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The entropic gravity scenario recently proposed by Erik Verlinde reproduced the Newton’s law
of purely classical gravity yet the key assumptions of this approach all have quantum mechanical
origins. This is atypical for emergent phenomena in physics, where the underlying, more fundamental
physics often reveals itself as corrections to the leading classical behavior. So one naturally wonders:
where is ~ hiding in entropic gravity? To address this question, we first revisit the idea of holographic
screen as well as entropy and its variation law in order to obtain a self-consistent approach to the
problem. Next we argue that when dealing with quantum gravity issues the generalized uncertainty
principle (GUP) should be the more appropriate foundation. Indeed based on GUP it has been
demonstrated that the black hole Bekenstein entropy area law must be modified not only in the
strong but also in the weak gravity regime. In the weak gravity limit, such a GUP modified
entropy exhibits a logarithmic correction term. When applying it to the entropic interpretation,
we demonstrate that the resulting gravity force law does include sub-leading order correction terms
that depend on ~. Such deviation from the classical Newton’s law may serve as a probe to the
validity of the entropic gravity postulate.

PACS numbers: 03.65.Ud, 04.50.Kd, 04.70.Dy, 89.70.Cf

I. INTRODUCTION

The issue of how gravity and thermodynamics are cor-
related has been studied for decades, triggered by the
seminal discovery by Bekenstein[1, 2] on the area-law of
black hole (BH) entropy and temperature. After Hawk-
ing’s discovery of the BH evaporation and the interpre-
tation of the its temperature as the thermal temperature
of blackbody radiation[3], considerable efforts have been
made to find the statistical interpretation of the propor-
tionality of black hole entropy and its horizon area. See
[4] and [5], for example, for a review. By now a well-
accepted view is that the black hole entropy is associated
with the external thermal state perceived by an observer
outside the event horizon who has no access to the BH
interior. Namely, the correlation between the degrees
of freedom on opposite sides of the horizon results in a
mixed state for observation from the outside, i.e., the
‘entanglement entropy’[6, 7], which depends upon the
boundary properties and will be discussed more in the
later sections of this paper.

The inversion of the logic that describes gravity as an
emergent phenomenon was first proposed by Sakharov
[8], who suggested that gravity is induced by quantum
field fluctuations. Invoking the area scaling property of
entanglement entropy, Jacobson in 1995 [9] used basic
laws of thermodynamics to derive Einstein equations. In
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his perspective Einstein equations are now an equation
of state rather than a fundamental theory. More ideas on
emergent gravity have been recently proposed (See, for
example, [10–13]).

Similar to Jacobson’s derivation of Einstein equa-
tions through thermodynamic, Verlinde treated gravity
as an entropic force analogous to the restoring force of a
stretched elastic polymer driven by the system’s tendency
towards the maximization of entropy [13], and interest-
ingly the Newton’s law of gravitation was shown to arise.
To arrive at the Newton’s force law of gravity through
the first law of thermodynamic Fdx = TdS, Verlinde
first invoked the Compton wavelength of the test par-
ticle to find the change of entropy with respect to its
displacement. He then invoked the holographic principle
[14–16] and the equipartition theorem to define the tem-
perature experienced by the test particle. One cannot
but notices that all these building blocks have quantum
mechanical origin, or more specifically the presence of ~.
Yet all the ~’s just get subtly cancelled and at the end a
purely classical Newton’s law has emerged. This is rather
atypical for emergent phenomena in physics, where the
underlying, more fundamental physics often reveals itself
as corrections to the leading classical behavior. So one
naturally wonders: where is ~ hiding in entropic gravity?

There have been previous works aiming at finding the
entropic corrections to Newton’s law but however unsat-
isfactory: Santos et al. [17] and Ghosh [18] suggested the
corrected to Newton’s grativy force law when the depen-
dence on the uncertainty in position is included, which
is bothersome; both Modesto [19] and Setare [20] sug-
gested the sub-leading terms of force law rather than an
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exact form while the former considered only the correc-
tions to entropic variation without noting that the in-
formation content and therefore the temperature is also
affected, and the latter failed to introduce the right form
of GUP corrected entropy into consideration. We argue
that when dealing with quantum gravity issues the gen-
eralized uncertainty principle (GUP) should be the more
appropriate foundation. Indeed based on GUP it has
been demonstrated that the black hole Bekenstein en-
tropy area law must be modified not only in the strong
but also in the weak gravity regime [21]. In the weak
gravity limit, such a GUP modified Bekenstein entropy
exhibits a logarithmic correction. Such a log-correction
is consistent with similar conclusions drawn from string
theory, AdS/CFT correspondence, and loop quantum
gravity considerations [22–25]. When applying it to the
entropic derivations, we demonstrate that the resulting
entropic gravity does include sub-leading order correction
terms that depend on ~.

The organization of this paper is as follows. To address
the question we posted, we first revisit the ideas of holo-
graphic screen as well as entropy and its variation law in
order to obtain a self-consistent approach to the problem
in section II. We set up the key ingredients of entropic
gravity framework toward the derivation of weak-field-
limit gravity force law. Holographic principle, which we
deem misapplied by Verlinde, is illustrated and the con-
cept of entanglement entropy is introduced to support
the validity of the derivation. We then revisit Verlinde’s
previous work and make some elaboration for a more con-
crete foundation of this entropic gravity, clarification of
the idea of holographic screen and re-derivation of en-
tropy variation law are made especially. In section III
we bring in the generalized uncertainty principle, which
leads to a corrected form of black hole temperature and
entropy. The modification of the information content so
provided by GUP will result in the revision of the force
law. In section IV we repeat the steps of Verlinde’s, but
with the entropy variation law and the temperature form
redefined by the GUP corrected entropy. We arrive at
an exact force law of gravity at the end, and this exact
force law recovers not only the classical Newton’s law but
also the sub-leading order quantum correction terms in
the weak-field limit. In section V, conclusions and com-
ments are made about the implications of our findings.
We suggest that the resulting deviation from the classical
Newton’s law may serve as a probe to the validity of the
entropic gravity postulate.

II. ENTROPIC GRAVITY

A. Holographic principle and holographic
entanglement entropy

1. Holographic principle

Holographic principle [14, 15], which is developed from
black hole thermodynamics, plays a key role in Verlinde’s
entropic interpretation of gravity. It dictates that the de-
grees of freedom in a d+2 dimensional quantum gravity
system can be seen as encoded on its d+1dimensional
boundary like a holographic image. This principle orig-
inates from the Bekenstein-Hawking formula where the
BH entropy is proportional to the surface area of its event
horizon:

SB =
4πkBGM

2

~c
= 4π

M2

M2
p

=
kBc

3

4~G
A . (1)

Here A is the surface area of black hole event horizon and
Mp =

√
~c/G is the Planck mass.

For the second law of thermodynamics to hold, that
is, the entropy in the universe to be non-decreasing, the
holographic principle suggests that the information con-
tent S of an enclosed spacetime region should be no larger
than the Bekenstein-Hawking entropy defined by its sur-
face area[2, 16]:

S ≤ kB
4L2

p

A =
kBc

3

4~G
A = SB . (2)

Here Lp =
√
G~/c3 is the Planck length. This implies

that the number of fundamental degrees of freedom is
related to the surface area in spacetime. Note that the
black hole information paradox, that is, the information
seems to be lost as all physical states evolve into the same
final state of black hole, is also resolved by this principle.
An extensive illustration of the holographic principle is
given by Bousso [16].

2. Holographic entanglement entropy

In the derivation of the entropic gravity force law,
the maximum value of the holographic entropy is used
rather than the inequality, which is unjustified. To treat
the problem more properly, one should instead invoke
the concept of entanglement entropy [26–30]. The en-
tanglement entropy is a quantum mechanical quantity
that measures the correlation between a subsystem A
and its complementary subsystem B. When the world
is divided into two subsystems, the total Hilbert space
can be written as Htot = HA ⊗ HB . If an observer can
access the entire system, then the total entropy of the
system is the quantum version of the classical Shannon
entropy, H = −kB

∑
i Pi ln (Pi), here Pi the probabil-

ity for a given state i, i.e., the von Newmann entropy
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for a statistical state in Htot with density matrix ρtot:
S(ρtot) = −kBTr(ρtot ln ρtot) [26]. For an observer who
can only access the information of subsystem A, she will
feel as if the state is described by a reduced density ma-
trix ρA = TrBρtot, where the trace is over all eigenstates
in HB for the total density matrix. The entanglement
entropy is thus defined as the von Neumann entropy for
the reduced density matrix ρA: SA = −kBTrA (ρAlnρA).
If the total state is entangled, that is, if it is not factor-
izable as |Ψtot〉 = |ΨA 〉 ⊗ |ΨB〉, then the entanglement
entropy is non-vanishing even if the total state is a pure
state with zero entropy [27].

It can be shown by straight-forward calculations that
the entanglement entropy of subsystem A is equal to that
of subsystem B if the total state is pure [27]. Srednicki
[4] pointed out that with the property SA = SB , the
entanglement entropy for a pure state, which we often
referred to as the unique ground state of the total sys-
tem, should only depend on the properties shared by the
two regions. Therefore, it is expected that the leading
behavior for pure ground state of a quantum field sys-
tem scales as the boundary area rather than the volume
of subsystems. This area-scaling leading behavior of the
entanglement entropy has been revealed in various physi-
cal systems such as the quantum critical phenomena [31],
explicit calculations of quantum field systems [6], and
the AdS/CFT correspondence in string theory [32, 33].
This property of entanglement entropy is referred to as
the holographic entanglement entropy: for a gravity field
theory, a given boundary ∂B that divides the field theory
into B and B’ components, the entanglement entropy for
the ground state of the field is

SE =
Area(∂B)c3kB

4~G
+ subleading terms. (3)

The entanglement entropy can be renormalized by fix-
ing the cutoff length of the theory at Planck Length Lp.
Here Area(∂B) is the area of the minimal surface on the
boundary ∂B, and G is the Newton’s constant (see also
[34] for a review). Because this entropy of entanglement
is associated with the quantum ground state, some refer
to it as the entropy of the fundamental degrees of free-
dom for the underlying quantum field theory across the
boundary, others may call it the entanglement entropy
on the boundary surface.

The original motivation for the entanglement entropy
was to give a statistical explanation for Bekenstein en-
tropy in black hole thermodynamics. The entanglement
entropy in quantum gravity has been known as the quan-
tum corrections to black hole entropy from matter fields
[6, 7, 15, 34]. Some further pointed out that the black
hole entropy is a pure entanglement entropy if the entire
gravitational action is ‘induced’ by the quantum fluctu-
ations inside and outside the event horizon [7, 15, 34].
Thus the black hole entropy is provided by this correla-
tion between the degrees of freedoms on opposite sides of
the horizon. An observer outside the event horizon with-
out the access to what happens inside will experience a

thermal state associated to this entanglement entropy.
We should note that the entanglement entropy is not

exactly proportional to the area; only the leading order
term follows the Bekenstein’s law: S = A /4 L2

p. The cor-
rection terms for the entanglement will be discuss later in
section III, and the fact that simple entropy-area relation
is only valid in the leading order will be emphasized to
retrieve the missing ~ factor in weak field entropic gravity
hypothesis. In this section we will only treat the entropy
following Bekebstein’s law without any extra terms, as is
the case in Verlinde’s scenario.

B. Verlinde’s entropic gravity scenario

In this subsection we briefly review how Verlinde ar-
rives at classical Newton’s law of gravity through ther-
modynamics and the holographic principle, and we will
clarify some points in his approach.

1. Meaning of holographic screen

In Verlinde’s picture, there is a spherical screen with
radius R which centers at the massive source M and sep-
arates the universe into two components, one inside the
sphere and the other stays outside. A particle of mass
m is placed just outside the spherical screen, see FIG. 1.
The spirit of this entropic gravity system is that for the
test particle outside the sphere, it will interact thermo-
dynamically with the screen on which the information of
the massive source is registered. If the variation in the
entropy occurrs as the test particle moves, the test par-
ticle will then confronted a restoring force according to
the first law of thermodynamics: Fdx = TdS. To find
the form of this restoring force caused by the system’s
tendency toward the maximization of entropy, one first
has to know how the entropy varies in response to the
displacement of the test particle. If the temperature can
also be determined, then putting these together one can
arrive at the entropic force law.

Verlinde called this spherical screen a ‘holographic
screen’, on which the information content obeys holo-
graphic principle. He uses this holographic principle ar-
gument to make the suggestion that the information in-
side the screen is distributed over the number of bits
proportional to its surface area. The use of holographic
principle here, however, is unclear and misleading. As
discussed earlier, the holographic principle only suggests
an inequality in the information content. According to
this principle only the black hole horizon would saturate
the upper-bound and recovers Bekenstein’s area law. We
believe what Verlinde really intended to convey is that
the microscopic degrees of freedom can be represented
holographically on the boundary. Thus the appropri-
ate terminology should be ‘the holographic formula for
entanglement entropy’ rather than the holographic prin-
ciple itself. We therefore clarify the meaning of ‘holo-
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FIG. 1: Verlinde’s system: a massive source M is encoded by
a spherical screen with radius R, and test particle m is placed
just outside the screen.

graphic screen’ as the ‘minimal surface in the quantum
gravity spacetime’ [35], on which the holographic prop-
erty of entanglement entropy holds as in Eq.(3), and the
degrees of freedom is now proportional to the area of
this minimal surface. The entropy on the screen is the
entanglement entropy associated with the separation of
the spacetime regions defined by this screen.

2. Entropy variation law

With the meaning of the holographic screen and the in-
formation content clarified we now proceed to see how the
entanglement entropy changes as the test particle moves.
We first review Verlinde’s conjecture of the entropy vari-
ation law, in which we find some inconsistencies. Then
we review the consistency check made by Fursaev [36]
through the metric calculation where two infinite surfaces
as a whole serve as the holographic screen. We then make
our calculation for spherical holographic screens follow-
ing the same spirit as Fursaev. We will demonstrate these
three approaches to entropy variation law by Verlinde,
Fursaev and us, respectively.

a. Verlinde’s approach Motivated by Bekenstein’s
argument “When a particle is one Compton wavelength
from the horizon, it is considered to be part of the black
hole,” Verlinde proposed that the entropy on the screen
decreases by 2πkB when the test particle m moves one
Compton wavelength away from the screen. Further as-
suming that the entropy varies linearly within small dis-
tance, Verlinde assumes that the variation of entropy as-
sociated with a small displacement ∆x of the test particle
m away from the screen is

∆S = −2πkB
∆x

λm
= −2πkB

mc

~
∆x. (4)

One difficulty with this argument is that Bekenstein’s
idea involves the nature of quantum uncertainty in dis-
tance. That is, when the particle is located within one
Compton wavelength from the horizon, quantum me-
chanics dictates that it is indistinguishable whether the
particle is right on the horizon or one Compton wave-

FIG. 2: Fursaev’s system: two infinite surface B1 and B2,
with their z coordinates fixed, are placed around a massive
source M . Outside the sphere is a test particle m whose
displacement will affect the area of the surfaces.

length away. How, therefore, would the horizon react to
the infinitesimal displacement within this uncertainty?

A more crucial issue of this argument toward the en-
tropy variation law has to do with the possible inconsis-
tency in Verlinde’s approach. There are two equations
corresponding to the nature of entropy. One is the en-
tropy variation law in Eq.(4) and the other is the Beken-
stein law S = A /4 L2

p, which was implicitly used through
the holographic formula of entanglement. A priori, these
two formulas may or may not be compatible. This ten-
sion was also been pointed out by others [19, 20]. While
Verlinde conjectured the entropy variation law indepen-
dently of the definition of entropy itself, we should point
out that these two equations must be compatible since
both of them are tightly related to the underlying form
of entropy. In other words,

∆S =
kBc

3

4~G
∆A = −2πkB

mc

~
∆x (5)

must hold under the entropic gravity framework. There-
fore, the change in surface area should be described as

∆A = −8π
mG

c2
∆x (6)

when the test particle m moves a distance ∆x away from
the normal to the screen, if the entropy variation is cor-
rect.

Whereas Verlinde gave the argument associated with
entropy without guaranteeing the compatibility, we will
show that Eq.(6) can be calculated straight-forwardly in
the weak gravity limit based on the knowledge of the
spacetime, without the
b. Fursaev’s approach Fursaev studied the dynam-

ics of the holographic minimal surface by the displace-
ment of test particle under the gravity in the weak field
limit [35]. In his approach two infinite surfaces B1 and
B2 are located at z = z1 and z = z2, respectively. These
two surfaces separate the universe into two regions: a
subspace between the two surfaces and its complement
on the outside. The massive source M is placed between
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the spheres while a test particle is on the outside near
one of the surfaces, see FIG. 2.

The spacetime metric with a massive source placed at
the origin, in the weak gravity limit, is

ds2 = −
(

1− 2GM

rc2

)
c2dt2 +

(
1 +

2GM

rc2

)
dr2 + r2dΩ2

= −
(

1− 2GM

ρc2

)
c2dt2 +

(
1 +

2GM

ρc2

)(
dx2 + dy2 + dz2

)
,

(7)

where ρ = r
(
1−GM/rc2

)
=
√
x2 + y2 + z2.

Now in Fursaev’s system there are a massive source M
at (x, y, z) = (0, 0, 0) and a test particle m at (0, 0, r0).
The presence of the test particle should affect the above
metric, which can be viewed as a back-reaction. The
resultant metric becomes

ds2 = −
(

1− 2GM

c2ρ
− 2Gm

c2ρ0

)
c2dt2

+

(
1 +

2GM

c2ρ
+

2Gm

c2ρ0

)(
dx2 + dy2 + dz2

)
. (8)

Here ρ = r
(
1−GM/rc2

)
=
√
x2 + y2 + z2 and ρ0 =√

(x− x0) 2 + (y − x0) 2 + (z − z0) 2. This new metric
makes intuitive sense based on the equivalence principle
consideration.

A small segment of area on one infinite surface Bk,
with k = 1, 2, is described as da2 = gxxdx

2gyydy
2. The

total area of surface Bk is therefore

Ak =

∫ ∫
dxdy

(
1 +

2GM

c2ρk
+

2Gm

c2ρk,0

)
. (9)

Here ρk,0 =
√

(x− x0) 2 + (y − x0) 2 + (zk − z0) 2,ρk =√
x2 + y2 + zk2.
As the distance between the test particle and the sur-

face changes by an amount ∆r ≈ ∆z0, the surface area
will vary by an amount, to the leading order,

∆Ak =
2Gm∆z0

c2

∫ ∫
dxdy

∂ (1 /ρk,0 )

∂z0

= −2Gm∆z0
c2

∫ ∫
dxdy

(z0 − zk)

ρk,03

= −2Gm∆z0
c2

∫ ∞
u=0

∫ 2π

ψ

ududψ
(z0 − zk)

(u2 + (zk − z0) 2) 3/2

= −4πGm∆z0
c2

= −4πGm∆r

c2
, (10)

where the change of variables with x − x0 = ucosψ and
y − y0 = usinψ have been made. The total variation of
the area is then equal to

∆A = ∆A1 + ∆A2 = −8πGm∆r

c2
. (11)

With this, the entropy variation law Eq.(4) is successfully
reproduced.

FIG. 3:

c. Our approach Although Fursaev has successfully
reproduced the entropy variation law that is consistent
with the Bekenstein law of entropy, his derivation is only
valid for the special case of infinite surfaces. The more
physically relevant geometry should be a sphere. We
therefore follow Fursaev’s appraoch but apply it to the
variation of the surface area of a sphere, i.e., a spherical
holographic screen, to recheck Verlinde’s set up of the
entropic gravity.

Consider a gravitational source of mass M located at
r = 0, the spacetime metric in the weak field approxima-
tion is

ds2 = −
(

1− 2GM

rc2

)
c2dt2 +

(
1 +

2GM

rc2

)
dr2 + r2dΩ2

= −
(

1− 2GM

ρc2

)
c2dt2 +

(
1 +

2GM

ρc2

)(
dρ2 + ρ2dΩ2

)
,

(12)

where ρ = r
(
1−GM/rc2

)
and dΩ2 = dθ2 + sin2 θdφ2.

In the system of interest, we have a massive source M
at (x, y, z) = (0, 0, 0) and a test particle m at (0, 0, r0).
A sphere of radius r = R is a minimal surface that cuts
the universe into two complementary regions and also
separates M and m into these two regions of the universe,
see FIG.3. Similar to Fursaev’s case, the area of the
surface no longer equals to 4πR2 because of the slight
warpage of the metric induced by the presence of the
test particle. The metric in this system becomes

ds2 = −

(
1− 2GM

ρc2
− 2Gm

c2
√
ρ02 + ρ2 − 2ρ0ρcosθ

)
c2dt2

+

(
1 +

2GM

ρc2
+

2Gm

c2
√
ρ02 + ρ2 − 2ρ0ρcosθ

)(
dρ2 + ρ2dΩ2

)
,

(13)

where ρ = R
(
1−GM/Rc2

)
and ρ0 = r0

(
1−GM/r0c

2
)
.
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The surface area of the sphere is therefore

A =

∫
ρ2sinθdθdφ

(
1− 2GM

c2ρ
− 2Gm

c2
√
ρ02 + ρ2 − 2ρ0ρcosθ

)

=4πρ2 − 8πGMρ

c2
+Am . (14)

Am is the surface area deviation due to the metric cor-
rection induced by the test particle m:

Am =−
∫ 2π

0

dφ

∫ 1

−1
dcosθ

2Gmρ2

c2
√
ρ02 + ρ2 − 2ρ0ρcosθ

=
−4πGmρ2

c2

(
−1

ρ0ρ

√
ρ02 + ρ2 − 2ρ0ρcosθ

)1

−1

=

{
8πGmρ2

c2ρ0
, ρ0 > ρ ,

8πGmρ
c2 , ρ0 < ρ .

(15)

Keeping the leading order in GmR/c2 and GMR/c2, we
find

r0 > R : A = 4πR2 +
8πGmR2

c2r0
,

r0 < R : A = 4πR2 − 8πGmR

c2
. (16)

While to the leading order the surface area A is equal
to 4πR2, the leading behavior of the surface area varia-
tion induced by an infinitesimal displacement of the test
particle at r0 is instead contributed by the 8πGmR2/c2r0
term. (Here we assume that the test particle is outside
the sphere.) Now we would like to see how this infinitesi-
mal displacement of the test particle m affects the surface
area of the sphere due to the spacetime warpage. When
the test particle makes a small displacement ∆r0 away
from the sphere, the area will change by an amount

∂A

∂r0
∆r0 = −8πGmr2

c2r02
∆ r0 . (17)

Therefore if the entropy on the surface follows the
Bekenstein’s law, Eq.(1), then the entropy variation given
by the displacement of the test particle should be

∆S = kB
∆A

4lp2
= −2πkBr

2

r02
mc

~
∆r0 . (18)

When the center of the test particle is just outside the
sphere, that is, R ≈ r0, with R− r0 � Gm/c2 to satisfy
the weak field condition, the entropy variation on the
sphere becomes

∆S = −2πkB
mc

~
∆r0 = −2πkB

∆r0
λm

, (19)

with λm = ~/mc the Compton wavelength of the par-
ticle. We have thus obtained the entropy variation law
suggested by Verlinde explicitly and consistently without
invoking the ambiguous Compton wavelength argument.

3. Temperature

Once the entropy variation with the displacement is de-
termined, we only need to define the temperature as the
final step towards the entropic gravity force law. Verlinde
utilized the idea of hologram by assuming that the total
number of bits of information is proportional to the area
of the holographic screen A, which is a consequence of
the entanglement entropy obeying Bekenstein law. That
is, the degrees of freedom on the screen is proportional
to its surface area

N =
Ac3

G~
. (20)

We comment again that this equation is satisfied because
of the holographic formula for entanglement entropy, not
by taking the upper limit of the holographic bound.

The temperature on the surface is determined by the
equipartition rule where the rest energy of mass M is
distributed evenly over the occupied bits,

E = Mc2 =
1

2
NkBT. (21)

The underlying physics for this equipartition-determined
temperature derivation is that the test particle m out-
side the screen interacts with the massive source M in-
directly through thermodynamic effects near the screen,
with the information of the mass M being registered on
this boundary surface [35]. We now arrive at the expres-
sion of the temperature

T =
2Mc2

NkB
=

2G~
ckB

M

A
. (22)

When the test particle makes a small displacement ∆x
from the screen, the entropy on the screen changes by an
amount ∆S and therefore the test particle will face an
effective macroscopic restoring force originated from the
system’s tendency to increase its entropy. This “entropic
force law” should thus follow the first law of thermody-
namics:

F∆x = T∆S . (23)

With Eqs.(4)–(23) and that the area of the spherical
screen equals to 4πR2, we finally obtain the entropic force
law which is identical to Newton’s force law of gravity,

F = −GMm

R2
. (24)

The minus sign in this force law shows that the entropic
force is oriented opposite to the direction of distance’s
increase, just as in Newton’s view of the gravitational
force that is attractive between two massive sources.

While Newton’s force law of gravitation seems to
appear elegantly through this entropic derivation, we
should emphasize again that both the entropy varia-
tion formula and the temperature formula involve an ~,
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which indicates their quantum origin. Both these two ~’s
are originated from the information content of the holo-
graphic screen, where one comes out of the direct calcula-
tion of the entropy formula while the other emerges from
the distribution of the number of bits on the surface. The
complete cancellation between these two ~’s was due to
the coincidence that both the number of bits, N , and the
Bekenstein law are straight-forwardly proportional to the
surface area of the holographic screen, which was fortu-
itous. We will argue in the next section that the entropy
of entanglement is not exactly proportional to the area.
As demonstrated in Ref.[21], the generalized uncertainty
principle (GUP) implies a corrected formula for entan-
glement entropy not only in the strong gravity but also
in the weak gravity regime.

III. GENERALIZED UNCERTAINTY
PRINCIPLE

That the standard Heisenberg uncertainty principle,
which is deduced under the flat, Minkowski spacetime,
must be modified, or generalized, when the effect of grav-
ity becomes strong, or the spacetime becomes warped,
has long been suggested since 1950s. Since 1980s, GUP
acquires additional theoretical support from the string
theory’s perspective [37–41]. One important implication
of GUP is that the standard forms of Bekenstein entropy
and Hawking temperature no longer hold as the size of
black hole approaches the Planck length [21]. A direct
consequence of this GUP modified BH entropy is that
the BH evaporation process will come to a stop when its
Schwarzschild radius approaches the Planck length. As
a result there should be a BH remnant at Planck mass
and size left behind.

Based on GUP, it was found that the modified BH
temperature is of the form [21]

TGUP =
Mc2

4πkB

[
1−

√
1− Mp

2

M2

]
(25)

for a Schwazschild black hole of mass M . In the large
mass limit, i.e., MP /M � 1, the BH temperature is

TGUP =
c2MP

2

8πkBM

[
1 +

MP
2

4M2
+
MP

4

8M4
+ ...

]
, (26)

which agrees with the standard Hawking temperature in
leading order.

As the black hole temperature has been modified, the
entropy obtained by S =

∫
c2TdM is also corrected to

the form different from the simple Bekenstein entropy
expression:

SGUP = 2πkB

{
M2

Mp
2

(
1− Mp

2

M2
+

√
1− Mp

2

M2

)

−Log

[
M

Mp

(
1 +

√
1− Mp

2

M2

)]}
. (27)

The integration constant of the integral is fixed by setting
the entropy to zero at the final remnant state. Thus in
the large mass limit we have

SGUP =4πkB
M2

Mp
2
− πkBLog

(
M2

Mp
2

)
+ const. + ...,

=kB
A

4Lp2
− πkBLog

(
A

Lp2

)
+ const.+ ... , (28)

which recovers Bekenstein entropy as MP /M goes to
zero.

The general correction terms to the semiclassical area
law of black hole entropy has been extensively studied. A
logarithmic term as the leading correction for black hole
entropy has been deemed universal by considerations in
string theory and loop quantum gravity approaches, see
for example [22–25]. We now treat GUP as a fundamen-
tal assumption to provide the correct form of entropy,
which is in agreement with the well-supported logarith-
mic subleading behavior.

As BH entropy is just the entanglement entropy on
the BH horizon, we assert that under GUP the area-
dependence of entanglement entropy is now expressed in
the correct form as

SGUP =
AkB
8Lp2

[
1− 16πLp

2

A
+

√
1− 16πLp2

A

]

−2πkBLog

[
A

4
√
πLp

(
1 +

√
1− 16πLp2

A

)]
,

(29)

and in the asymptotic limit of large black hole, its per-
turbative expansion behaves as Eq.(28).

IV. QUANTUM EFFECTS IN ENTROPIC
GRAVITY

In Verinde’s entropic gravity scenario, the purely clas-
sical Newton’s force law of gravitation is derived based on
a quantum-mechanical and thermodynamical setup. By
keeping track of the underlying quantum dynamics, we
now invoke generalized uncertainty principle to uncover
the missing quantum contribution in entropic gravity.

Again we consider a spherical holographic screen,
whose information content is defined by the GUP cor-
rected entanglement entropy, encoding a massive source
M at the center and a test particle m placed just outside
this spherical surface of radius R. The restoring force act-
ing on the test particle m as it moves a little bit through
the first law of thermodynamics will be found.

First of all, the entropy variation law is directly af-
fected by the GUP corrected form. Under GUP, the en-
tropy varies with the surface area as

∆S =
∂SGUP

∂A
∆A , (30)
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while the definition of ∆A remains the same as in Eq.(6).
Next we determine the temperature on the screen. We

see that Eq.(20) is proposed on the prerequisite that the
information of the space is proportional to the surface
area of the screen. Under the GUP framework the en-
tropy is no longer proportional to the area, so we compare
Eq.(20) and Bekenstein entropy to arrive at the form for
the number of bits on the screen as

N =
SGUP

4kB
. (31)

We again apply the equipartition formula Eq.(21) to
determine the temperature on the screen and find

T =
2Mc2

NkB
=

Mc2

2SGUP
. (32)

Finally, using the first law of thermodynamics we arrive
at the modified gravity force law:

FGUP = FN
2[α(1 + η)− 2(2 + η)]

η(1 + η)
{
−4 + α(1 + η)− 4Log

[
1
2α(1 + η)

]} .
(33)

Here FN = GmM
/
R2 is Newton’s gravitational

force law, and we have introduced symbols η =√
1− 4G~ /c3 R2 and α = G~

/
c3 R2 to simplify the ex-

pression.
In the large distance limit where R � Lp =

√
G~/c3

and therefore α = G~
/
c3 R2 � 1, we can expand the

force to the third order of α as

FGUP = FN
{

1 + α [2− Logα] + α2
[
4− 5Logα+ (Logα)2

]
+α3

[
7− 18Logα+ 8(Logα)2 − (Logα)3

]
+ ...

}
.

(34)

It is clear that this GUP-based force law recovers the
classical Newton’s gravitational force law in the infinite
distance limit, while some subleading quantum correc-
tions is present as long as α is finite. On the other hand
these correction terms go to zero in the classical limit as
~ vanishes. These α-dependent terms, we conclude, are
where ~ is hiding in entropic gravity.

V. CONCLUSION AND DISCUSSIONS

In this paper we raised the question about where ~ is
hiding in entropic gravity. Through the reanalysis of the
fundamental building blocks of entropic gravity, in par-
ticular the meaning of holographic screen and its asso-
ciated entanglement entropy, we argued that the perfect
cancellation of ~ among all the quantum mechanically
originated inputs is broken if the more exact form of the
BH entanglement entropy based on GUP is to replace
the Bekenstein area law. Based on this we found, in the
weak gravity limit, the hided ~’s in the form of logarith-
mic corrections to the classical Newton’s law, in Eq.(34).

In our attempt of seeking the missing ~’s, we reinvesti-
gated all the fundamental assumptions in the existing
derivations of entropic gravity. Within Verlinde’s en-
tropic gravity derivation, two ingredients involving en-
tropy formula have been invoked without the guaran-
tee of their mutual compatibility. We applied Fursaev’s
consistency-check procedure to reproduce the leading or-
der entropy variation in Verlinde’s setup of spherical
holographic screen. While our approach manages to
avoid the compatibility issue, there is a price to pay. In
our alternative approach we have introduced the concept
of spacetime metric and its deformation due to the pres-
ence of a massive object, which implicitly assumed the
knowledge of general relativity, the standard theory of
classical gravity. Yet the very attempt of entropic gravity
is to deduce it from quantum mechanics and statistical
physics alone without any prior knowledge of gravity. We
are therefore at risk of a circular logic in our approach if
gravity is to be interpreted as an emergent phenomenon.
In this regard a more cogent and consistent argument
without involving any gravity-related concept is needed
towards an alternative entropy variation law, in order
to assert the validity of the entropic framework of grav-
ity as an emergent phenomena. By the similar token,
the existing derivations of entropic gravity also faces the
similar issue since Newton’s constant has been invoked
as a fundamental constant from the outset instead of be-
ing a secondary, derived parameter from the theory as it
should if gravity is to be an emergent phenomenon.

Under this light one can instead view our derivation of
the entropic gravity not as an emergent phenomenon but
as a means to deduce the ‘quantum gravity force law’ via
the quantization of the information content on the mini-
mal surfaces in units of Planck area provided by GUP as
well as the spacetime warpage effect in the presence of a
massive particle provided by general relativity.

Although there are still rooms to improve in this line
of approach to gravity, we have provided an exact form
of quantum corrected entropic gravity force law based on
the assumption of GUP as a fundamental input. Such
quantum corrections, though minute, may serve as a
probe to examine the concreteness of the entropic grav-
ity interpretation in the the experimentally measurable
scale of large distance and weak gravity limit.
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