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ABSTRACT

Ken Wilson’s ideas on the renormalization group were shaped by his
attempts to build a theory of the strong interactions based on the con-
cepts of quantum field theory. I describe the development of his ideas by
reviewing four of Wilson’s most important papers.
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1 Introduction

Ken Wilson is best known for his contributions to statistical mechanics. His
breakthroughs in this field, including the computation of critical exponents and the
solution of the Kondo problem, have had wide influence. Wilson began his career,
however, as an elementary particle physicist. His ambition was to “solve the strong
interactions”, that is, to find a predictive theory of the subnuclear strong interactions.
The ideas that he developed profoundly influenced our understanding of that problem,
just as they provided tools and insights for problems in statistical physics.

In this article, I will review the development of Wilson’s ideas on the strong
interactions through a review of four of his most important papers [1–4]. I recommend
these papers to all students of theoretical physics. All four read like explorations of
realms previously unknown. They give insight into the problems Wilson sought to
address with his initial concepts of the renormalization group. And, both for particle
physicists and for condensed matter physicists, they illustrate how issues in each
domain gave insight into the other.

2 The Fixed Source Problem

Quantum Field Theory (QFT) had some of its greatest successes in the late 1940’s,
with the development of Quantum Electrodynamics and the successful explanation of
the electron magnetic moment and the Lamb shift. The resulting euphoria led to the
idea that QFT could be used to build a theory of the strong interactions based on a
Lagrangian for pion-nucleon interactions. The new technology of Feynman diagrams
assisted calculation (as Feynman recalled memorably in his Nobel Prize lecture [5]).
However, it did not produce a better understanding of the nuclear forces. Pion
exchange did not lead in any clear way to the observed phenomenology of nucleon-
nucleon scattering. It could not account for the nucleon and meson resonances that
began to be discovered.

Most importantly, the theory had few concrete predictions. It was stymied by the
fact that the strong interactions are strong, while the methods developed for Quantum
Electrodynamics relied on weak-coupling perturbation theory. Strong coupling in
QFT implies that states with an arbitrarily large number of interacting quanta play
an essential role. Feynman diagrams, which introduce additional quanta one by one,
cannot easily give insight into this strong-coupling limit.

A relatively simple problem that encapsulated the difficulties of QFT is the fixed
source problem. This is the problem of a static or infinitely heavy nucleon with two
states

|p〉 |n〉 (1)
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Figure 1: Feynman diagrams for the fixed source problem: (a) a diagram illustrating the
complexity of the problem; (b) a divergent one-loop diagram.

interacting at its location ~x = 0 with a pion field

πa(x) = (π+(x), π0(x), π−(x)) . (2)

T. D. Lee showed that a truncated version of this model, with only the π+ field,
could be solved exactly [8]. However, the full problem allows complex intermediate
states with many virtual pions, shown in Fig. 1(a) as loops coupling to the nucleon.
Further, each loop has an ultraviolet divergence. The diagram shown in Fig. 1(b) has
the value

−ig3
∫ d4k

(2π)4
1

(k0 + p0)(k0 + p0 + q0)(k2 −m2
π)

, (3)

and is logarithmically divergent. So there is no clear way even to compute the first
loop sensibly, much less to limit the number of loops relevant to the final answer.

By the mid-1950’s, the search for the theory of the strong interactions had turned
away from QFT to other methods, essentially phenomenological techniques such as
dispersion relations and more fundamental proposals based on the analytic properties
of scattering amplitudes. Geoffrey Chew proposed that there was a unique analytic
S-matrix that could be discovered by deep analysis. As late as 1968, he stated:

“There exists at present no mechanical framework consistent with both
quantum and relativistic principles. The chief candidate is local La-
grangian field theory, but countless theoretical studies have suggested
insuperable pathologies in the concept of interaction between fields at
a point of space-time.” [6]
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Even for those who tried to build up the theory of strong interactions from sym-
metry principles, the infinities of quantum field theory posed a barrier to taking this
theory completely literally. For example, Murray Gell-Mann’s paper that introduced
the method of current algebra—one of the most important theoretical methods used
in particle physics in the 1960’s— includes the following statement:

“... we use the method of abstraction from a Lagrangian field theory
model. In other words, we construct a mathematical theory of strongly
interacting particles, which may or may not have anything to do with real-
ity, find suitable algebraic relations that hold in the model, postulate their
validity, and then throw away the model. We may compare this process
to a method sometimes employed in French cuisine: a piece of pheasant
is cooked between two slices of veal, which are then discarded.” [7]

Ken Wilson was Gell-Mann’s student at Caltech from 1957 to 1961. He chose the
fixed source problem described above as the topic of his thesis research. In his thesis,
he threw at this problem the full arsenal of mathematical methods developed in the
1950’s, with minimal success. This investigation proved Wilson’s skills and promise,
but it not make much headway toward the solution.

Many first-rank theorists find their thesis problem overreaching and frustratingly
difficult. Usually, the solution is to pick another problem that yields more easily to
their talents. This was not Wilson’s style. He would continue to struggle with the
fixed-source problem for many more years.

3 Momentum Slicing

Wilson’s first published work on the fixed-source problem did not appear until
1965. It is the first of the four papers that are the subject of this review:

“Model Hamiltonians for Local Quantum Field Theory”, Phys. Rev. 140,
B445 (1965) [1]

This paper had no immediate impact, because it enunciated a point of view that ran
against the main current of theoretical particle physics in the 1960’s. Wilson’s boldly
stated attitude is that there is no mysticism about QFT. The way to understand its
issues to reduce problems in QFT to ordinary quantum-mechanical problems that
can be solved by the standard methods of atomic physics. As Wilson writes in this
paper:
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“The Hamiltonian formulation of quantum mechanics has been essentially
abandoned in the investigations of the interactions of π mesons, nucleons,
and strange particles. This is a pity. The Hamiltonian approach has
several advantages over the kind of approach (using dispersion relations)
presently in use. One advantage is that all properties of a system are
uniquely determined ... A second advantage is the existence of many
approximation schemes ... A third advantage is that one can often analyze
a Hamiltonian intuitively.” [1]

For the neglect of QFT, Wilson blamed the problem of infinities. To rectify this,
what was needed was a direct assault on that problem.

The infinities of QFT arise from the fact that the quantum excitations represented
by the legs of Feynman diagrams may have any momenta and, in particular, momenta
taking arbitrarily high values. Wilson’s approach to the infinities was to lay out these
momenta in an orderly set of regions that could be analyzed one by one. He called
this concept “momentum slicing”.

In [1], the full momentum space available to pions in the fixed source problem is
replaced by the set of intervals

0 < |k| < mπ ,
1

2
Λ < |k| < Λ ,

1

2
Λ2 < |k| < Λ2 , . . . ,

1

2
Λn < |k| < Λn , (4)

The slicing of momentum space is illustrated in Fig. 2. This severe reduction of
the allowed phase space not only sharpens the problem of infinities but also reverses
the standard viewpoint. At first sight, it is the low-momentum degrees of freedom
that are the most important for the physics of pion-nucleon interactions encoded
by the fixed-source problem. The appearance of high momenta is an intrusion that
needs to be controlled. However, if the system defined by (4) is studied using the
standard approximation schemes of quantum mechanics, the opposite is true. The
most important terms in the Hamiltonian are those in the highest momentum interval.
This part of the Hamiltonian must be diagonalized before lower-momentum intervals
can be studied.

Standard ideas of quantum-mechanical perturbation theory dictate how this diag-
onalization should be done. The problem of pions in the highest momentum interval
should be solved first, and the ground state of this system found. This ground state
configuration of the pion modes with momenta of order Λn can then be used as the
starting point for an analysis of the pion modes with momenta of order Λn−1. It is
only at the end of this process that momenta of the order of mπ come into play.

The diagonalization of the Hamiltonian is then naturally structured as an itera-
tion. The modes at |k| ∼ Λn primarily affect the modes at |k| ∼ Λn−1 by modifying
their coupling to the nucleon. This gives a recursion equation

gn−1 = f(gn) (5)

4



Figure 2: The slicing of momentum space used by Wilson in [1]. The vertical axis gives the
energies associated with the selected momentum states, on a logarithmic scale.

The effect of modes at large momentum scales on the pion modes at |k| ∼ mπ is
then encapsulated in the evolution of the coupling constant from scale to scale that
results from this evolution. At each stage of the evolution, the higher momenta are
said to be “integrated out” and are removed from Hamiltonian. This is the essence
of Wilson’s concept of the renormalization group.

The restriction of momenta to the domains (4) is of course an extreme truncation of
the original problem. To solve the fixed source problem quantitatively by momentum
slicing, it is necessary to consider regions that are continguous, without gaps, and
to integrate out each high-momentum region down to its boundary in an accurate
way. In [9], Wilson addressed this question as a matter of principle, proving that the
method led to a solution to the fixed source problem with all infinities eliminated.

However, Wilson did not stop there. It happens that the fixed source problem is
related to a puzzle that appeared in the theory of magnetism, the Kondo problem [10].
This is the problem of a fixed magnetic impurity coupling to a free gas of electrons.
For ferromagnetic coupling, the impurity behaves as a weakly coupled free spin inter-
acting with the electrons. But for antiferromagnetic coupling, however weak in the
underlying theory, the ground state contains a strong binding of the impurity to an
electron that essentially quenches its magnetism. By introducing additional operators
and corresponding couplings that transform under a multiparameter recursion equa-
tion, Wilson was able to integrate out shells in the electron momentum sufficiently
accurately to identify the transition energy from weak to strong coupling. The full
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Figure 3: Generation of a composite operator by integrating out high-momentum degrees
of freedom.

story of this calculation is outside the scope of this review, but it is described lucidly
in [11]. Wilson’s calculation of the strong-coupling scale in this model

TK
4πT0

= 0.1032± 0.0005 (6)

was later verified by an exact solution of the Kondo problem, using Bethe’s ansatz,
by Andrei and Lowenstein [12].

4 The Operator Product Expansion

The idea of integration out has a more general consequence for the description
of operators in QFT. Integrating out momentum modes with |k| ∼ Λ corresponds
to the solution of the quantum theory for point separatons of order |x − y| ∼ π/Λ.
Local operators placed more closely together that this distance cannot be considered
separately after integration out of this mometum shell. They must merge to become
single operators located at some intermediate point, as shown in Fig. 3.

Formalizing this intuition gives Wilson’s Operator Product Expansion. The idea
of the operator product expansion appeared fully formed in the literature in the
second paper of this review

“Non-Lagrangian Models of Current Algebra”, Phys. Rev. 179, 1499
(1969). [2]
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The concept is expressed by the statement that all expectation values of a pair of
QFT operators located at points x and y together with operators located at points z
far from x, y can be computed by the replacement

OA(x)OB(y) =
∑
C

CABC(x− y)OC(y) , (7)

where the sum over C runs over all operators in the QFT with appropriate quantum
numbers, and CABC(x− y) is a c-number coefficient function.

The relation is especially simple in theories in which the QFT dynamics at dis-
tances smaller than |x − y| is independent of any intrinsic length scale. Then, for
scalar operators

CABC(x− y) =
cABC

|x− y|dA+dB−dC
, (8)

where cABC and dA, dB, dC are numbers. For operators with spin, cABC is replaced
by a number times an appropriate Lorentz structure.

The quantities di are called the dimensions of the operators and reflect the scaling
of operator matrix elements with changes of distance scale. In Wilson’s original
conception, these dimensions were integers, as in free field theory. An anonymous
referee (now known to be Arthur Wightman [13]) pointed out that the exact solution
of the Thirring model in (1+1) dimension gave an example in which these dimensions
could be arbitrary real numbers, prompting Wilson to make a serious study of that
model. In [2], the idea that the values of operator dimensions could have a nontrivial
influence on physical phenomena was presented for the first time.

The paper [2] applied these ideas to one of the most important problems being
considered at that time, the nature of products of currents. Such products appear in
the structure of the weak interactions, in analyses of the properties of pions and kaons
using the methods introduced in [7], and in the analysis of deep inelastic electron
scattering. In 1967, the results of the SLAC-MIT electron scattering experiment
and their interpretation by Bjorken [14] and Feynman [15] pointed to models of the
structure of the proton with free-field behavior at short distances for the proton
constituents. Theoretical analysis of these experiments required the high-momentum
asymptotic behavior of a pair of electromagnetic currents.

One of the properties of the Thirring model that was striking to Wilson in this
context is that the current algebra of the model remains unchanged as the operator
spectrum of the model is distorted by the effects of strong interactions. In our (3+1)-
dimensional world, conserved currents would remain operators of dimension d = 3
while the dimensions of other operators would shift. Typically, results derived from
Gell-Mann’s current algebra for strong interaction matrix elements depend not only
on the algebra but also on the behavior of short-distance limits. The operator product
expansion gave a systematic way to analyze this issue.
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The result of the paper that seems most striking from our modern point of view is
the explanation Wilson gives for the ∆I = 1

2
rule, the fact that ∆I = 1

2
weak decays

of K mesons and strange baryons, for example K0 → π+π−, go more than 100 times
faster than ∆I = 3

2
decays such as K+ → π+π0. Wilson suggested that different

operators, OC in (7), in the product of W boson currents contributed to these two
amplitudes, and that the difference in the amplitudes arises from the different factors

(mK/mW )6−dC . (9)

in their operator product coefficients. This was the first suggestion of a qualitative
effect on physics caused by dynamically-generated differences in operator dimensions.
In 1974, Gaillard and Lee analyzed the operator product of W boson currents in the
gauge theory of strong interactions QCD, to be described below, and showed that
this effect does account for a large part, if not all, of the ∆I = 1

2
enhancement [16].

5 Scale Invariance at Short Distances

Wilson discussed the results of the paper [2] in the context of a vision for the
structure of a QFT description of strong interactions. The infinities of the theory
would be tamed by the principle that the recursion described in Section 3 would have
converged to a set of couplings that did not change with scale. Wilson describes a
“skeleton theory” for strong interactions that is exactly scale invariant. To build a
realistic model with nonzero hadron masses, this theory would be perturbated by
mass terms or other operators with dimensionful coefficients. Wilson notes the idea
of Kastrup [17] and Mack [18] that these terms might arise from the spontaneous
breaking of a scale symmetry.

I have already pointed out that the idea that the strong interactions are described
at short distances by a scale-invariant free field theory was very much in the air at
this time. Both current algebra and the parton description of deep inelastic scattering
rested on this foundation. However, it was recognized that this foundation could not
be realized in any interacting QFT model.

Wilson’s ideas cut through the haze surrounding this question. They suggested a
framework for a model that could actually arise from QFT. However, the exact form
of that model was still obscure. Wilson ends the paper [2] with the statement:

“It is hard to imagine that one could have a complete formula ... without
having a complete solution of the hadron skeleton theory. The prospects
for obtaining such a solution seem dim at present.” [2]
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6 The Paper with Three Errors

If all one knows about the underlying scale-invariant theory of strong interactions
is that it arises from renormalization group recursion, one can at least analyze the
possibilities for the structure of such a theory by examining the renormalization group
equations more closely. Wilson presented such an analysis in the third paper reviewed
here,

“Renormalization Group and Strong Interactions”, Phys. Rev. D3, 1818
(1970) [3].

This paper concentrates on the case of one coupling constant evolving according
to a continuous renormalization group equation. In modern notation, this equation
is

dg(µ)

d log µ
= β(g(µ)) , (10)

where µ is a momentum scale, g(µ) is the dimensionless coupling constant of the
strong interaction theory, and β(g) describes its evolution with scale. Wilson did
not consider this equation familiar to his auidience. Rather, much of the paper is
devoted to deriving the equation in perturbative QFT, beginning from the original
treatment of Gell-Mann and Low [19]. Wilson gives as his primary reference for
the renormalization group the textbook of Bogoliubov and Shirkov [20], though his
explanation is a highly processed version of the one found there [21].

Wilson’s approach to (10) was to analyze it as the equation for a general dynamical
system. Possible asymptotic behaviors for a dynamic system include a fixed point
and a limit cycle. Wilson described fixed-point solutions to (10) with the example
of a β function of the form shown in Fig. 4. At momenta M high enough that mass
parameters could be ignored, the coupling constant g would take some value gM on
the horizontal axis. For values gM < g1, the value would then increase at larger
scales, coming close asymptotically to the value g1, which would be a fixed point of
the renormalization group. If the value of gM were in the range g1 < gM < g2. the
value of g(µ) would decrease to the fixed point g1.

An alternative picture discussed by Wilson is one in which, at very high momen-
tum scales, the weak and electromagnetic couplings become as large at the strong
interaction coupling. The high-momentum value of g is then determined by prop-
erties of this unified theory. At lower scales, where the strong interactions can be
treated in isolation from the weak and electromagnetic interactions, g takes on the
renormalization group evolution described by β(g). In that case, the low-momentum
behavior might be evolution to an infrared-asymptotic fixed point of the renormaliza-
tion group, such as g2. The observed strong interaction coupling would be modified
slightly from g2 by effects of the mass terms.
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Figure 4: An example of a renormalization group function β(g).

Wilson analyzes one more possibility. In principle, if there is more than one
coupling constant, the high-energy asymptotic behavior of the renormalization group
equation might be a limit cycle. In that case, the values of the coupling constants
would perpetually oscillate, with a regular period in log µ. This would be directly
observable as an oscillating behavior of the cross section for e+e− annihilation to
hadrons.

This paper was eye-opening for many theorists at the time [22]. It introduced
the idea of qualitative analysis of a QFT through visualization of its renormalization
group flows, an idea that is now a standard method both in particle physics and in
statistical mechanics.

Still, Wilson is said to have refered to this work as “the paper with three errors”.
In hindsight, the omissions are easy to find. Limit cycles of the renormalization
group have never played a role in particle physics (though examples do exist for
discrete renormalization group transformations [23]). The idea that the low energy
value of the strong interaction coupling constant would be an infrared-stable fixed
point of the renormalization group was also not reallized. This idea might still be
relevant in the theory of the top quark mass [24,25]. Most importantly, though,
Wilson assumed that the β function must be positive in the low-g region of Fig. 4,
where it is computed in perturbation theory. He writes that, negative β(g) “violates
the Källén-Lehmann representation for the photon propagator” [3]. The last secret
of the strong interactions was hidden here, as I will explain in a moment.

7 Statistical Mechanics and Quantum Field Theory

It was in this same period that Wilson became involved with problems of the
theory of phase transitions. Wilson’s interaction with David Mermin, Michael Fisher,
Ben Widom, and other statistical mechanics experts at Cornell will be covered by
other contributions to this volume. The street ran both ways. The converse of the
idea that statistical mechanics problems can be modelled by QFT is the idea that
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QFT can be given a foundation by constructions taken from statistical mechanics.

From our previous discussion, the ingredients are all in place. A lattice with
spacing a in d dimensions can represent the space that results when quantum states at
large momenta are integrated out down to |k| ∼ π/a. Integration out potentially leads
to a complicated Hamiltonian with many nonzero operator coefficients. However,
most of these operators have high dimension and so do not affect physics at energy
scales of the order of particle masses.

The cleanest connection of this type is between lattice statistical mechanics prob-
lems on a d-dimensional lattice and Euclidean QFT in d dimensions. It follows from
the axioms of QFT [26] that operator expectation values on Lorentzian spacetime can
be analytically continued to a Euclidean spacetime with

x2 = (x0)2 + (x1)2 + (x2)2 + (x3)2 . (11)

Continuation to Euclidean space carries the time translation operator

U(t) = e−iHt → T (tE) = e−LEtE , (12)

where LE can be identified with the Lagrangian of the analytically continued problem.
The object on the right is the transfer matrix of a statistical mechanics problem.
Setting tE = a gives the evolution from one lattice spacing to the next. The complete
partition function is

Z = tr[T (a)N ] (13)

for a lattice of length Na.

Wilson’s student Ashok Suri worked out these connections in detail and explained
them in his 1969 Ph.D. thesis [27]. That thesis became a basic reference document
for the developments to follow.

8 Quantum Chromodynamics

The missing piece in the story of the scale invariance of strong interactions popped
out in the spring of 1973 with the announcement by Politzer, Gross, and Wilczek that
non-Abelian Yang-Mills theory is asymptotically free [28,29]. By this, I mean that
the renormalization group equation in this theory has a negative β function at small
values of g, causing the coupling constant to run to zero for large momenta. In
(3+1)-dimensions, non-Abelian gauge theories are absolutely exceptional in allowing
negative values of the β function [30,31]. The indefinite metric spaces used in the
quantization of gauge fields allow them to slip through a crack in the argument that
the β function is always positive.
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A theory with asymptotic freedom would be asymptotically scale-invariant, and, in
fact, free, at short distances. However, in certain observables, one could still find large
effects of operator dimensions, now scaling with powers of logarithms of momenta(

log
m2
K

Λ2
/ log

m2
W

Λ2

)γA+γB−γC
(14)

rather than (9). The combination of these two features in the same package made this
an ideal solution to all of the problems of constructing a theory of strong interactions.
Almost immediately, the idea of building interactions from gauge fields converged with
other aspects of strong interaction phenomenology to pick out the Yang-Mills gauge
group SU(3), with quarks belonging to the fundamental 3 representation [32]. This
theory was named Quantum Chromodynamics (QCD). Today, a wealth of evidence
supports the claim that QCD is the fundamental description of the strong interactions.

QCD included the picture of strongly interacting particles as bound states of more
fundamental spin 1

2
particles, quarks. The quark model explained the mass spectrum

and quantum numbers of the baryons and mesons. It gave a basis for current algebra
and the structure of hadronic weak interactions. But, together with these successes
came a puzzle: The quark model required the electric charge assignments +2

3
for the

u quark and −1
3

for the d and s quarks. Yet, no particles with fractional electric
charge had been seen in nature. By 1973, extensive searches had been done, all with
negative results [33].

9 Lattice Gauge Theory

Wilson had not been studying gauge theories, or any weak-coupling proposal for
the nature of the skeleton theory of strong interactions. However, now a question
arose that he was uniquely positioned to answer: How do non-Abelian gauge theories
behave when their coupling constants are taken to be strong? The answer to this
question was given in the final paper for this review

“Confinement of Quarks”, Phys. Rev. D10, 2445 (1974) [4]

That answer turned out to be profound. The following important results were
summarized in the introduction to this paper:

“A new mechanism which keeps quarks bound will be proposed in this
paper. The mechanism applies to gauge theories only.”

“By analogy to the solid-state situation one can think of the transition
from zero to nonzero photon mass as a change of phase.”
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Figure 5: Path of a heavy quark-antiquark pair in a lattice space-time. Euclidean time runs
upward.

“... the strong-coupling expansion ... has the same general structure as
the relativistic string model of hadrons ...” [4]

The correspondence between continuum QFT and lattice statistical mechanics
was the crucial tool for this investigation. By now Wilson had thoroughly assimilated
the idea of lattice-regulated QFT. He writes:

“The model discussed in this paper is a gauge theory set up on a four-
dimensional Euclidean lattice. The inverse of the lattice spacing serves as
an ultraviolet cutoff. The use of a Euclidean space ... instead of a Lorentz
space is not a serious restriction.”

Other members of our particle physics community took decades to get used to this
idea. Today, gauge theory on a Euclidean lattice is a proven numerical tool for
calculations in the low-momentum region of QCD [34].

To begin the description of a local gauge symmetry on a lattice, we might start
from the description of a matter particle in a lattice QFT. A path of a heavy particle
in Euclidean spacetime has the form shown in Fig. 5. A quantum particle travelling
on paths of this type can be realized by a scalar field transforming under a global
symmetry, which we associate with the particle number,

φn → eiαφn , (15)
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where α is a global parameter. A discretized derivative of the field can be defined as

∆µφn =
1

a
(φn+aµ̂ − φn) (16)

A lattice QFT with the Lagrangian

LE =
∑
n

a3
[

1

2T
|∆µφn|2 +

1

2
m2|φn|2

]
(17)

is invariant under the symmetry. Expanding the partition function in the parameter
1/T is a controlled expansion in the lattice-regulated theory. This expansion is anal-
ogous to the high-temperature expansion of lattice statistical models. It corresponds
to a sum of graphs with paths of the form shown in the figure. A similar treatment
can be given for fermions on the lattice. To implement this, Wilson described the
integral over fermionic variables invented by Berezin [35], still, at that time, quite
unfamiliar as a QFT tool.

The generalization to a local gauge symmetry raises new issues. The symmetry
transformation is now

φn → eiαnφn , (18)

where αn is independent at each lattice site. The derivative (16) now no longer has a
linear transformation law under the symmetry group.

The remedy for this problem is to generalize the lattice derivative with an addi-
tional element

∆µφn =
1

a
(φn+aµ̂ − Un+aµ̂,nφn) , (19)

where Un1,n2 , with (n1, n2) neighboring lattice sites, has the transformation

Un1,n2 → eiαn1Un1,n2e
−iαn2 (20)

Minimally, Un1,n2 can be taken to be a unitary matrix representing an element of the
gauge group, with the identification Un2,n1 = U †n1,n2

. The statistical sum over Un1,n2

is an integral over the gauge group for each link of the lattice.

In terms of continuum variables, a quantity with the same transformation law as
Un1,n2 is the exponential of the line integral of the vector potential

Un1,n2 ≡ exp
[
ig
∫ n1

n2

dxµAµ] (21)

Making this identification and expanding for the case in which Aµ(x) varies slowly
over a lattice spacing, we find

∆µφ = (∂µ − igAµ)φ , (22)
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the standard gauge-covariant derivative. A gauge-invariant quantity built purely from
the Un1,n2 is

tr[Vn,µ,ν ] = tr[Un,n+ν̂Un+ν̂,n+µ̂+ν̂Un+µ̂+ν̂,n+µ̂Un+µ̂,n] (23)

In the continuum, Vn,µ,ν can be identified as the exponential of a line integral around
the elementary square,

Vn,µν ≡ exp
[
ig
∮
dxµAµ

]
= exp

[
ig
∫
d2sµνFµν

]
(24)

I have written these formulae for the case of an Abelian gauge group, but they go
through with only minor modifications for a non-Abelian gauge group. The lattice
QFT action

LE =
∑
n,µ,ν

1

g2
tr[Vn,µ,ν + V †n,µ,ν ] (25)

then gives the usual gauge field action L = −1
4
(Fµν)

2. Similar lattice QFTs were con-
structed by Wegner [36], for the case of discrete gauge symmetry, and by Polyakov [37].

The lattice Lagrangian (25) has the amazing property of possessing a straight-
forward expansion in powers of 1/g2. One simply needs to expand the exponential
of (25) in a power series. Each factor of tr[Vn] brings down four factors of Un,n+µ̂,
which are then integrated over the gauge group. This 1/g2 expansion realized one of
Wilson’s longstanding goals, to directly compute the structure of a QFT in the limit
of strong coupling.

To understand the implications of this expansion, go back to Fig. 5. In the gauge
theory, each link of the path of the heavy quark and antiquark acquires a factor
Un,n+µ̂. Each term tr[Vn] is a product of four factors of Un,n+µ̂ arranged around an
elementary square of the lattice. We might imagine this as a tile placed on the square.
These factors must come together to prevent the integrals over the gauge group from
giving a zero result. Indeed,∫

dgU(g)ij = 0 while
∫
dgU(g)ijU

†(g)k` = cδi`δkj . (26)

A term in the strong-coupling perturbation theory is nonzero only if each link has a
matching number of factors of U and U †. The nonzero terms correspond to tilings of
the region between the quark and antiquark paths, as shown in Fig. 6.

We find that the amplitude for propagation of a heavy quark-antiquark pair is
nonzero only if the entire region between the paths of these particles is spanned
by tiles. If the quark and antiquark are far apart, there must be gauge excitation
covering every interval between them. This led Wilson to the conclusion that the
strong-coupling gauge theory gives a potential between quarks and antiquarks of the
form

V (|~xq − ~xq|) ∼ k|~xq − ~xq| (27)
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Figure 6: Path of a heavy quark and antiquark in lattice space-time, with the leading terms
from the gauge theory at strong coupling.

rising linearly with distance.

For general values of the coupling, the qualitative behavior of this potential would
depend on the long-range order in the gauge degrees of freedom. At strong coupling

〈Un,µ̂〉 = 0 , (28)

and we find the quark-confining potential (27). At weak coupling, at least in electro-
dynamics, there is an expansion about

Un,µ̂ ≈ 1 (29)

that leads to the usual Coulomb potential. In non-Abelian gauge theories, it is
plausible that the renormalization-group flow makes the coupling strong enough, at
sufficiently large distances, that the strong coupling region is reached and the theory
is confining. This statement is not yet proven rigorously, but it is supported by a
wealth of numerical data [34].

10 Afterword

I am ending this review almost exactly at the point where my career intersects the
story. I came to Cornell as a graduate student in the fall of 1973. The first particle
theory seminar that I attended was Wilson’s seminar at Cornell on the lattice gauge
theory results that I have just described. A year later, the discovery of the J/ψ
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resonance led to striking evidence for all aspects of the picture I have described here:
the quark model, asymptotic freedom at short distances, a linear confining potential
at large distances, even the direct experimental verification of the number 3 in the
SU(3) gauge group [38]. The rout of QCD was on.

By the time I finished graduate school, QCD was already an established theory.
I became interested in what I felt would be the next problem ripe for solution, the
physics of the spontaneous breaking of symmetry responsible for the properties of
the subnuclear weak interactions. Thirty-five years later, that problem is still an
open one, although the recent discovery of the Higgs boson at the Large Hadron
Collider [39,40] surely provides an important piece of the puzzle.

Every student of physics seeks to emulate his or her thesis advisor. Having Ken
Wilson as an advisor sets a very high standard.

The experience of working with Ken instilled some values that continue to guide
my approach to physics. First, even when approaching the fundamental equations of
nature, a physicist should dismiss mysticism. The universe is essentially mechanical.
There is a Hamiltonian; solve it. For better or worse, I find the current Standard
Model of particle physics too lacking in explanatory power, and too lacking in specific
mechanisms that might explain the fact and the consequences of its spontaneous
symmetry breaking.

Second, a physicist should have a vision, and pursue it to the end. We are not all
as blessed with genius as Ken Wilson, but the mountains are there nevertheless. Ken
always climbed straight up.
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