Department of Energy, 
Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-76SF0051 and NSF.
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Recent DLA experiments UCLA–SLAC 

PEGASUS electron accelerator 

Sol 1 
Sol 2 Linac Gun Spec 

Spec 

Quad  
Doublet 

Deflecting 
Cavity 

Laser parameters 

Electron beam parameters 

This material is based upon work supported by the U.S. Department of Energy, 
Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-76SF0051 and NSF.
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Recent DLA results UCLA–SLAC 

ACHIP Preliminary 

D. Cesar, 
Tue WG3 1:50 

-100 0 100
0

0.5

1

1.5

2
Laser on/off ∆E=33KeV(~1.4GeV/m)

Energy (KeV)

C
ha

rg
e 

de
ns

ity
 (a

rb
)

ACHIP 
Preliminary 

Similar tests at 
UCLA using a 
higher intensity 
laser show greater 
than 1 GeV/m 
acceleration  

This material is based upon work supported by the U.S. Department of Energy, 
Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-76SF0051 and NSF.
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Conclusion 

• New record accelerating gradient in a DLA: 
 
• Higher gradients still possible 
• Pulse-front tilt next goal, extending interaction over 

longer structure length 
• New challenge, only small fraction of transmitted electrons 

accelerated (by ~1 MeV) 
• ‘Partial population modulation’ 

This material is based upon work supported by the U.S. Department of Energy, 
Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-76SF0051 and NSF.
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Backup 

This material is based upon work supported by the U.S. Department of Energy, 
Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-76SF0051 and NSF.
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E163 beamline (SLAC) 

e- 

laser 

HeNe 

This material is based upon work supported by the U.S. Department of Energy, 
Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-76SF0051 and NSF.



Wootton – 01 Aug 2016 – AAC 2016, National Harbor, Maryland 28 

Ultrafast lasers 

• fs laser pulse duration (and 
shorter) commercially available 

J. Levesque and P. B. Corkum, Can. J. Phys., 84, p. 1-18 (2006) 

This material is based upon work supported by the U.S. Department of Energy, 
Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-76SF0051 and NSF.
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Model 

Δε (keV) HWHM (keV) Gradient 
21.5 29.3 1 GeV m-1 

(meas phase) 
27.0 35.5 1 GeV m-1 

(flat phase) 

This material is based upon work supported by the U.S. Department of Energy, 
Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-76SF0051 and NSF.




