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A valid prediction from quantum field theory for a physical observable should be independent of
the choice of renormalization scheme – this is the primary requirement of renormalization group
invariance (RGI). Satisfying scheme invariance is a challenging problem for perturbative QCD
(pQCD), since truncated perturbation series do not automatically satisfy the requirements of the
renormalization group. Two distinct approaches for satisfying the RGI principle have been sug-
gested in the literature. One is the “Principle of Maximum Conformality” (PMC) in which the
terms associated with the β-function are absorbed into the scale of the running coupling at each
perturbative order; its predictions are scheme and scale independent at every finite order. The
other approach is the “Principle of Minimum Sensitivity” (PMS), which is based on local RGI;
the PMS approach determines the optimal renormalization scale by requiring the slope of the
approximant of an observable to vanish. In this paper, we present a detailed comparison of the
PMC and PMS procedures by analyzing two physical observables Re+e− and Γ(H → bb̄) up to
four-loop order in pQCD. At the four-loop level, the PMC and PMS predictions for both observ-
ables agree within small errors with those of conventional scale setting, and each prediction shows
small scale dependences. However, the convergence of the pQCD series at high orders, behaves
quite differently: The PMC displays the best pQCD convergence since it eliminates the divergent
renormalon terms; in contrast, the convergence of the PMS prediction is questionable, often even
worse than the conventional prediction based on an arbitrary guess for the renormalization scale.
PMC predictions also have the property that any residual dependence on the choice of initial
scale is highly suppressed even for low-order predictions. Thus the PMC, based on the standard
RGI, has a rigorous foundation; it eliminates a unnecessary systematic error for high precision
pQCD predictions and can be widely applicable to many high-energy hadronic processes, including
multi-scale problems.
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I. INTRODUCTION

The setting of the renormalization scale of the QCD
coupling is one of the outstanding fundamental prob-
lems of perturbative QCD (pQCD) predictions; it is a
key problem for obtaining high-precision predictions for
high energy physics processes. The elimination of this
systematic error is important for obtaining precise tests
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of the Standard Model (SM) at colliders such as the LHC
and for increasing the sensitivity of experimental mea-
surements to new physics.

It has been conventional to choose a typical momen-
tum transfer as the renormalization scale and take an
arbitrary range to estimate the uncertainties in the fixed-
order QCD prediction. However, there is no guarantee
that the actual pQCD prediction lies within the assumed
range. In fact, the fixed-order prediction obtained by
using a guessed scale depends heavily on the renormal-
ization scheme which is itself arbitrary. It is often ar-
gued that by varying the renormalization scale, one can
estimate the unknown contributions from higher-order
terms. However, this procedure only exposes the β-
dependent terms, not the entire perturbative series. Fur-
thermore, the value of the effective number of quark fla-
vors nf entering the QCD β-function is not determined
by using conventional scale setting. Even worse, because
of the presence of renormalon terms which diverge as
(n!βnαn

s ) (Beneke, 1999), the convergence of a pQCD se-
ries based on a guessed scale becomes questionable for
many processes.

The running behavior of the coupling constant
is governed by the renormalization group equations
(RGEs) (Bogoliubov and Shirkov, 1959), and valid
predictions must satisfy renormalization group in-
variance (RGI) (Stuckelberg and Peterman, 1953;
Gell-Mann and Low, 1954; Bogoliubov and Shirkov,
1955; Callan, 1970; Symanzik, 1970; Peterman, 1979); in
particular, the prediction for a physical observable must
be independent of the choice of renormalization scheme
– a key requirement of the renormalization group.
Thus, a primary problem for pQCD is how to set the
renormalization scale so as to obtain the most accurate
fixed-order estimate while satisfying the principles of the
renormalization group.

Two solutions based on RGI have been suggested
since the 1980’s, one is the Brodsky-Lepage-Mackenzie
(BLM) method (Brodsky et al., 1983), which has
been further developed as the “Principle of Maximum
Conformality (PMC) (Brodsky and Wu, 2012a,b,c;
Brodsky and Giustino, 2012; Mojaza, Brodsky and Wu,
2013; Wu, Brodsky and Mojaza, 2013). In the
BLM/PMC method, all terms associated with the
β-function are absorbed into the scale of the running
coupling at each perturbative order, leaving a series
with coefficients identical to that of the corresponding
conformal theory with β = 0; the resulting predictions
are then scheme and scale independent at every finite
order. In the original BLM paper, it was proposed
that one can use the occurrence of nf in the series as
a guide to identifying the β terms. This procedure
is easily implemented at low orders; however, at high
orders, the nf terms can also arise from loops which are
ultraviolet finite and which are not associated with the
β function. The PMC provides the underlying principle
and rigorous foundation for BLM, giving a systematic
method for unambiguously distinguishing the β versus

non-β “conformal terms”. The PMC procedure can
be extended up to any order. The PMC thus respects
RGI; the final expression is naturally scheme and scale
independent at any finite order since all non-conformal
β-terms are absorbed into the coupling constant.
The other method based on RGI follows the “Princi-

ple of Minimum Sensitivity (PMS)” (Stevenson, 1981a,b,
1982, 1984). The PMS determines the optimal renormal-
ization scale by requiring the slope of the approximant
of an observable to vanish. In effect, the PMS breaks the
standard RGI but introduces instead a local RGI. In this
paper, we shall present a detailed comparison of PMC
and PMS predictions for two processes up to four-loop
level; specifically the processes e+e− → hadrons and the
Higgs decay H → bb̄. This comparison illuminates the
merits and differences of the PMC and PMS methods for
confronting the scale-setting problem.
The remaining parts of the paper are organized as fol-

lows: In Sec.II, we present a general argument for the
form of the pQCD expansions and analyze the scale-
setting problem. In Sec.III, we present a comparison of
PMC and PMS scale settings. In Sec.IV, we present the
standard RGI and the formulae for PMC up to four-loop
level. In Sec.V, we show how one can implement local
RGI and obtain the formulae for PMS up to four-loop
level. In Sec.VI, we present our numerical results for
the two processes e+e− → hadrons and H → bb̄. A de-
tailed comparison of the PMC and PMS predictions for
the annihilation ratio Re+e− and the Higgs decay width
Γ(H → bb̄) up to four-loop level, together with the pre-
dictions using the conventional scale setting, will then be
presented. Sec.VII is reserved for a summary.

II. EXPANSIONS IN PERTURBATIVE QCD

Because of the asymptotic freedom property of quan-
tum chromodynamics (QCD) (Gross and Wilczek, 1973;
Politzer, 1973), a high-energy physical observable (̺) can
be expanded in perturbative series in powers of the strong
running coupling αs(µ). For simplicity we shall consider
the series when the quark masses vanish. At n-th order,
we have

̺n = C0αp
s(µ) +

n∑

i=1

Ci(µ)αp+i
s (µ), (1)

where µ stands for the renormalization scale of the run-
ning coupling αs, C0 is the tree-level term and p is the
power of the coupling associated with the tree-level term,
C1 the one-loop correction; etc. Typically, the higher-
order coefficients Ci≥1 are ultraviolet divergent which
must be regulated and removed by a renormalization
procedure. The terms which are associated with the
renormalization of the running coupling involve contri-
butions to the β function, the logarithmic derivative of
αs. The remaining terms are identical to a “confor-
mal” theory with β = 0. Because of RGI, a physical
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prediction, calculated up to all orders, should be in-
dependent of the choice of renormalization scheme and
scale. However, at any finite order, the scheme/scale de-
pendence from αs(µ) and Ci(µ) usually do not exactly
cancel, leading to the well-known scheme/scale ambigu-
ities (Grunberg, 1980, 1982, 1984; Stevenson, 1981a,b,
1982, 1984; Brodsky et al., 1983).

In the case of conventional scale setting, one simply
guesses the renormalization scale and varies it over an
arbitrary range. It is a common belief that the effects
of the scale uncertainty will be reduced as one proceeds
to higher-and-higher order calculations. However, this
ad hoc assignment of renormalization scale and its range
introduces an important and persistent systematic and
scheme dependent error in the theoretical predictions. It
should be emphasized that the variation of the renor-
malization scale can only provide a rough estimate of the
higher-order non-conformal terms but not the conformal
ones. Uncanceled large logarithms as well as the diver-
gent “renormalon” terms in higher orders will provide
sizable contributions to the theoretical predictions and
largely dilute the perturbative nature of the expansion
series. As an example, the large next-to-leading order
(NLO) contributions observed in the literature for the
heavy quarkonium productions/decays are mainly caused
by such renormalon terms. It is sometimes argued that
the correct scale for the fixed-order prediction can be
decided by comparing with the experimental data; how-
ever, this procedure is process-dependent, and it greatly
depresses the predictive power of pQCD.

One may expect the uncertainties introduced from the
conventional scheme/scale dependence can be eliminated
if one can find the optimal behavior of the coupling con-
stant via a systematic and process-independent way. As
mentioned in the Introduction, various scale setting pro-
cedures have been proposed in the literature.

The PMC and PMS methods are designed to eliminate
the scheme/scale ambiguity and to find the optimal be-
havior of the coupling constant; however, they have quite
different consequences due to different starting points,
and they may or may not achieve the desired goals. A
detailed introduction to these methods can be found in a
recent review (Wu, Brodsky and Mojaza, 2013). In the
following sections, we shall concentrate our attention on
the PMC and PMS methods in which the RGI princi-
ple has been adopted with the hope to eliminate the
scheme/scale dependence fundamentally and simultane-
ously.

In addition to PMC and PMS, another method,
the renormalization-group-improved effective coupling
method (or the so-called Fastest Apparent Convergence
(FAC)) (Grunberg, 1980, 1982, 1984) has also been sug-
gested. The main purpose of the FAC is to improve the
pQCD perturbative series by requiring all higher-order
terms beyond leading order to vanish. However, this
method in effect redefines the renormalization scheme as
an effective charge for each observable.

III. COMPARING THE PRINCIPLES OF MAXIMUM

CONFORMALITY AND MINIMAL SENSITIVITY

The scale dependence of the strong coupling constant
is controlled by its RGE. The PMC provides the under-
lying principle for BLM; it respects the standard RGI
and improves the perturbative series by absorbing all
β-terms governed by RGE into the coupling constant.
This procedure is identical to the Gell-Mann-Low proce-
dure in QED whereby all proper and improper vacuum
polarization contributions are absorbed into the proton
propagator by choosing the scale of α(q2) as photon vir-
tuality (Gell-Mann and Low, 1954). More explicitly, the
PMC procedure is identical to the Gell-Mann-Low pro-
cedure in the limit NC → 0 at fixed α = CFαs with
CF = (N2

c − 1)/2Nc (Brodsky and Huet, 1998; Kataev,
2010). Since the pQCD series is identical to the series of a
conformal theory with β = 0, the PMC prediction has the
remarkable feature that it is scheme independent at every
finite order. The PMC satisfies all the self-consistency
conditions of the renormalization group, such as re-
flectivity, symmetry and transitivity (Brodsky and Wu,
2012d). Since the running coupling sums all of the β
terms, the divergent “renormalon” series does not ap-
pear in the PMC prediction, allowing the convergence of
the pQCD series.

In practice, the central problem for applying the
BLM/PMC method is how to unambiguously identify
and separate the nonconformal (β-dependent) and con-
formal contributions to the pQCD series. The UV-
divergent quark loops provide the nf -dependence of the
β terms. Thus the nf -dependence of the pQCD se-
ries which arises from the renormalization of the QCD
coupling can in principle be used to identify the β
terms. Two equivalent and practical ways have been
suggested to provide a one-to-one correspondence be-
tween the β-terms and the UV divergent nf -terms: one
is based on the PMC-BLM correspondence principle (we
shall call it the PMC-I approach) (Brodsky and Wu,
2012a,c), and the other is based on the Rδ-scheme (
the PMC-II approach) (Mojaza, Brodsky and Wu, 2013;
Brodsky, Mojaza and Wu, 2014). Both the PMC-I and
PMC-II scale-setting procedures can be conveniently ex-
tended up to any perturbative order. In the following we
will illustrate these two methods with examples up to the
four-loop level.

The PMS is designed to solve the renormalization
scheme and scale ambiguity by applying the so-called
“local RGI”; one requires the fixed-order series to sat-
isfy the RGI at the renormalization point. Since it
breaks the standard RGI, the PMS does not satisfy the
self-consistency conditions of the renormalization group,
such as reflectivity, symmetry and transitivity, as dis-
cussed in Ref.(Brodsky and Wu, 2012d). It, however,
provides an intuitive way to set the renormalization scale,
and its predictions tend to be steady over the changes
of scheme/scale around the determined renormalization
point. The PMS applies the local RGI step-by-step to set
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the PMS scale, and the resulting RGI coefficients at each
perturbative order are based on its own self-consistency
conditions (Stevenson, 1981b). For example, at n-th or-
der, we have

∂̺i/∂(RS) = O(αi+1
s ) (2)

where i = (1, 2, · · · , n) and RS stands for either the scale
or the scheme parameters. Recently, the PMS has been
extended up to four-loop order (Stevenson, 2013), the key
point of which is to fix the local RG invariants at each
perturbative order.
Both the PMC (and its precursor BLM) and PMS are

well-known and have been applied to many high-energy
processes. Most of the previous analysis of PMC/BLM
and PMS have only dealt with predictions at the one-
loop level. However, in recent years, due to the signif-
icant development of new loop calculation technologies,
many interesting high-energy processes have been calcu-
lated up to two-loop, three-loop, or even up to four-loop
level. Thus, we are facing the opportunities for testing
PMC and PMS at a much higher confidence level. We
emphasize that the PMC and PMS are based on different
theoretical principles; e.g., the standard RGI versus lo-
cal RGI, respectively; thus, the predictions of PMC and
PMS behave quite differently. A comparison of PMC and
PMS, together with conventional scale setting up to high-
loops, is important, and this is one of the main purposes
of this paper.

IV. PMC AND STANDARD RGI

As has been pointed out in Refs.(Stevenson, 1981a,b;
Brodsky and Wu, 2012d; Lu and Brodsky, 1993), it is
convenient to introduce extended RGEs for determin-
ing the running behavior of the coupling constant. For
this purpose, one can define a universal coupling constant
a(τR, {cRi }) which satisfies the following extended RGEs,

β(a, {cRi }) = ∂a

∂τR
= −a2

[
1 + a+ cR2 a2 + cR3 a3 + · · ·

]

(3)

and

βn(a, {cRi }) = ∂a

∂cRn
= −β(a, {cRi })

∫ a

0

xn+2dx

β2(x, {cRi }) ,
(4)

where for any given R-renormalization scheme, the coef-
ficients are cRi = βR

i βi−1
0 /βi

1 (i = 2, 3, · · ·). We have im-
plicitly used the scheme-independent β0 and β1 to rescale
the coupling constant and the scale-parameters, i.e.

a(τR, {cRi }) = β1

4πβ0
αR
s (τR, {cRi }) and τR =

β2
0

β1
lnµ2|R.

The scale-equation (3) determines the running behavior
of the universal coupling function, whose solution can
be derived in a recursive way (Brodsky and Wu, 2012a).
The scheme-equation (4) determines the relation of the
coupling functions among different schemes, whose solu-
tion can be achieved via a perturbative expansion in the
QCD coupling.
The RGI principle requires that the predic-

tion for a physical observable should be indepen-
dent of the choice of the renormalization scheme
or initial scale (Stuckelberg and Peterman, 1953;
Gell-Mann and Low, 1954; Bogoliubov and Shirkov,
1955; Callan, 1970; Symanzik, 1970; Peterman, 1979).
As suggested in Refs.(Grunberg, 1980, 1982, 1984), if an
effective coupling a(τR, {cRi }) corresponds to a physical
observable, then it should be independent of any other
scale τS and any scheme parameters {cSj },

∂a(τR, {cRi })
∂τS

≡ 0 , (5)

∂a(τR, {cRi })
∂cSj

≡ 0 . (6)

Based on the RGEs (3,4), we can obtain a di-
rect deduction of Eqs.(5,6) for an n-th order esti-
mate (Brodsky and Wu, 2012d),

∂a(τR, {cRi })
∂τS

=
∂(n+1)a(τS , {cSi })

∂τ
(n+1)
S

τ̄n

n!
+
∑

i

∂(n+1)a(τS , {cSi })
∂cSi ∂τ

(n)
S

τ̄n−1c̄i
(n− 1)!

+ · · · , (7)

where R and S stands for two renormalization schemes,
τ̄ = τR−τS and c̄i = cRi −cSi . If setting n → ∞, the the-
oretical estimate for the physical observable a(τR, {cRi })
will be independent of any other scale τS . Similarly, by
taking the first derivative of a(τR, {cRi }) with respect to
cSj , one can also obtain the scheme-invariance equation
(6) for n → ∞. Thus, the RGI Eqs.(5,6) tell us that,

I) if we could sum all types of cSi -terms (or equivalently
the {βS

i }-terms) into the coupling constant, then the fi-
nal prediction of a(τR, {cRi }) will be independent of any
choice of scheme and scale; II) There can be residual scale
dependence for a fixed-order estimate; e.g., if n 6= ∞, the
right-hand of Eq.(7) is non-zero.
Note that by setting c̄i ≡ 0 (i = 1, 2, · · ·), we can
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obtain a scale-expansion series for the coupling constant expanding over itself but specified at another scale; i.e.,

a(τR, {cRi }) = a(τS , {cRi }) +
(
∂a(τS , {cRi })

∂τS

)
τ̄ +

1

2!

(
∂2a(τS , {cRi })

∂τ2S

)
τ̄2 +

1

3!

(
∂3a(τS , {cRi })

∂τ3S

)
τ̄3 + · · · . (8)

Using the scale-equation (3), the above equation can be
rewritten as a perturbative series of a(τS , {cRi }), whose
coefficient at each order is a {βR

i }-series.
In summary, the standard RGI indicates that if one

can resum all the known-type of β-terms into the cou-
pling constant, and at the same time suppress the con-
tributions from those unknown β-terms, then one may
solve the conventional scheme and scale ambiguity. This
observation is the underlying motivation of PMC.

Choose any renormalization scheme R

∑
i C̃iαp+i

s (µPMC) with C̃i the conformal coefficients

Choose arbitrary initial renormalization scale µ0

Shift scales of αR
s to µPMC to eliminate all {βR

i } − terms

Conformal Series

Identify {βR
i } − terms using known nf − terms

PMC − I : PMC − BLM correspondence principle

PMC − II : Rδ − scheme

Result is independent of µ0 and R at fixed order

FIG. 1 A “flow chart” which illustrates the PMC procedure.
Two ways, named as PMC-I and PMC-II, are suggested to
absorb the β-terms into the coupling constant and the final
resultant is conformal and independent of the initial choice of
scheme and scale.

The PMC provides an unambiguous and systematic
way to set the optimized renormalization scale at each
finite orders. A “flow chart” which illustrates the PMC
procedure is presented in FIG. 1. We first perform a
pQCD calculation by using any renormalization scheme
(usually MS-scheme) at an arbitrary initial scale (its
value should ensure the perturbative calculation appli-
cable). Then, we arrange all the coefficients at each per-
turbative order into β-terms or non-β-terms depending
on whether they are pertained to the renormalization of

the coupling constant. The β-terms are then absorbed
into the coupling constant in an order-by-order manner.
New β-terms will occur at each perturbative order, so the
PMC scale at each order is in general distinct.

In practice all the β-terms involve UV-divergent light-
quark loops, e.g. the nf -terms; thus how to cor-
rectly relate the β-terms to the nf -terms is the key
problem of PMC. Two equivalent ways have been
suggested to derive a one-to-one correspondence be-
tween the β-terms and the nf -terms, one is based
on the PMC-BLM correspondence principle (we call
it as PMC-I) (Brodsky and Wu, 2012a,c) and the
other one is based on the so-called Rδ-scheme (we
call it as PMC-II) (Mojaza, Brodsky and Wu, 2013;
Brodsky, Mojaza and Wu, 2014). The PMC-I and PMC-
II methods can be conveniently extended up to any per-
turbative order. In the following, we present the main
ideas and provide the formulae up to four-loop level.
It is noted that another different approach, called as
seBLM (Mikhailov, 2007; Kataev and Mikhailov, 2012),
has also been suggested to deal with such correspondence.
A detailed comparison of seBLM with PMC can be found
in Ref.(Wang et al., 2014).

A. PMC-I: Achieving the goal of PMC via PMC-BLM

Correspondence Principle

The PMC-I approach uses the PMC-BLM correspon-
dence principle (Brodsky and Wu, 2012a) to obtain an
unambiguous relations among the β-terms and the rel-
evant nf -terms at each order of perturbative theory.
It states that one can write down all the needed β-
patterns for both the pQCD series and the PMC scale
αs-expansion at any perturbative order by analyzing the
running behavior of the coupling constant determined by
the RGE; i.e., by following the β-pattern of Eq.(8). The
PMC scales themselves will also have a perturbative ex-
pansion (in an exponential form) in order to achieve a
consistent resummation of all β-terms into the coupling
constant (Grunberg and Kataev, 1992). More explicitly,
by writing out the β-series, Eq.(8) can be rewritten as

as(µ) = as(µ0)−
1

4
β0 ln

(
µ2

µ2
0

)
a2s(µ0) +

1

42

[
β2
0 ln

2

(
µ2

µ2
0

)
− β1 ln

(
µ2

µ2
0

)]
a3s(µ0) +
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1

43

[
−β3

0 ln
3

(
µ2

µ2
0

)
+

5

2
β0β1 ln

2

(
µ2

µ2
0

)
− β2 ln

(
µ2

µ2
0

)]
a4s(µ0) +O(a5s), (9)

where as = αs/π, µ0 stands for initial renormalization
scale and the scheme parameter has been omitted for
convenience.
Following the idea of PMC-BLM correspondence prin-

ciple, we are ready to obtain the PMC scales via a sys-

tematic way. In general, by identifying the nf -terms ex-
plicitly at each perturbative order, the pQCD prediction
̺n for a physical observable ̺ up to four-loop level can
be rewritten as

̺n = r0
[
aps(µ0) + (A1 +A2nf )a

p+1
s (µ0) + (B1 +B2nf +B3n

2
f )a

p+2
s (µ0) + (C1 + C2nf + C3n

2
f + C4n

3
f )a

p+3
s (µ0) + · · ·

]

where r0 is scale-independent and is free from as(µ0),
p (≥ 1) stands for the leading-order αs power. The PMC
scales for ̺n can be determined in a step-by-step way
such that all those nf -terms will be absorbed into the
running coupling. That is, the PMC-I approach suggests

that the QCD corrections are formed by a sequential one-
loop and one-loop corrections, and one can inversely set
the PMC scale for a αs order by resuming all nf -terms
with highest power in all higher-order αs terms into this
particular αs order. More specifically,

• The first step is to set the PMC scale Q1 at LO, which is derived by absorbing A2nf , B3n
2
f and C4n

3
f into aps:

̺′n = r0

[
aps(Q1) + Ã1a

p+1
s (Q1) + (B̃1 + B̃2nf )a

p+2
s (Q1) + (C̃1 + C̃2nf + C̃3n

2
f )a

p+3
s (Q1) + · · ·

]
. (10)

• The second step is to set the effective scale Q2 at NLO, which is derived by absorbing B̃2nf and C̃3n
2
f into ap+1

s :

̺′′n = r0

[
aps(Q1) + Ã1a

p+1
s (Q2) +

˜̃
B1a

p+2
s (Q2) + (

˜̃
C1 +

˜̃
C2nf )a

p+3
s (Q2) + · · ·

]
, (11)

• The final step is to set the effective scale Q3 at NNLO, which is derived by absorbing
˜̃
C2nf into ap+2

s :

̺′′′n
= r0

[
aps(Q1) + Ã1a

p+1
s (Q2) +

˜̃
B1a

p+2
s (Q3) +

˜̃̃
C1a

p+3
s (Q3) + · · ·

]
. (12)

When performing the shifts µ0 → Q1, Q1 → Q2 and
Q2 → Q3, we eliminate the nf -terms associated with
the corresponding β-terms completely. Those step-by-
step coefficients can be calculated by sequentially setting
̺′n = ̺n, ̺

′′
n = ̺′n and ̺′′′n = ̺′′n, which can be found

in Ref.(Brodsky and Wu, 2012a). At the same time, we
also have to modify the coefficients such that the final
ones are conformal. We have no β-terms to set the PMC
scale for ap+3

s , so in practice we will set its value as the
determined one-order-lower PMC scale Q3. Thus, there
is residual scale dependence due to those unknown β-
terms from higher-order QCD prediction.

The PMC scales up to NNLO can be written as

ln
Q2

1

µ2
0

= ln
Q2

1,0

µ2
0

+
xβ0

4
ln

Q2
1,0

µ2
0

as(µ0) + (13)

y

16

(
β2
0 ln

2 Q2
1,0

µ2
0

− β1 ln
Q2

1,0

µ2
0

)
a2s(µ0) +O(a3s)

ln
Q2

2

Q2
1

= ln
Q2

2,0

Q2
1

+
zβ0

4
ln

Q2
2,0

Q2
1

as(µ0) +O(a2s) (14)

ln
Q2

3

Q2
2

= ln
Q2

3,0

Q2
2

+O(as) (15)

where the scales Q1,0, Q2,0 and Q3,0 are determined so

as to eliminate A2nf , B̃2nf and
˜̃
C2nf -terms completely,

the parameters x and z are used to eliminate the B3n
2
f

and the C̃3n
2
f terms respectively, and the parameter y is
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used to eliminate the C4n
3
f -term. It is found that

ln
Q2

1,0

µ2
0

=
6A2

p
, ln

Q2
2,0

Q2
1

=
6B̃2

(p+ 1)Ã1

, ln
Q2

3,0

Q2
2

=
6
˜̃
C2

(p+ 2)
˜̃
B1

and

x =
3(p+ 1)A2

2 − 6pB3

pA2
(16)

y =
(p+ 1)(2p+ 1)A3

2 − 6p(p+ 1)A2B3 + 6p2C4

pA2
2

(17)

z =
3(p+ 2)B̃2

2 − 6(p+ 1)Ã1C̃3

(p+ 1)Ã1B̃2

(18)

B. PMC-II: Achieving the goal of PMC via Rδ-scheme

The PMC-I approach provides a way to set the PMC
scales for any scheme, such as the MS-scheme (Hooft,
1973; Weinberg, 1973), the MS scheme (Bardeen et al.,
1978) and the MOM-scheme (Georgi and Politzer,
1976). As for the dimensional renormalization
schemes similar to the MS-scheme and MS-scheme,
we can adopt a more convenient approach for set-
ting the PMC scales (Mojaza, Brodsky and Wu, 2013;
Brodsky, Mojaza and Wu, 2014). For convenience, we
call it as the PMC-II approach.
The starting point of the PMC-II approach is to intro-

duce an arbitrary dimensional renormalization scheme,
the Rδ-scheme. In the Rδ-scheme, an arbitrary con-
stant −δ is subtracted in addition to the standard sub-
traction ln 4π − γE for the MS-scheme. This amounts
to redefining the renormalization scale by an exponen-
tial factor, µδ = µMS exp(δ/2). The δ-subtraction thus

defines an infinite set of new renormalization schemes.
All Rδ-schemes are connected to each other by a scale-
displacement; thus the β-function of the strong QCD cou-
pling constant α = αs/(4π) is the same as usual MS one,
i.e.

µ2
δ

dα

dµ2
δ

= β(α) = −α(µδ)
2

∞∑

i=0

βiα(µδ)
i . (19)

In contrast to the idea of loop-by-loop determination
for the PMC-I approach, the PMC-II approach allows
all PMC scales to be simultaneously determined. This
makes the PMC scale-setting transparent and straight-
forward. In practice the PMC-I and PMC-II methods
may lead to differences in the predictions for the individ-
ual PMC-scales, although we shall show they are equiv-
alent for the final predictions.

Under the PMC-II approach, at each perturbative or-
der, in analogy to Eq.(9), the running behavior of the
coupling constant is controlled by the displacement rela-
tion between couplings in any Rδ-scheme

α(µ0) = α(µδ) +

∞∑

n=1

1

n!

dnα(µ)

(d lnµ2)n
|µ=µδ

(−δ)n (20)

where lnµ2
0/µ

2
δ = −δ. Eq.(20) indicates the {βi}-terms

that pertain to a specific perturbative order. By collect-
ing up all those {βi}-terms for the same order, one can
obtain the general pattern of nonconformal {βi}-terms
at each perturbative order. That is, by using Rδ-scheme,
we can rewrite the pQCD prediction of a physical ob-
servable (̺) up to α4 (Mojaza, Brodsky and Wu, 2013;
Brodsky, Mojaza and Wu, 2014)

̺δ(Q
2) = r0 + r1α1(µ1) + [r2 + β0r1δ1]α

2
2(µ2) +

[
r3 + β1r1δ1 + 2β0r2δ2 + β2

0r1δ
2
1

]
α3
3(µ3)

+

[
r4 + β2r1δ1 + 2β1r2δ2 + 3β0r3δ3 + 3β2

0r2δ
2
2 + β3

0r1δ
3
1 +

5

2
β1β0r1δ

2
1

]
α4
4(µ4) +O(α5), (21)

where µi = Qeδi/2, the initial scale µ0 is for simplic-
ity set to be Q at which the observable is measured.
To best illuminate the method, we have put an artifi-
cial index on each α and δ to keep track of which cou-
pling each δ-term is associated with. Eq.(21) also re-
veals a special degeneracy of the terms in the pertur-

bative coefficients at different orders such that one can
achieve an one-to-one correspondence between β-terms
and nf -terms as PMC-I does. Then, the QCD predic-
tion ̺n of a physical observable ̺ up to four-loop level
can be expressed as (Mojaza, Brodsky and Wu, 2013;
Brodsky, Mojaza and Wu, 2014)

̺n(Q) = r0,0 + r1,0α(Q) + [r2,0 + β0r2,1]α
2(Q) +

[
r3,0 + β1r2,1 + 2β0r3,1 + β2

0r3,2
]
α3(Q)

+[r4,0 + β2r2,1 + 2β1r3,1 +
5

2
β1β0r3,2 + 3β0r4,1 + 3β2

0r4,2 + β3
0r4,3]α

4(Q) +O(α5), (22)
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where Q stands for the scale at which it is measured, the
ri,0 are the conformal parts of the perturbative coeffi-
cients. Here for convenience we have set the initial scale
µ0 = Q.

Using PMC-II, it can be shown that the order αk(Q)
coupling must be resummed into the effective coupling
αk(Qk), given by:

r1,0α(Q1) = r1,0α(Q)− β(α)r2,1 +
1

2
β(α)

∂β

∂α
r3,2 + · · ·+ (−1)n

n!

dn−1β

(d lnµ2)n−1
rn+1,n ,

...

rk,0α
k(Qk) = rk,0α

k(Q) + rk,0 k αk−1(Q)β(α)
{
Sk,1 +∆

(1)
k (α)Sk,2 + · · ·+∆

(n−1)
k (α)Sk,n

}
, (23)

which defines the PMC scales Qk, and where we have introduced

Sk,j = (−1)j
rk+j,j

rk,0
, (24)

∆
(1)
k (α) =

1

2

[
∂β

∂α
+ (k − 1)

β

α

]
, (25)

∆
(2)
k (α) =

1

3!

[
β
∂2β

∂α2
+

(
∂β

∂α

)2

+ 3(k − 1)
β

α

∂β

∂α
+ (k − 1)(k − 2)

β2

α2

]
. (26)

...

Eq.(23) is systematically derived by replacing the

lnj Q2
1/Q

2 by Sk,j in the logarithmic expansion of αk(Qk)
up to the highest known Sk,n-coefficient in pQCD. The

resummation can be performed iteratively using the RG
equation for α and leads to the effective scales for an
N3LO prediction:

ln
Q2

k

Q2
=

Sk,1 +∆
(1)
k (α)Sk,2 +∆

(2)
k (α)Sk,3

1 + ∆
(1)
k (α)Sk,1 +

(
∆

(1)
k (α)

)2
(Sk,2 − S2

k,1) + ∆
(2)
k (α)S2

k,1

. (27)

After setting the PMC scales Qi, the final pQCD pre- diction for ̺n up to four-loop level then reads

̺n(Q) = r0,0 + r1,0α(Q1) + r2,0α
2(Q2) + r3,0α

3(Q3) + r4,0α
4(Q4) +O(α5) , (28)

Here Q4 remains unknown and causes the residual scale
dependence, since it requires the knowledge of r5,1 in the
coefficient of α5. One can as a convention set its value as

the initial renormalization scale, or more reasonably, set
its value as the determined one-order-lower PMC scale
Q3. Since the δ and β terms are resummed into the
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running coupling, the PMC-II prediction automatically
satisfies the RGI principle. In principle, one can use mea-
surements of αs at Q = Mz to determine a value for the
QCD coupling in Rδ scheme including δ = 0. Thus the
PMC-II predictions are scheme independent at any finite
order.

V. PMS AND LOCAL RGI

The PMS introduces local RGI to set the renormal-
ization scale: if an estimate depends on some “unphys-
ical” parameters, then their values should be chosen so

as to minimize the sensitivity of the estimate to small
variations of those parameters (Stevenson, 1981a,b, 1982,
1984).

As an illustration of the PMS, we expand the NnLO
approximant ̺n(Q) as

̺n(Q) = as(µ)

(
1 +

n∑

i=1

Ci(µ,Q)ais(µ)

)
, (29)

where Q is the scale at which ̺ is measured and as =
αs/π. The local RGI indicates that

∂̺n
∂τ

=

(
∂

∂τ

∣∣∣∣
as

+ β(as)
∂

∂(as/4)

)
̺n = 0, (30)

∂̺n
∂βm

=

(
∂

∂βm

∣∣∣∣
as

− β(as)

∫ as/4

0

d

(
a′s
4

)
(a′s/4)

m+2

[β(a′s)]
2

∂

∂(as/4)

)
̺n = 0, (m = 2, 3, ...) (31)

where τ = ln(µ2/Λ̃2
QCD). The QCD parameter Λ̃QCD

is related to the conventional ΛMS
QCD through the rela-

tion (Stevenson, 1981a)

Λ̃QCD =

(
β1

β2
0

)−β1/2β
2
0

ΛMS
QCD. (32)

Substituting Eq.(29) into Eqs.(30,31) and equating
powers of as, one finds C1 depends on τ only, while C2
depends on τ and β2, and etc. More explicitly, we have

∂C1
∂τ

=
1

4
β0

∂C1
∂β2

= 0 (33)

∂C2
∂τ

=
1

2
β0C1 +

1

16
β1

∂C2
∂β2

= − 1

16

1

β0
(34)

· · · · · ·

These differential equations show that the perturbative
coefficient Cn is in general a function of τ and the scheme
parameters β2, β3, · · ·, plus a local RG invariant integra-
tion constant ρn. To be locally RG invariant means that

a coefficient is independent of τ and scheme parameters
{βi}. As the key point of PMS, following the condition
(2), those local RG invariants shall be determined in an
order-by-order way, i.e. once they have been determined,
they should not be changed by any higher-order correc-
tions. For example, at N2LO level, we need to introduce
two local RG invariants

ρ1 =
1

4
β0τ − C1, (35)

ρ2 = C2 −
(
C1 +

1

8

β1

β0

)2

+
1

16

β2

β0
, (36)

and for N3LO level, ρ1 and ρ2 are fixed and we need to
introduce an extra local RG invariant

ρ3 =
β3

64β0
+

β1C2
1

4β0
− β2C1

8β0
+ 4C3

1 − 6C2C1 + 2C3.(37)

One can obtain an expression for τ from the scale equa-
tion (3) via proper parameter transformation,

τ =

∫ as/4

0

d
(x
4

) 1

β(m)(x)
=

4

β0as
+

β1

β2
0

ln

∣∣∣∣
β1as

β1as + 4β0

∣∣∣∣− β0

∫ as/4

0

dx

(
1

β(m)(x)
− 1

β(2)(x)

)
, (38)

where β(m) stands for the cut β-function up to am+1
s .

This equation can be solved numerically or analytically.
With this basis, we can derive the optimal behavior for
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̺n. We first consider a NLO approximant

̺1 = as + C1a2s = ãs + C̃1ã2s, (39)

where the first equality is the estimate assuming any
renormalization scheme (usually the MS-scheme), and
the second equality one stands for the optimized predic-
tion after applying PMS. The approximant ̺1 depends
on scheme and scale only through the variable τ . From
Eq.(38), we obtain

τ =
4

β0as
+

β1

β2
0

ln

∣∣∣∣
β1as

β1as + 4β0

∣∣∣∣ . (40)

From Eq.(30), we obtain the local RGI equation

β0 − (1 + 2C̃1ãs)
(
β0 + β1

ãs
4

)
= 0, (41)

which leads to

C̃1 = − β1

2β1ãs + 8β0
. (42)

Together with Eqs.(35,40,42), we finally obtain

1

ãs
+

β1

2β1ãs + 8β0
+

β1

3β0
ln

∣∣∣∣
β1ãs

β1ãs + 4β0

∣∣∣∣ = ρ1. (43)

One can numerically solve this equation to obtain ãs,
find out C̃1 and τ , and get the optimized estimate for
̺1. The above procedures can be extended to any order.
Specifically, we adopt the N3LO approximant as an ex-
planation of how to deal with it in higher orders, which
can be directly adopted to deal with the pQCD predic-
tion for R(e+e−) and H → bb̄ up to four-loop level.

The N3LO approximant can be written as,

̺3 = as + C1a2s + C2a3s + C3a4s
= ãs + C̃1ã2s + C̃2ã3s + C̃3ã4s. (44)

At present, the scheme and scale dependence of ̺3 is
controlled by τ , β2 and β3. The local RGI equations
(30,31) can be written as:

ã3sβ̃3C̃3 + 16ã2sβ̃2C̃3 + 3ã2sβ̃3C̃2 + 64ãsβ1C̃3 + 12ãsβ̃2C̃2 + 2ãsβ̃3C̃1 + β̃3 + 256β0C̃3 + 48β1C̃2 + 8β̃2C̃1 = 0, (45)

β0(3ãsβ̃3 + 8β̃2)(4C̃3ã3s + 3C̃2ã2s + 2C̃1ãs + 1)− ãsβ1β̃2(4C̃3ã3s + 3C̃2ã2s + 2C̃1ãs + 1) + 384β2
0(4C̃3ãs + 3C̃2) = 0, (46)

β2
1 ãs(4C̃3ã3s + 3C̃2ã2s + 2C̃1ãs + 1) + 96β2

0(4C̃3ã2s + 3C̃2ãs + 2C̃1)− 8β0β1(4C̃3ã3s + 3C̃2ã2s + 2C̃1ãs + 1) = 0, (47)

where β̃2 and β̃3 are β-functions under the optimized
scheme. Together with the equations (35,36,37) for the
RG-invariants ρ1,2,3 and the scale running equation (40),
we have to solve seven equations simultaneously. Note
tat all parameters in these formulae should be changed
to tilde ones accordingly. For this purpose, we adopt the
so-called ‘spiraling’ method (Mattingly and Stevenson,
1994) to solve them iteratively and numerically. The
main procedure is

1. Choose an initial value for ãs.

2. Set the initial values for β̃2 and β̃3 to be β2 and β3

for the first iteration or as the values determined
from last iteration. Solve Eqs.(45,46,47) for C̃1, C̃2
and C̃3.

3. Apply the calculated C̃1, C̃2 and C̃3 into the equa-
tions (35,36,37,40) for ãs, τ , β̃2 and β̃3.

4. Iterate from second step until the results for ̺3 con-
verge to an acceptable prediction.

VI. COMPARATIVE STUDIES OF PMC AND PMS

As indicated by Eq.(35), after applying PMS, the NLO
coefficient is obtained by shifting the β0-term into the

running coupling. The PMC and PMS predictions are
different even at the NLO level, since the PMC and PMS
scales are different. Taking three-jet production in e+e−-
annihilation as an example, it has been observed that
the PMS scale cannot yield the correct physical behavior
for the normalization scale for e+e− → qq̄g, since the
renormalization scale rises anomalously without bound
for small jet energy (Kramer and Lampe, 1988, 1991).
In contrast, the PMC scale has the correct behavior.

For NNLO and even higher-order calculations, the con-
ditions are much more complicated. In the following sub-
sections, we present two explicit examples for a detailed
comparison of PMS and PMC up to four-loop level.

A. Re+e− up to four-loop level

The electron-positron annihilation into hadrons pro-
vides one of the most precise platforms for testing the αs

behavior. The usual R-ratio is defined as

Re+e−(Q) =
σ (e+e− → hadrons)

σ (e+e− → µ+µ−)

= 3
∑

q

e2q [1 +R(Q)] , (48)
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FIG. 2 The pQCD prediction Rn(Q = 31.6GeV, µ0) up
to four-loop level versus the initial scale µ0. In conven-
tional scale setting the µ0 dependence is used as a measure
of the renormalization-scale “uncertainty”, since the initial
renormalization-scale and scheme dependence is convention-
ally left untreated. The dotted, the dash-dot, the dashed and
the solid lines are for R0, R1, R2 and R3, respectively.

where Q stands for the energy at which it is measured.
Theoretically, the pQCD prediction for R up to (n+1)-
loop correction Rn can be written as

Rn(Q) =

n∑

i=0

Ci(Q,µ0)a
i+1
s (µ0), (49)

where as = αs/π. At present, the pQCD prediction for
R(Q) has been calculated within the MS-scheme up to
four-loop level (Baikov et al., 2008, 2009). In order to
apply the PMC scale setting correctly, i.e. only those
nf -terms that rightly determine the running behavior
of the coupling constant should be resummed into
the coupling constant (Mojaza, Brodsky and Wu,
2013; Wu, Brodsky and Mojaza, 2013;
Brodsky, Mojaza and Wu, 2014), we adopt the R(Q)
expression derived by analytically continuing the Adler
function D into the time-like region (Baikov et al.,
2012a,b), where D(Q2) = γ(a) − β(a) d

das
Π(Q2, as)

where γ is the anomalous dimension of the vector field
and Π the vacuum polarization function.

1. properties of Rn under various scale settings

To do the numerical calculation, we will adopt

Λ
(nf=5)

MS
= 213 MeV (Brodsky and Wu, 2012a; Bethke,

2009), which is determined from Re+e− by using

αMS
s (Mz) = 0.1184 (PDG, 2012).
We start from the scale dependence of Rn using con-

ventional scale setting. Under such scale setting, the
scale dependence from as and Ci do not exactly cancel
at any finite order, and Rn depends on both Q and µ0.
The results of Rn up to four-loop level are presented in

R1 R2 R3 κ1 κ2 κ3

Conv. 0.04777 0.04662 0.04631 7.35% −2.41% −0.66%

PMC-I 0.04759 0.04645 0.04627 6.94% −2.40% −0.39%

PMC-II 0.04759 0.04663 0.04631 6.94% −2.02% −0.69%

PMS 0.04880 0.04640 0.04633 9.66% −4.92% −0.15%

TABLE I Numerical results for Rn and κn with various QCD
loop corrections under the conventional scale setting (Conv.),
PMC-I, PMC-II and PMS, respectively. The value of R0 =
0.04450 is the same for all scale settings. Q = 31.6 GeV and
µ0 = Q.

FIG. 2, where we set Q = 31.6 GeV (Marshall, 1989).
It shows the one-loop and two-loop predictions R0 and
R1 strongly depend on µ0. When more loops have been
taken into consideration, one obtains a weaker scale de-
pendence. This agrees with the conventional wisdom that
by finishing a higher-and-higher order calculation, one
can get a desirable scale-invariant estimate.
More explicitly, we find the four-loop prediction for

R3 depends slightly on the scale choice: by varying

µ0 ∈ [Q/2, 2Q], we have ∆R3(Q,µ0)
R3(Q,Q)

∣∣∣
Conv.

=
(
+0.4%
−0.2%

)
for

the conventional scale setting; The residual scale depen-
dence for PMC due to unknown higher order {βi}-terms

is ∆R3(Q,µ0)
R3(Q,Q)

∣∣∣
PMC−I

=
(
+0.2%
−0.0%

)
and ∆R3(Q,µ0)

R3(Q,Q)

∣∣∣
PMC−II

=
(
+0.2%
−0.2%

)
. Here ∆R3(Q,µ0) = R3(Q,µ0)− R3(Q,Q). As

for PMS, its prediction only depends on at what scale it
is measured, since the initial scale dependence has been
absorbed into the local RG invariants ρi

1.
Numerical results for Rn with various loop corrections

are presented in Table I, where we have set Q = 31.6 GeV
and µ0 = Q for all scale settings. At the one-loop level,
we have no information to set its scale, so all the scales
are fixed to be µ0(= Q) and we obtain R0 = 0.04450 for
all scale settings. To be consistent, as an estimate of Rn

we shall adopt (n + 1)-loop αs-running behavior to do
the calculation. To show how the theoretical prediction
changes as more-and-more loop corrections are included,
we define a ratio

κn =
Rn −Rn−1

Rn−1
, (50)

where n = 1, 2, 3 respectively. This ratio shows how
the (‘known’) lower-order estimate could be varied by
a (‘newly’) available higher-order correction. As a com-
parison, we also present the results for PMC and PMS.
Table I shows that all those scale-setting methods have a
satisfactory steady behavior for Rn when more loop cor-
rections are included. At the four-loop level, the absolute
values of κ3 under various scale settings are less than 1%,

1 A detailed demonstration of the initial scale independence with
PMS will be presented elsewhere.
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and the R3 under various scale setting are almost the
same. Following the trends of the predictions, one may
expect that the physical value R could be ∼ 0.0463.
We note that because of the slow scale dependence as

shown by FIG. 2, a guess of µ0 could lead to a value
close to the experimental result for Re+e− using conven-
tional scale setting; however, this may not be the correct
answer at any fixed-order for general process. If a pro-
cess does not converge quick enough, one has to use a
more-and-more complex loop calculation to achieve the
same precision goal as PMC and PMS. The problem is
compounded by the n! growth of the renormalon terms.

13 14 15 16 17 18 19 20 21
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FIG. 3 Results for the four-loop estimate R3(ρ1) versus ρ1 ∈
[12, 21] under various scale settings. The solid, the dotted,
the dashed and the dash-dot lines are for conventional scale
setting (Conv.), PMC-I, PMC-II and PMS, respectively. The
conventional result depends on the initial scale. All curves
are almost coincide with each other.

Conv. PMC-I PMC-II PMS

Λ
(5)
20 [MeV] 435+292

−206 437+294
−207 434+290

−206 431+286
−203

Λ
(5)
31.6[MeV] 417+220

−166 419+221
−167 416+219

−166 414+217
−164

Λ
(5)
QCD[MeV] 424 ± 104 426± 105 423 ± 104 421± 103

TABLE II Predictions of Λ
(5)
QCD from a comparison of four-

loop estimates R3 under various scale settings with two mea-
surements R(31.6GeV) and R(20GeV) done by Ref.(Marshall,
1989). The last line stands for the weighted average.

We next show how the four-loop prediction for R3

depends on the e+e− collision energy Q. The results
for R3(ρ1) under different scale settings are shown in
FIG. 3. In drawing the curves, we use ρ1 (defined in
Eq.(35)) instead of Q as the argument of R3 to avoid
the uncertainty from the choice of ΛQCD (Stevenson,
2013). For the chosen energy range (Q > 9GeV), we
have ρ1 ∈ (12, 21). FIG. 3 shows that the four-loop es-
timate for R3(ρ1) under various scale settings almost co-
incide with each other, which is consistent with Table I.
Conversely, one can use the curves in FIG. 3 to deter-

mine the value of ΛQCD by fitting them to the known
experimental data (Chyla et al., 1991). For example, the

values of Λ
(5)
QCD determined by taking the experimental

measurements R(Q = 31.6GeV) = 0.0527 ± 0.0050 and
R(Q = 20GeV) = 0.0587 ± 0.0075 (Marshall, 1989) are

presented in Table II. Using the weighted average Λ
(5)
QCD

listed in the last line of Table II, we predict

αMS
s (MZ) = 0.132+0.005

−0.006, (51)

where different scale settings result in almost the same

prediction for αMS
s (MZ). Even though the above value

is slightly larger than the world average shown in
Ref.(PDG, 2012), they agree well with the values ob-

tained from the e+e− collider, i.e., αMS
s (MZ) = 0.13 ±

0.005± 0.03 by the CLEO Collaboration (Ammar et al.,

1998) and αMS
s (MZ) = 0.1224± 0.0039 from a jet shape

analysis (Dissertori et al., 2008).

2. perturbative series of R3 and its uncertainties

The above results indicate that the four-loop predic-
tion for R3 under various scale settings are close to each
other. However, we shall show that the perturbative se-
ries for Rn behaves quite differently using various scale
settings. The convergence of the series is the key criterion
for the reliability for a pQCD prediction – determining
which scale setting is the best for obtaining the most ac-
curate prediction at a given fixed order. Moreover, a fast
pQCD convergence means we need less loop calculations
to achieve the same precision goal.

LO NLO N2LO N3LO total

Conv. 0.04495 0.00285 -0.00116 -0.00033 0.04631

PMC-I 0.04290 0.00339 -0.00002 -0.00001 0.04626

PMC-II 0.04287 0.00350 -0.00004 -0.00002 0.04631

PMS 0.04603 0.00010 0.00013 0.00008 0.04634

TABLE III The contributions of each loop-terms (LO, NLO,
N2LO and N3LO) to the total four-loop prediction for R3,
in which the conventional scale setting (Conv.), the PMC-
I, PMC-II and the PMS are adopted for setting the scale.
Q = 31.6 GeV and µ0 = Q.

To illustrate the pQCD convergence, we present the
contributions of each loop-terms to the total four-loop
estimate R3 in Table III, in which the conventional
scale setting, the PMC-I, the PMC-II and the PMS are
adopted for setting the scale, respectively. Table III
shows that the best pQCD convergence is achieved by
PMC, in contrast to the moderate pQCD convergence
of the conventional scale setting. The convergence of
PMS oscillates; i.e,. its LO estimate is similar to that
of conventional scale setting or PMC, but the results at
NLO, N2LO and N3LO fail to show convergent behav-

ior; i.e., RLO
3,PMS ≫ RNLO

3,PMS ∼ RN2LO
3,PMS ∼ RN3LO

3,PMS with
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RN2LO
3,PMS > RNLO

3,PMS. This behavior is understandable, for
the conventional scale setting, the pQCD convergence is
guaranteed directly by the αs suppression; for PMC, it is
due to the elimination of divergent renormalon terms in
addition to the αs suppression; while, for PMS, its pQCD
convergence should be an accidental, since the PMS scale
is determined by requiring the estimate to be steady over
the changes of renormalization scheme and scale, i.e. the
local RGI.

0.04

0.045

0.05

0.055

 

 

Conv.

PMS

PMC-I

PMC-II

R1
R2 R3

FIG. 4 Results for Rn (n = 1, 2, 3) together with their er-

rors
(
±|Cna

n+1
s |MAX

)
at Q = 31.6 GeV. The diamonds, the

crosses, the stars and the big dots are for conventional scale
setting (Conv.), PMS, PMC-I and PMC-II, respectively.

It is helpful to be able to estimate the “unknown”
higher order pQCD corrections. The conventional er-
ror estimate obtained by varying the scale over a certain
range is not reliable, since it only estimates the non-
conformal contribution but not the conformal one. In
contrast, after PMC and PMS scale setting, the scales
are optimized and cannot be varied; otherwise, one will
explicitly break the (standard/local) RGI which leads to
an unreliable prediction. Thus, we will adopt another
more conservative practice for the error analysis; i.e. to
take the uncertainty to be the last known perturbative
order. More explicitly, the perturbative uncertainty at
the (n+1)-order is

(
±|Cnan+1

s |MAX

)
, where both Cn and

as are calculated by varying the initial scale to be within
the region of [Q/2, 2Q] and the symbol “MAX” stands
for the maximum value of |Cnan+1

s | within this region.
This treatment is natural for PMC, since after PMC scale
setting, the pQCD convergence is ensured and the only
uncertainty is from the last term due to the unfixed PMC
scale at this particular order. The errors for conventional
and the PMC scale settings are displayed in FIG. 4. The
predicted error bars from “unknown” higher-order cor-
rections quickly approach their steady points for PMC
and PMS scale settings. The error bars provide a consis-
tent estimate of the “unknown” QCD corrections under
various scale settings; i.e., the exact value for the “un-
known” Rn (n = 2 and 3) are well within the error bars
predicted from the one-order lower Rn−1. There is only
one exception for PMS, whose R2,3 is well outside the
region predicted from R1.

B. Γ(H → bb̄) up to four-loop level

The decay width of H → bb̄ reads

Γ(H → bb̄) =
3GFMHm2

b(MH)

4
√
2π

(1 + R̃n), (52)

where GF is the Fermi constant, MH is the Higgs mass
andmb(MH) is the b-quark MS running mass. Up to (n+

1)-loop correction, R̃n =
∑n

i=0 C̃iai+1
s (MH). At present,

it has been calculated up to four-loop level, i.e. for µ0 =
MH , we have (Baikov et al., 2006)

R̃4 = 5.6667as(MH) + (35.94− 1.359nf) a
2
s(MH) +

(164.14− 25.77nf + 0.259n2
f) a

3
s(MH) +

(39.34− 220.9nf + 9.685n2
f − 0.0205n3

f) a
4
s(MH).

R̃1 R̃2 R̃3 κ̃1 κ̃2 κ̃3

Conv. 0.24117 0.24314 0.24175 18.20% 0.82% −0.57%

PMC-I 0.24890 0.24099 0.24105 21.99% −3.18% 0.02%

PMC-II 0.24890 0.24104 0.24094 21.99% −3.16% −0.04%

PMS 0.25581 0.24068 0.24125 25.38% −5.91% 0.24%

TABLE IV Numerical results for R̃n and κ̃n with various
QCD loop corrections under the conventional scale setting
(Conv.), PMC-I, PMC-II and PMS, respectively. The value

of R̃0 = 0.20403 is the same for all scale settings. µ0 = mH .

LO NLO N2LO N3LO total

Conv. 0.20358 0.03761 0.00194 -0.00138 0.24175

PMC-I 0.22658 0.02517 -0.00946 -0.00124 0.24105

PMC-II 0.22658 0.02500 -0.00942 -0.00123 0.24093

PMS 0.23949 0.00061 0.00160 -0.00046 0.24124

TABLE V The contributions of each loop-terms (LO, NLO,

N2LO and N3LO) to the total four-loop prediction for R̃3,
in which the conventional scale setting (Conv.), the PMC-
I, PMC-II and the PMS are adopted for setting the scale.
µ0 = MH .

Following standard procedures, we can determine the
results of R̃n and κ̃n (its definition is similar to κn defined
in Eq.(50)) up to four-loop level under various scale set-
tings, which are presented in Table.IV. The contributions
of each loop-terms (LO, NLO, N2LO and N3LO) to the

total four-loop prediction for R̃3 are presented in Table
V. At the four-loop level, the prediction for H → bb̄ un-
der various scale setting are consistent with each other
due to better pQCD convergence for all the scale set-
tings. We also found the pQCD convergence of PMS is
questionable, and its prediction of R̃2 is also outside the
region prediction from R̃1. As an application, we obtain

Γ(H → bb̄) = 2389.48 KeV, (Conv.), (53)

Γ(H → bb̄) = 2388.52 KeV, (PMS), (54)

Γ(H → bb̄) = 2388.13 KeV, (PMC− I), (55)

Γ(H → bb̄) = 2387.92 KeV, (PMC− II). (56)
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FIG. 5 Results for R̃n (n = 1, 2, 3) together with their errors(
±|C̃na

n+1
s |MAX

)
for H → bb̄. The diamonds, the crosses,

the stars and the big dots are for conventional scale setting
(Conv.), PMS, PMC-I and PMC-II, respectively.

As in the case of Re+e− , we list the predicted errors(
±|C̃nan+1

s |MAX

)
for Γ(H → bb̄) for conventional scale

setting, the PMC and the PMS in FIG. 5, where both
C̃n and as are calculated by varying µ0 ∈ [mH/2, 2mH]
and the symbol “MAX” stands for the maximum value
of |C̃nan+1

s | within this region. In the case of PMS, the

values for R̃2,3 are outside the predicted error bar from
R1. In the present case, conventional scale setting also
performs well at fourth order as indicated by Table V.

VII. SUMMARY

It is conventional to assume the renormalization scale
in pQCD calculations to be equal to a typical momen-
tum transfer of the process and varies it over an arbi-
trary range. This leads to an arbitrary systematic er-
ror for the fixed-order pQCD predictions. Moreover, the
conventional method based on a guessed scale can lead
to incorrect predictions when it is applied to QED pro-
cesses. In principle the error can be suppressed by in-
cluding more-and-more QCD loop corrections. However,
this cannot be done in practice since the perturbative se-
ries inevitably diverges as n!βnαn

s at high orders due to
renormalon terms.
It is clearly important to set the renormalization scale

in a fundamental way consistent with the principles of
renormalization group. The most critical criterion is that
a prediction for a physical observable cannot depend on
a theoretical convention such as the choice of renormal-
ization scheme or the (initial) scale. This RGI princi-
ple is satisfied by the usual Gell Mann-Low scale setting
used for precision QED predictions – the QED scale is
unambiguous, and the resulting high precision QED pre-
dictions are the same in any scheme at any finite order.
As we have shown in this colloquium, the same RGI

principle is satisfied for non-Abelian gauge theory when
one uses PMC scale-setting. All terms in the pQCD series
involving the β function are absorbed into the running
coupling order-by-order. The size of the PMC scale at

each order also determines the effective number of con-
tributing flavors nf , just as in QED. The resulting coef-
ficients of the pQCD series at any order using the PMC
method are thus identical to that of the corresponding
conformal theory with β = 0 and are thus scheme inde-
pendent. Unlike conventional scale setting, the divergent
renormalon terms are eliminated.

The PMC thus provides a way to determine the op-
timal scale of the coupling constant for any QCD pro-
cess via a systematic, scheme-independent and process-
independent way. The PMC can also be applied to
problems with multiple physical scales. For example,
the subprocess qq̄ → QQ̄ near the quark threshold in-
volves not only the subprocess scale ŝ ∼ 4M2

Q but also

the scale v2ŝ which enters the Sudakov final-state correc-
tions (Brodsky et al., 1995), where v is the QQ̄ relative
velocity. In the case of the top quark forward-backward
asymmetry via the channel pp̄ → tt̄X , the application of
the PMC reduces the difference between Tevatron mea-
surements and the NLO pQCD predictions from 3 stan-
dard deviations to about 1σ (Brodsky and Wu, 2012e),
which agrees well with very recent measurement done by
D0 collaboration (Abazov et al., 2014). The critical fea-
ture of the PMC is that the renormalization scale that
appears in the diagrams that interfere and produce the
tt̄ asymmetry are enhanced in QCD since those ampli-
tudes have a smaller renormalization scale than the Born
term. The same pattern of renormalization scales is also
apparent in the µ+µ− asymmetry in the QED process
e+e− → µ+µ−.

We have also discussed an alternative procedure, the
PMS, which implements a local version of RGI, and we
have given a detailed comparison of PMC and PMS pre-
dictions for two quantities Re+e− and Γ(H → bb̄) up
to four-loop order in pQCD. At the four-loop level, the
PMC and PMS predictions for Re+e− and Γ(H → bb̄)
agree with conventional scale setting, and each of them
show quite small scale dependences. However, the PMC
prediction shows the fastest convergence to its four-loop
value. The convergence of the PMS and PMC behave
quite differently: as shown in Tables III and V, the pQCD
convergence is questionable for PMS. Worse, PMS scale
setting disagrees with Gell Mann-Low scale setting when
applied to QED and gives unphysical results for jet pro-
duction in e+e− annihilation.

The PMC satisfies all self-consistency conditions de-
duced from RGI. The PMC also underlies commensu-
rate scale relations between observables, such as the gen-
eralized Crewther relation (Brodsky et al., 1996). The
PMC predictions have optimal pQCD convergence and
are scheme and scale independent at any fixed order; any
residual dependence on the choice of initial scale is highly
suppressed, even for lower-order corrections. The value
for the effective number of flavors nF is set according
the magnitude of the PMC scale just as in QED, thus
eliminating another traditional ambiguity of pQCD.

We have suggested two approaches, PMC-I and PMC-
II, to achieve the goal of PMC. In practice the PMC-I
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and PMC-II methods may lead to differences in the pre-
dictions for the individual PMC-scales, we have shown
that they are equivalent for the final predictions. The
Rδ method which underlies the PMC-II approach is es-
pecially advantageous for determining the PMC pre-
dictions, since it automatically separates the conformal
and non-conformal terms, i.e. the β terms are most
easily identified using the PMC-II; unlike PMC-I, the
Rδ method does not require matching UV-divergent nf

terms to their respective β terms.
In addition to the examples discussed here, other PMC

applications can be found in Refs. (Zheng et al., 2013;
Wang, 2013; Zhang et al., 2014; Ahmadov et al., 2014;
Wang, 2014b,c). The predicted error bars for “unknown”
higher-order corrections under the PMC scale setting
quickly approaches a steady point. Thus one obtains the
most accurate and optimal fixed-order estimate at any
known order. An analogous method could be used for
quark mass renormalization in pQCD: all terms associ-
ated with mass renormalization should be summed into
the running mass order-by-order.
The ad hoc systematic error usually assigned to pQCD

predictions is thus unnecessary and can be eliminated.
The PMC, with its solid physical and theoretical back-
ground, greatly improves the precision of SM tests, and
it can be applied to a wide variety of perturbatively-
calculable collider and other processes.
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