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Abstract: Uncertainties in the simulation of Higgs boson production with up to two jets at
next-to leading order accuracy are investigated. Traditional uncertainty estimates
based on scale variations are extended employing different functional forms for
the central scale, and the impact of details in the implementation of the parton
shower is discussed.

1 Introduction

After the discovery of a Standard-Model like Higgs boson at Run I of the LHC operations [1] further studies
of the properties of the new particle will become a focal point of the physics programme during Run II.
Anticipating the effect of the scheduled significantly larger collision energy of the protons translating into
increased energies available for colliding partons, and a vastly increased luminosity, more production and
decay channels and combinations of both become available for studying the coupling of the Higgs boson to
other particles. In particular, production channels such as the production of the Higgs boson in weak boson
fusion, yielding two additional jets, or its production in the boosted regime will provide challenging tests for
the Brout-Englert-Higgs mechanism of mass generation [2].

With increasing accuracy in experimental measurements, theoretical computations are inevitably required to
become more precise. For the dominant production of the Higgs boson through gluon-induced heavy quark
loops, tremendous progress has been made over the past years to achieve the necessary precision, for example
with calculations at the next-to-next-to-leading order accuracy (NNLO) in the perturbative expansion of the
strong coupling: In the past year the by now routinely employed result for pp→ h through gluon fusion in
the effective theory [3] (for mt � mh) has been supplemented with a calculation for pp→ h+ jet [4] in the
all gluon channel. Mass effects in the heavy quark loop, going beyond the usual effective theory approach,
were evaluated in [5]. Even a complete N3LO calculation of pp → h is being finalized at the moment, with
first results already reported [6]. Mixed QCD and electroweak two-loop corrections have been evaluated in
an effective theory approach [7] and assuming complete factorization [8]. At NLO accuracy, due to the level
of automation achieved by now, the production of the Higgs boson in association with two [9] and three
jets [10] through the effective vertex has been investigated. Due to the gluon initial states, resummation plays
an important role at small transverse momenta of the Higgs boson, and whenever two jets are separated
by a large transverse momentum or angular distance. Results for the transverse momentum in inclusive
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production at NNLO+NNLL accuracy, are available for example in [11]. Jet vetoes, which are particularly
relevant for the Higgs boson decaying into W bosons have been discussed in [12].

Parton-shower based simulations, typically used by the experiments, usually lag behind analytical calcu-
lations by at least one perturbative order. This is exemplified by the highest accuracy in simulating this
process so far, which achieves the NNLO level through a suitable reweighting in the MiNLO procedure [13].
At the next-to leading order accuracy, parton-shower matched calculations have been provided using the
POWHEG [14] and MC@NLO [15] methods. Recently, the MC@NLO algorithm has been modified in order to
include color-suppressed but logarithmically enhanced contributions in the first emission term of the parton
shower, and in the corresponding Sudakov factor [16, 17]. This method, which we call S–MC@NLO also
forms the basis of a multijet merging algorithm based on NLO calculations [18]. This merging method is
similar in spirit to the by now traditional multijet merging for LO matrix elements [19, 20, 21, 22]. The new
NLO algorithm was successfully applied to a number of relevant physics cases, most notably to jet vetoes in
W–pair backgrounds to Higgs boson production at the LHC [23] and to top-quark pair production and the
asymmetries encountered at the Tevatron [24]. A closely related multijet merging algorithm has also been
proposed in [25, 26], while [27] relies on ideas in line with the MLM multijet merging prescription for leading
order calculations [28]. Matching methods like POWHEG can be extended with appropriate scale choices and
Sudakov suppression factors, which allows to extrapolate the matched NLO calculation for X+jet production
to the zero-pT region, thus leading to NLO accurate results also for X production, where X is a color-less
final state. This has been dubbed the MiNLO technique [29, 30]. In contrast to the genuine merging methods
listed above, this scheme has not yet been extended to higher-multiplicity processes.

For the sub-dominant production of a Higgs boson through weak vector boson fusion (VBF) [31], which
becomes a very interesting channel when jet vetoes between the two relatively forward tagging jets are
applied [32], NLO QCD corrections in the structure function approach assume a relatively simple form.
They have been known for a long time [33]. NNLO corrections in this approach have more recently been
computed in [34], while QCD NLO corrections for pp→ h+ 3 jet production in VBF were discussed in [35].
The electroweak NLO corrections to VBF Higgs boson production [36] were found to be of roughly the same
size as the QCD ones. On the level of parton–shower based simulations, this topology is available through
both the POWHEG and the MC@NLO algorithms [37].

In this publication, a next-to-leading order plus parton shower merged calculation is presented for the
production of a Higgs boson through gluon fusion in the effective theory approximation with up to two
additional jets at NLO and a third jet at LO accuracy. For these studies the Monte Carlo event generator
SHERPA [38] is used in conjunction with virtual corrections taken from MCFM [9, 39]. The focus of the study
rests on the accurate description both of the rate and of those kinematical distributions of the various objects
in the final state, which are central to analyses involving typical VBF cuts. The fully exclusive nature of
a Monte Carlo simulation using a general-purpose event generator ensures, however, that a wide range of
inclusive and exclusive observables can be analyzed simultaneously. The most relevant uncertainties in the
simulation are detailed and some substantial differences between one-jet and two-jet NLO-merged simulations
are pointed out. Special attention is paid to uncertainties related to the functional form of scale in the fixed-
order NLO calculation, which massively exceed those obtained from a mere variation of a constant scale
factor in the conventional range from 1/2 to 2.

This manuscript is organized as follows: Section 2 reviews the methods used in the simulation, with emphasis
on the actual multijet merging algorithm. Section 3 presents predictions obtained with the event generator
SHERPA and discusses related uncertainties. An outlook is given in Sec. 4.

2 Methods

This section briefly summarizes the S–MC@NLO matching method and the MEPS@NLO merging technique.
We emphasize only those aspects of the implementation in SHERPA which are relevant to the assessment of
uncertainties of the simulation. Details of the two algorithms are described in [16] and [18].

2.1 Matrix-element parton-shower matching

The action of the parton shower on an arbitrary parton-level final state can be expressed in terms of a
generating functional, Fn(t), where n is the number of existing partons, and t is the parton shower starting
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scale. The value of an infrared safe observable, O, in the Born approximation is then computed as

〈O〉(PS) =

∫
dΦB B(ΦB)F0(µ2

F , O) , (2.1)

with dΦB the differential Born phase space element and B(ΦB) the Born differential cross section. The
generating functional of the parton shower reads

Fn(t, O) = ∆n(tc, t)O(Φn) +

∫ t

tc

dΦ′1 Kn(Φ′1) ∆n(t′, t)Fn+1(t′, O) (2.2)

with Kn(Φ1) the parton shower splitting kernel on the n parton state and ∆n(t′, t) is the corresponding
Sudakov form factor. The single parton emission phase space is parametrized as dΦ1 = dtdz dφJ(t, z, φ).
In this context t ≡ t(Φ1) is the evolution variable, z is the splitting variable, φ is the azimuthal angle of the
splitting and J(t, z, φ) is the associated Jacobian. tc is the infrared cutoff. While the first term in Eq. (2.2)
describes the no-emission probability, the second term describes a single independent emission at scale t′

including the ensuing iteration with the boundary conditions of the newly formed state.

The MC@NLO matching method promotes Eq. (2.1) to NLO accuracy using a modified subtraction scheme [15].
This technique was extended in [16] such that the first emission in the shower is generated in a fully co-
herent manner, and therefore all singularities of the real-emission matrix element are properly subtracted.
This applies in particular to terms which are suppressed by 1/Nc. We will refer to the latter method as
S–MC@NLO.

In S–MC@NLO, any observable O is computed as

〈O〉(S–MC@NLO) =

∫
dΦB B̄(A)(ΦB)F (A)(µ2

Q, O) +

∫
dΦR H(A)(ΦR)F1(t, O) , (2.3)

where B̄(A) and H(A) are the next-to-leading order weighted differential cross section and the hard remainder
function, given by

B̄(A)(ΦB) = B(ΦB) + Ṽ(ΦB) + I(S)(ΦB) +

∫
dΦ1

[
D(A)(ΦB ,Φ1) Θ

(
µ2
Q − t

)
−D(S)(ΦB ,Φ1)

]
,

H(A)(ΦR) = R(ΦR)−D(A)(ΦR) Θ
(
µ2
Q − t

)
.

(2.4)

Here we have introduced the virtual corrections, Ṽ(ΦB), the real-emission corrections, R(ΦR), and the
corresponding real-emission phase space element dΦR. Most importantly, the dipole subtraction terms are
given by D(ΦB ,Φ1) in unintegrated form, and by I(ΦB) in integrated form. We distinguish between fixed-
order subtraction terms, D(S) and shower subtraction terms, D(A). Both must have the same kinematics
mapping, however their functional form away from the singular limits of the real emission corrections may
differ. In particular, we implement an upper cutoff in the parton-shower evolution parameter in D(A) only,
which is referred to as the resummation scale µQ.

The differential real-emission phase space element factorizes as dΦR = dΦB dΦ1 with the above parametriza-
tion for dΦ1. This factorization allows to define a generating functional F (A)(t, O) of the S–MC@NLO as

F (A)(t, O) = ∆(A)(tc, t)O(ΦB) +

∫ t

tc

dΦ′1
D(A)(ΦB ,Φ

′
1)

B(ΦB)
∆(A)(t′, t)F1(t′, O) (2.5)

with ∆(A)(tc, t) the Sudakov factor of the S–MC@NLO, and D(A)(ΦB ,Φ
′
1)/B(ΦB) its splitting kernels. Again,

the first term in Eq. (2.5) is simply a no-emission probability, while the second term now describes one
fully coherent emission from the S–MC@NLO. Any further radiation is implemented in the parton-shower
approximation, as indicated by F1(t′, O).

We employ a parton shower based on Catani-Seymour dipole subtraction [40]. To assess the uncertainty
arising from the choice of evolution variable, we implement two different options, which are listed in Tab. 1.
Their impact on experimental observables is analyzed in Sec. 3. The reasoning behind scheme 1 is that for
splittings without soft gluon enhancement, there is no z or 1− z pole in the splitting function. Ordering the
splittings in transverse momentum, as done in scheme 0, might thus be inapropriate.

In addition, two different kinematics mappings are implemented, which were described and compared in
detail in [42]. We denote the original mapping, proposed in [40] and derived from [41] by “scheme 1”, while
the second mapping is denoted as “scheme 0”. This scheme can be described as follows [42]1:

1 A similar scheme for dipole showers has also been discussed in [43].
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Scheme Final State Initial State

0 2 pipj z̃i,jk(1− z̃i,jk) 2 papj (1− za,jk)

1 2 pipj


z̃i,jk(1− z̃i,jk) if i, j = g

1− z̃i,jk if j = g

z̃i,jk if i = g

1 else

2 papj

{
1− za,jk if j = g

1 else

Table 1: Evolution parameters for the parton shower. We use the variables defined in [41].

Configuration zi,jk yij,k Configuration zj,ak yaj,k

Final-Final
pipk

(pi + pj)pk

pipj
pipj + (pi + pj)pk

Initial-Final
pjpk

(pa − pj)pk
papj

papj + (pa − pj)pk
Final-Initial

pipk
(pi + pj)pk

pipj
pipj − (pi + pj)pk

Initial-Initial
pjpk

(pa − pj)pk
papj

papj − (pa − pj)pk

Table 2: Mapping of variables for parton shower kinematics in scheme 0, see Eqs. (2.6) and (2.7).

Particle momenta after the splitting process ı̃→ ij in the presence of a spectator k are expressed in terms
of the original momenta, p̃ij and p̃k, as 2

pµi = zi,jk p̃
µ
ij +

k2
⊥

zi,jk

p̃µk
2 p̃ij p̃k

+ kµ⊥ , pµj = (1− zi,jk) p̃µij +
k2
⊥

1− zi,jk
p̃µk

2 p̃ij p̃k
− kµ⊥ , (2.6)

where

k2
⊥ = 2 p̃ij p̃k yij,k zi,jk (1− zi,jk) . (2.7)

The parameters zi,jk and yij,k depend on the type of splitting and are given for all dipole configurations in
Tab. 2. The spectator momentum pk is determined by momentum conservation. In the case of initial state
splitter or spectator partons, a proper Lorentz transformation is applied to keep both initial state particles
aligned along the beam axis.

In scheme 1, initial-state splittings with final state spectator are instead constructed as if they were final-state
splittings with initial state spectator, by replacing z̃j → uj , pk → −pi and pj → pk.

Schematically the two mapping schemes differ in how the recoil is distributed in initial state splittings with
final state spectator. In scheme 0 the entire final state recoils, while in scheme 1 only the spectator parton
recoils. The two schemes are linked by a proper Lorentz transformation, which was worked out in [43].

2.2 Multijet merging

The S–MC@NLO method augments NLO fixed-order calculations with the simple resummation encoded in
the parton shower. Compared to pure fixed-order calculations, this allows more meaningful definitions of jet
cross sections, because logarithms of the jet transverse momentum cutoff are resummed to (at least) leading
logarithmic accuracy. The precision of such a simulation can be extended further by correcting emissions
from the parton shower with fixed-order results for higher jet multiplicity. This has been achieved in a
genuine form both at leading order [44, 45] and at next-to-leading order [18, 25, 27]. The MiNLO method
can be used to the same ends, albeit only for zero and one additional jet [29, 30]. While the merging at LO
is straightforward, it requires additional care at NLO to properly subtract the first-order expansion of the
shower expression. This procedure is vital to preserve the logarithmic accuracy of the parton shower [18, 25].

It is instructive to analyze the contribution to an observable O from the exclusive simulation of final states
with n hard partons. Additional partons may be present, which are not resolved according to a technical

2 We work in the five–flavor scheme and therefore consider massless partons only. All momenta are taken as outgoing.
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jet cut, Qcut, called the merging cut. The observable Q in which the merging cut is specified is called the
merging criterion. It may or may not be identical to an experimental jet definition, however, to make the
calculation useful in practice, one should choose the two variables as similar as possible. In addition, Qcut

should be chosen such that the entire phase space probed by a measurement is covered by the appropriate
NLO calculation. In practice this means that Qcut should effectively fall below the experimental jet cut.

The exclusive contribution to the observable with exactly n hard partons reads

〈O〉excln =

∫
dΦn Θ(Q(Φn)−Qcut) B̃(A)

n (Φn) F̃ (A)
n (µ2

Q, O ;<Qcut)

+

∫
dΦn+1 Θ(Q(Φn)−Qcut) Θ(Qcut −Q(Φn+1)) H̃(A)

n (Φn+1) F̃n+1(µ2
Q, O ;<Qcut) ,

(2.8)

In this context, we have introduced a new generating functional, F̃n(µ2
Q, O ;< Qcut), which represents a

truncated vetoed parton shower [14, 21]. It implements emissions on a parton shower tree that corresponds
to the n-parton final state. It also computes the survival probability for that particular configuration,
indicated by the notation <Qcut. The starting conditions must be chosen carefully in order not to spoil
the accuracy of the calculation: Each possible shower topology is selected according to the exact forward
branching probability of the shower into the given configuration. This scheme was described in great detail
in [20, 21, 25].

The seed cross sections B̄(A) and H(A) as defined in Eq. (2.4) are replaced by the functions

B̃(A)
n (Φn) = Bn(Φn) + Ṽn(Φn) + I(S)n (Φn) +

∫
dΦ1

[
D̃(A)
n (Φn,Φ1)−D(S)

n (Φn,Φ1)
]

H̃(A)
n (Φn+1) = Rn(Φn+1)− D̃(A)

n (Φn+1) ,

(2.9)

which take the probability of truncated parton shower emissions into account [18]. To this end, the dipole
terms used in the S–MC@NLO are extended by the parton-shower emission probabilities, Bn(Φn) Ki(Φ1,n+1),
where Ki(Φ1,n+1) is the sum of all shower splitting functions for the intermediate state with i < n in the
predefined shower tree.

D̃(A)
n (Φn+1) = D(A)

n (Φn+1) Θ(tn − tn+1) +

n−1∑
i=0

Bn(Φn) Ki(Φ1,n+1) Θ(ti − tn+1) Θ(tn+1 − ti+1)
∣∣∣
t0=µ2

Q

.

(2.10)

While seemingly quite complex, Eq. (2.10) has a very simple physical interpretation: The first term cor-
responds to the coherent emission of a parton from the external n-parton final state. It contains all soft
and collinear singularities which are present in the real-emission matrix elements. The sum in the second
term corresponds to emissions from the intermediate states with i partons. They can be implemented in the
parton shower approximation, because soft divergences are regulated by the finite mass of the intermediate
particles.

In practice the second term in Eq. (2.10) can be implemented in an NLO-vetoed truncated shower [18].
This is a straightforward modification of an existing shower algorithm. It is far more complicated to select
the correct renormalization scale. Two different methods have been proposed to this end, which are both
constructed such that the logarithmic accuracy of the shower is maintained. Their results therefore differ
only beyond NLO.

• The UNLOPS scale [25]
An arbitrary scale is chosen for the fixed-order NLO calculation. Renormalization terms and collinear
mass factorization counterterms are added to restore the scale choice of the parton shower at NLO
accuracy. The procedure recovers all logarithms formally resummed by the parton shower, but it does
not reproduce its full logarithmic structure as the two-loop running of the strong coupling generates
additional terms.

• The CKKW scale [18]
The scale in the fixed-order calculation is chosen such that the coupling factors of the parton shower
for the chosen shower history are recovered entirely. Renormalization terms are then exactly zero and
only collinear mass factorization counterterms must be added.
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We will compare the effects of these two choices in Sec. 3, with some different parametrization used for the
UNLOPS scale.

3 Results

This section presents results obtained with the MEPS@NLO algorithm applied to Higgs boson production
through gluon fusion in association with jets at a center-of-mass energy of 8 TeV. We work in the five flavor
scheme. The loop-mediated coupling of the Higgs boson to gluons is calculated in Higgs effective theory
(HEFT) [46] with mt →∞. The Born- and real-emission matrix elements as well as the dipole subtraction
terms [41] are computed using AMEGIC++ [47]. One-loop matrix elements are implemented according to [48]
in the case of pp→ h and [49] in the case of pp→ h+ jet, or obtained through an interface to MCFM [9, 39]
in the case of pp → h + 2 jets. Our calculation is purely perturbative, i.e. hadronization and underlying
event contributions are not included. The CT10nlo [50] parton distribution functions are used.

The Higgs boson mass is set to mh = 125 GeV. As we are interested in the properties of the QCD activity
accompanying the production of the Higgs boson, no restrictions on its decay are applied. Jets are defined
using the anti-k⊥ jet algorithm [51] with R = 0.4 and pmin

⊥ = 30 GeV. Jets are required to have a rapidity
of |y| < 5. A VBF selection is defined by requiring at least two jets and imposing two additional cuts on
the two leading-pT ones: |∆yj1,j2 | > 2.8 and mj1,j2 > 400 GeV, and, where indicated, veto the emission of
a third jet inbetween the two leading jets.

Uncertainties of the perturbative calculation arise from a variation of all unphysical scales in the process.
While the factorization and renormalization scales, µF and µR are varied independently within the con-
ventional factor of two, the resummation scale µQ is varied by a factor of

√
2. The merging scale Qcut,

separating pp→ h+ n jet from pp→ h+ (n+ 1) jet calculations, is varied in the set {15, 20, 30} GeV3. The
central scale choices are µR = µCKKW = α2

s(mh)αs(t1) · · ·αs(tn), and µF = µQ = mh. To assess the large
relative O(α2

s) effects in this process, which arise from the Higgs effective coupling to gluons, two additional
functional forms of the renormalization scale are investigated using the UNLOPS method: µR = mh and
µR = Ĥ ′T =

∑
m⊥ (sum of all transverse masses in the final state) [52]. The logarithmic accuracy of the

parton shower is preserved in this case by including the renormalization term [18]

Bn
αs(µR)

π
β0

(
log

µR
µCKKW

)2+n

(3.1)

This term reverts any scale choice to that of µCKKW to one-loop order, cf. Sec. 2. We will choose the
prediction for µR = mh as a reference for comparisons. The CKKW scale and Ĥ ′T can be regarded as two

extreme choices on opposite sides of mh. While Ĥ ′T increases in the presence of an additional low-pT jet,
the CKKW scale decreases.

All analyses and plots in this section were made with the help of RIVET [53].

3.1 Inclusive observables

First we examine inclusive and exclusive (jet) cross sections generated in our simulations. They are summa-
rized in Tab. 3. Although the expressions for the respective quantities are all calculated at next-to-leading
order accuracy and only differ by terms of O(α2

s), induced through the different scales used for the strong
coupling, the deviations from one another are rather large already. This hints at the well known fact of
the poor convergence of the perturbative series in this process. Generally, the computed cross sections are
largest with µR = µCKKW and smallest with µR = Ĥ ′T, increasingly so as the hardness of the event increases
as required by the respective selection criteria. The inclusive cross section, which is expected to be less
sensitive to such kinematic effects, is in good agreement between the different scale choices.

The uncertainties quoted stem from a variation of µF and µR, µQ, and Qcut, varied separately as detailed
above and then summed in quadrature. Again, the different choices for the central scale lead to increasingly
deviating uncertainty estimates, smallest for µR = Ĥ ′T and largest for µR = µCKKW. Once cuts are imposed
the variation of the unphysical merging scale, Qcut is comparable or even exceeds the scale variation from

3 The merging scale should not be set to a value above the minimum transverse momentum of the analysis jet definition in
order not to degrade the accuracy of the perturbative description of observables involving at least one jet. This avoids muddying
the merging scale systematics with leading order vs. next-to-leading order effects.
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µR = µCKKW µR = mh µR = Ĥ ′T

σincl
0 jet 12.2+1.5+0.5+0.2

−1.3−0.5−0.2 pb 11.6+1.5+0.6+0.3
−1.2−0.5−0.2 pb 10.9+0.9+0.7+0.3

−0.9−0.6−0.2 pb

σexcl
0 jet 8.05+0.65+0.48+0.14

−0.66−0.39−0.29 pb 7.71+0.73+0.53+0.31
−0.70−0.33−0.36 pb 7.37+0.60+0.53+0.31

−0.59−0.33−0.35 pb

σincl
1 jet 4.16+0.81+0.10+0.40

−0.46−0.31−0.46 pb 3.91+0.53+0.28+0.50
−0.35−0.18−0.35 pb 3.54+0.26+0.29+0.67

−0.24−0.18−0.37 pb

σexcl
1 jet 3.08+0.36+0.11+0.29

−0.32−0.18−0.30 pb 2.92+0.29+0.21+0.30
−0.26−0.13−0.30 pb 2.68+0.22+0.22+0.30

−0.21−0.13−0.30 pb

σincl
2 jet 1.07+0.46+0.05+0.09

−0.15−0.13−0.11 pb 0.99+0.24+0.07+0.16
−0.09−0.05−0.08 pb 0.86+0.04+0.07+0.16

−0.04−0.05−0.07 pb

σVBF cuts 0.165+0.070+0.005+0.008
−0.030−0.022−0.012 pb 0.152+0.039+0.007+0.016

−0.019−0.007−0.007 pb 0.126+0.010+0.007+0.016
−0.010−0.007−0.007 pb

σcentral jet veto
VBF cuts 0.124+0.047+0.002+0.010

−0.023−0.015−0.008 pb 0.113+0.026+0.007+0.015
−0.013−0.006−0.008 pb 0.096+0.008+0.007+0.015

−0.008−0.006−0.008 pb

Table 3: Cross sections with three different central scales. Uncertainties are given as super- and subscripts
and detail, in that order, µR/F variations, µQ variations, and Qcut variations.

fixed-order calculations when scale definitions sufficiently different from µCKKW in the respective regimes
are used.

Next we analyze differential distributions. In Fig. 1 and following the lower pane shows the ratio of all
simulations with respect to the result from µR = mh. The coarse dashed line shows the contribution to the
µR = mh result from the exclusive NLO calculation for pp→ h+ 0 jets, and the fine dashed and dashdotted
lines show the contribution from the exclusive calculations for pp→ h+1 jet and pp→ h+2 jets, respectively.
The dotted line shows the contribution from the LO result for pp → h + 3 jets. Uncertainty bands are
computed as the quadratic sum of the renormalization/factorization scale uncertainty in the perturbative
calculation, the resummation scale uncertainty and the multijet merging scale uncertainty. Intrinsic parton
shower uncertainties will be discussed in detail in Sec. 3.3.

The transverse momentum distribution of the Higgs boson, and its rapidity spectrum are shown in Fig. 1.
Since both are rather inclusive observables, we observe a good agreement of the predictions obtained with
different scale choices. The CKKW scale produces a larger uncertainty band than the two others, because at
small pT,h it is driven by the transverse momentum of the first jet. This leads to an increase in the inclusive
cross section, while the rapidity distribution of the Higgs boson is largely unaffected.

Figure 2 shows the Higgs transverse momentum distribution in the absence of any jet with transverse
momentum larger than 30 GeV, and the transverse momentum distribution of the Higgs+jet system, pT,hj ,
in the presence of a jet with pT,j > 30 GeV. It is interesting to observe that the uncertainties in pT,hj are
of similar size at high transverse momentum for the CKKW scale and for µR = mh. This is because the
CKKW scale in this case is driven by the lowest scale in the parton-shower tree, which is the scale of the
core process, mh. Correspondingly, the uncertainties of the Higgs boson pT with a jet veto are of similar
size for µR = mh and for µR = Ĥ ′T , even at large transverse momenta. The difference in these scales is at

most Ĥ ′T −mh . 120 GeV, as we include up to only three additional jets at fixed order in the simulation.

3.2 Dijet and VBF observables

Figure 3 shows the transverse momentum of the Higgs boson in the dijet and the VBF selection. In the
VBF selection the cross section is considerably reduced, while the shape of the pT spectrum stays largely the
same. Note, however, that the VBF selection increases the contribution from fixed-order events with exactly
two hard jets, indicated by the dashed-dotted line in the figure. This confirms that also in the MEPS@NLO

merged sample the VBF selection acts as an effective veto against a third jet, which is – in gluon fusion
processes – predominantly produced in the central region.
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Figure 1: Transverse momentum (left) and rapidity (right) of the Higgs boson with three different scale
choices. The uncertainty bands include all sources of perturbative uncertainties as a quadratic
sum. Coarse dashed lines correspond to the contribution from exclusive 0-jet hard scattering
configurations, fine dashed lines to exclusive 1-jet configurations, dashdotted lines to exclusive
2-jet configurations and dotted lines to inclusive 3-jet configurations.
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Figure 2: Transverse momentum of the Higgs boson with a veto on jets of pT >30 GeV (left) and transverse
momentum of the Higgs-jet system in presence of a jet with pT >30 GeV (right). For details see
Fig. 1.
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T

VBF cuts

0

0.0005

0.001

0.0015

0.002
Transverse momentum of the Higgs boson

d
σ
/
d
p
⊥
[p
b
/
G
eV

]
0 50 100 150 200 250 300

0.6
0.8

1
1.2
1.4
1.6
1.8

p⊥(h) [GeV]
R
a
ti
o
to

µ
R
=

m
h

Figure 3: Transverse momentum of the Higgs boson in the dijet (left) and VBF (right) selection with three
different scale choices. For details see Fig. 1.
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Figure 4: Transverse momentum of the Higgs boson plus two leading jets system in the dijet (left) and
VBF (right) selection with three different scale choices. For details see Fig. 1.
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Figure 5: Azimuthal separation of the two leading jets in the dijet (left) and VBF (right) selection with
three different scale choices. For details see Fig. 1.
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Figure 6: Transverse momentum of the Higgs boson plus two leading jets system (left) and azimuthal
separation of the two leading jets (right) with three different scale choices. For details see Fig. 1.
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Figure 4 shows the combined transverse momentum of the Higgs boson and the two leading jets. It is
apparent that the uncertainties for the CKKW scale and for µR = mh are nearly identical in the high-pT
region, an effect which was also observed in Fig. 2. The low-pT region shows a large spread between the
different predictions, as they are driven in this case by their very different behavior with regard to adding an
additional jet at small transverse momentum: In the CKKW scheme, the overall scale will be close to the
transverse momentum of this jet, and therefore rather small. This leads to an increase in the cross section.
For µR = Ĥ ′T the jet-pT will increase the scale further, and the cross section will drop. The prediction for
µR = mh lies inbetween. Note that this distribution is effectively described at LO only.

Fig. 5 displays the azimuthal decorrelation between the Higgs boson and the dijet system, and the azimuthal
decorrelation between the two leading jets, respectively. These observables do not exhibit a great sensitivity
to the scale choice in the fixed-order calculation. The only variations come from a change in the total rate
for Higgs plus dijet production, affecting normalization of the result and size of its uncertainty band, but
not its functional form. It is interesting to note the effect of the VBF cuts on ∆φ(j1, j2). In the plain dijet
selection two maxima are apparent, one at the jet radius stemming from the two leading jets being produced
collinearly, recoiling against the Higgs boson, and the other at ∆φ = π stressing the importance dijet-like
topologies with a rather soft Higgs produced centrally. While the latter configurations are enhanced by the
VBF cuts, the former are suppressed.

With the introduction of a veto on jet production inbetween the two leading jets the shape of the ∆φ(j1, j2)
distribution remains largely unaffected. Only its cross section is reduced, as can be seen in Fig. 6. The
transverse momentum of the Higgs-plus-dijet system on the other hand is softened as its driving force, the
production of a third jet, is constrained. Note again that this distribution is effectively described at LO only.

3.3 Parton shower uncertainties

In this subsection the intrinsic uncertainties of the parton shower are scrutinized. We compare the two
evolution schemes in Tab. 1 and the two kinematics mappings described in Sec. 2.

Figure 7 shows the transverse momentum of the Higgs boson and the transverse momentum of the leading
jet. We expect the dominant effects of the kinematics mapping to be visible in the region which is most
influenced by resummation. This is the low-pT region in the case of the Higgs transverse momentum only.
The transverse momentum distribution of the hardest jet should exhibit a smaller sensitivity to resummation,
which is nicely exemplified by a very small uncertainty band.

Next we turn to the transverse momentum of the Higgs boson in absence of any jet of transverse momentum
larger than 30 GeV (50 GeV), i.e. the transverse momentum of the Higgs boson in presence of a jet veto.This
observable must naturally be extremely sensitive to the kinematics mapping in the high tail, because any
transverse momentum is generated by subsequent emissions of comparably low transverse momentum. In
other words, the large pT of the Higgs boson in this case is built up by several mini-jets, predominantly
produced by soft gluon emission from initial-state partons. Figure 8 shows that the uncertainty arising from
the kinematics mapping is indeed dominant in the high-pT region, and that its size is considerably reduced
when the cut on the jet-pT is increased. This is expected, because with a higher jet-pT cut the dominant
radiation effects again are modeled by emission of a few semi-hard jets, rather than many soft gluons. This
is also confirmed by the contributions from the various individual pp→ h+ n jet results shown in Fig. 8.

4 Conclusions

We have presented an analysis of uncertainties in the merging of parton showers with NLO QCD calculations
for Higgs-boson plus multi-jets through gluon fusion. We used the Monte-Carlo event generator SHERPA for
our study, in combination with virtual corrections obtained from MCFM.

The uncertainties arising from the perturbative QCD calculation are sizable, due to the α2
s-dependence of the

lowest multiplicity leading-order process. This is reflected by the relatively large scale uncertainties, which
are driven by the variation of the renormalization scale. The increased color charges in the initial state,
compared to Drell-Yan processes, imply that resummation scale variations also have a much larger effect on
the results. Additionally, the intrinsic parton-shower uncertainties, which we quantified through variations
of the momentum mapping and the evolution parameter, have a large impact on observables involving a jet
veto.
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Figure 7: Transverse momentum of the Higgs boson (left) and of the first jet (right) for different evolution
variables and recoil schemes. See Sec. 2 for details and definition of the schemes.
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Figure 8: Transverse momentum of the Higgs boson in absence of jets with pT > 30 GeV (left) and
pT > 50 GeV (right) for different evolution variables and recoil schemes. See Sec. 2 for details
and definitions of the schemes.
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Consequently, the intrinsic uncertainties of the simulation are simultaneously driven by both the fixed-order
part of the calculation and the resummation. In similar analyses of Drell-Yan lepton pair production, a large
improvement was observed when performing the merging at NLO accuracy [18]. Deficiencies of the parton
shower approximation could to some extent be cured by the fixed-order corrections. In Higgs-boson produc-
tion the effects seem not as pronounced. Our analysis implies in particular that more work is necessary to
improve the resummation implemented by parton showers. In particular, the uncertainties related to the
definition of the momentum mapping pose an interesting problem which probably can successfully be dealt
with only by enhancing the accuracy of the shower approximation. This should be seen in the context of
striving for higher accuracy in particle-level simulations through including higher-order fixed order correc-
tions. In our opinion, the potential improvement from including next–to–next–to leading order corrections
in a Monte-Carlo simulation could be partially absorbed by the residual, large uncertainties from parton
showers.
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[42] S. Höche, S. Schumann and F. Siegert, Hard photon production and matrix-element parton-shower
merging, Phys. Rev. D81 (2010), 034026, [arXiv:0912.3501 [hep-ph]]; T. Carli, T. Gehrmann and
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