
 

 
Abstract—AJDISK is a 1D large signal klystron simulator 

developed at SLAC. A brief discussion of AJDISK’s simulation 
algorithm is given and [1] is fully developed to show how 
AJDISK was extended to enable sheet beam klystron simulations. 
The primary requirement for extending “disk” simulators to 
sheet beam simulators is a space charge equation. Therefore, the 
electric field due to an infinitely thin plate of charge (infinitely 
thin in the direction of propagation) in a rectangular drift tube is 
derived. The derivation is extended to a “2D” space charge 
equation in which the plate is split into a series of rods with 
varying positions in y. The derived equations are compared with 
numerical simulations and measurement. 
 

Index Terms—Klystron, Sheet Beam, Simulation, Space 
Charge 
 

I. INTRODUCTION 

HEET beam devices are a new class of microwave tube 
that have the potential to compete with multi-beam 

devices. Like multi-beam devices, sheet beam devices have 
lower current density beams and increased surface area, 
making them particularly suited for high power applications. 
Reduced cathode loading increases lifetime and lower current 
density beams require lower magnetic fields for focusing. 
Sheet beam devices require only one beam, cathode, and 
anode. This reduced complexity may lead to several 
advantages over multi-beam devices, including, fewer parts, 
simplified manufacturing, reduced cost, increased lifetime, 
and greater yield.  

Drawbacks for sheet beam devices include lower cavity 
interaction impedance and possible mode competition, but 3D 
simulations can help provide insight for overcoming these 
challenges. The klystron group at Stanford Linear Accelerator 
Center (SLAC), for example, has recently designed and 
manufactured a working low power 95GHz sheet beam 
klystron [2].  

3D simulations are too slow to be “good” tools for every 
phase in sheet beam device design. A full 3D simulation of a 
sheet beam klystron may take several weeks to simulate. 
Complimentary simulations that can reduce this design time 
are therefore very attractive. The disk method presented by [3] 
and [4] has been a common method for reducing simulation 
time of cylindrical beam devices, but little work has been done 
using this technique for sheet beam devices. This paper 
 

 

extends the disk methods discussed in [3] and [4] to sheet 
beam klystrons and uses the results in SLAC’s AJDISK 
simulator to simulate sheet beam klystrons.  

The primary requirement to extend a cylindrical beam 
simulator to a sheet beam simulator is a new space charge 
equation. For cylindrical beam “disk” simulators, the space 
charge equation is derived for a cylindrical disk of charge in a 
cylindrical drift tube (Fig. 1a). For sheet beam “plate” 
simulators, the space charge equation must be derived for a 
plate of charge in a rectangular drift tube (Fig. 1b). As shown 
in Fig. 1, disk and plate simulators can add another degree of 
freedom if the space charge equations for rings and rods are 
known. In this paper the space charge equations for plates and 
rods will be derived, but only for electric fields in the 
direction of propagation. 
 
 

 
 

Fig. 1.  (a) Disk and ring model.  (b) Plate and rod model. 
 

II. SIMULATION ALGORITHM 

1D klystron simulations are discussed in depth in [3] and [4] 
and should be consulted for the details of the approach to be 
discussed.  

The primary objective of a klystron simulation is self 
consistent RF beam interaction including space charge forces 
in electron bunches. The simulation splits the beam up into a 
series of thin rectangular plates in the direction of propagation 
(z in the following equations). The force on each plate is then 
a function of the electric field in each cavity and the space 
charge field from all other plates. The force equation is then 
solved numerically. 

The equation of motion (where   is the relativistic 

correction factor), 
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and the Lorentz force equation, 
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are used to describe the motion of charge (plates). If the beam 
is assumed to be confined by the magnetic field and only 
motion in z is permitted, then (1) and (2) may be combined as 
follows, 
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Where the electric field has been separated into the electric 
field from the klystron cavity and the space charge field from 
other plates (the electric fields in (3) are in the z direction 
only). Once the expressions for cavE  and spchE are known, 

equation (3) may be solved numerically. spchE is derived in a 

later section of this paper and cavE  is given by, 

 

0( ) cos( )cavE V f z t     (4) 

 
Where V  is the voltage of the cavity, ( )f z is the spatial 

shape of the electric field whose area has been normalized to 
one (such that V  is defined properly), 0  is the operating 

frequency of the klystron, and   is the phase of the electric 
field with respect to time. A convenient analytical 
representation of ( )f z for a single gap cavity is given by [5], 
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Where k is the shaping coefficient of the Gaussian profile. k 
may be found by curve fitting, but it is more convenient to 
express k in terms of common klystron parameters such as the 
coupling coefficient (M) and the electron propagation constant 
( e ), 
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To apply equation (4), expressions or values for V  and   

are needed. V  and   for the input gap are given by  [6], 

provided the input power is a known. For the remaining 
cavities, V  and   are found numerically by solving (3) 

iteratively. After each iteration, V  and   are calculated 

using Ohms law until they converge, 
 

,1ind cavV I Z  (7) 

 
Where V contains both the phase and amplitude information, 

cavZ  is the cavity impedance, 
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and ,1indI  is the RF current induced at the first harmonic. The 

first harmonic of the Fourier transform of the total induced 
current as a function of time is, 
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The sum in (9) is over all plates, vi is the plate velocity and Qi 
is the plate charge (Io/(fo * #Plates)). #Plates are the number of 
plates in an RF cycle (typically defined by the user of the 
simulator). 

AJDISK uses equations (3) through (9) as shown in the 
simplified algorithm in Fig. 2.  The numerical computations 
are implemented in C++ and packaged as a dynamic link 
library so that other programs can easily use it for 
optimization and/or post processing.  The standard GUI 
provided with AJDISK is written in Java. 

 

 
 

Fig. 2.  Simplified AJDISK Algorithm. 
 
 

AJDISK typically converges to a solution in well under a 
minute.  The accuracy of the solution depends on the number 
of time steps and disks per RF cycle.  Fig. 3. shows errors 
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typical of AJDISK simulations in general.  Errors of less than 
1% are shown in white.  While the number of steps is 
important for an accurate result, it is of more importance to 
have enough disks to spatially represent tight bunching.  Fig. 
3 shows 30 to 40 disks are needed for a ~70% efficient 
klystron.  Simulations with less than 6 time steps produced 
such large errors they were discarded from the chart. 

 

 
 

Fig. 3.  Case Study of Simulation Error in Percent with 
Respect to Disk and Step Count. 

 

III. SPACE CHARGE DERIVATION 

The next several sections look at the derivation of the space 
charge equation needed to evaluate (3), which closely follows 
the round beam approach in [7] and [8]. The analysis begins 
by deriving Green’s function for a point charge in a 
rectangular drift tube using Laplace’s equation. The Green’s 
function is then integrated over the transverse area of the 
beam to generate the field of an infinitely thin sheet of charge 
in the direction of propagation with x and y dimensions of the 
beam, as shown in Fig. 4. The equation derived is then 
extended to 2D except that the beam sections are not allowed 
to have motion in y (only force in z is considered). 
 

 
Fig. 4.  Beam parameters. 

IV. LAPLACE’S EQUATION 

Laplace’s equation states, 
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Using the method of separation of variables, 
 

( ) ( ) ( )V X x Y y Z z  (11) 

 
Assuming the boundary conditions X(0)=0, X(xd)=0, and that 
the solution should go to zero as z goes to infinity, 
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V. GREEN FUNCTION 

Translating the point charge to x=x0, y=y0, and z=z0, and 
since the potential should be symmetric about the point z=z0, 
 
 

 

0 0
1 1

1/ 22 2 2 2
0

( , , ) ( , ) sin sin

exp

mn
m n d d

d d
d d

m n
V x y z A x y x y

x y

y m x n z z
x y

 



 

 

   
    

   
 

    
 


 (13) 

 
From (13) we may write, 
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To eliminate the infinite sum we multiply both sides of (14) 
by orthogonal basis functions and integrate, 
 

 
0

0 0

1/ 22 2 2 2

2 2

0 0

sin sin

sin sin

d d

d d

y x

z z d d

mn d d
d d

y x

d d

V m n
x y dxdy

z x y

A y m x n
x y

m n
x y dxdy

x y

 



 



   
       

  

   
    

   

 

 

 (15) 

 

The region in the z=z0 plane over which 
0

0
z z

V

z 





 is small 

enough that the left hand side of (15) may be written, 
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Using Gauss’ theorem (16) becomes, 
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Now we need to evaluate the right hand side of (15) which 
may be rewritten, 
 

 1/ 22 2 2 2 2 2

0 0
sin sin

d dx y

mn d d
d d d d

m n
A y m x n x dx y dy

x y x y

     
     

   
   (18) 

 
Evaluating (18), 
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Equating (17) and (19), 
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Solving (20) for Amn, 
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Combining (21) and (13), 
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VI. 1D SPACE CHARGE MODEL 

Dropping q in (22) gives the Green’s function, 
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The charge density may be written, 
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Where, A is the area of the beam, xbyb, and Q is the charge in 
a plate (Io/(fo * #Plates).  

To find the potential from a plate of charge, 
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The Green’s function already considers the delta function in z 
so, 
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Evaluating (26) for a rectangular beam, xb by yb, 
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Where, (27) is integrated over the beam. To get Ez, 
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From Fig. 4, the center of the beam is not at x=0, y=0. Using 
(28) on (27) and transposing the center of the beam to (0, 0),  
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To calculate the average force on a plate in equation (3) it is 
necessary to have an expression for Ez averaged over another 
plate at position some delta z away. To average Ez over a plate 
at any position z we simply integrate over the beam with 
respect to x and y and divide by the beam area A. Thus,  
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VII. 2D SPACE CHARGE MODEL 

The 1D space charge model can be extended to a 2D space 
charge model by changing the limits of integration. The 2D 
model will be described using the parameters in Fig. 5. The 
beam will be split into a set of rods with bounding y positions 
of ymin1 and ymax1. This allows the beam to shear as a function 
y when ( )f z in equation (4) is replaced by ( , )f y z . Since the 

beam is symmetric in y about y =yd/2, computation time can 
be saved by treating each rod as a pair of rods. Where, the first 
rod is defined between the positions ymin1 and ymax1 and the 
second between –ymin1 and –ymax1. When the field for each pair 
of rods is averaged, the values will be averaged over ymin2 to 
ymax2 and –ymin2 to –ymax2. 

 
 

 
Fig. 5.  2D beam parameters. 

 
 

We can start with (27) and change the limits of integration in 
y to find the 2D equation. 
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Averaging over another set of rods, 
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VIII. ANALYSIS VS SIMULATION 

To check the accuracy of the analytic space charge 
equations, finite element Superfish simulations were done for 
comparison. Fig. 6 shows good agreement between the 
simulated fields and the theoretical fields. 

For the simulated result of the average electric field in Fig. 
6a., points at five positions in y were taken. In Fig. 6b., the 
upper half of the beam was split into three rods and only the 
top rod was kept. The field was then sampled at y=0 and at the 
center of the top rod. The averaged analytical field is also 
plotted. 

Note that these equations are correct electrostatic models 
but a relativistic correction factor is necessary to include 
length contraction in z when simulating klystrons. 

 
 

 
(a)                                       (b) 

 
Fig. 6a.  Comparison of equations (29) and (30) with 

simulated results (Solid Lines – Simulated Results,  Filled 
Circles – Analytic Results). 

 
Fig. 6b.  Comparison of equations (31) and (32) with 

simulated results (Solid Lines – Simulated Results,  Filled 
Circles – Equation (31), Filled Triangles – Equation (32) ). 
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Testing the new space charge equations, Fig. 7 and Fig. 8 
compare AJDISK with large signal simulation and small 
signal hand calculations [9] respectively.  Excellent agreement 
is observed in both cases.   

Fig. 7 compares the fundamental RF current calculated in 
AJDISK and MAGIC3D for the L-band sheet beam klystron 
[10].  MAGIC3D is a fully 3D PIC solver.  A strong solenoid 
field was used in MAGIC3D to prevent transverse motion in 
the beam and provide a better comparison. 

 

 
Fig. 7.  I1/I0 comparison between MAGIC3D and AJDISK. 

 
 

Fig. 8 compares AJDISK with small signal hand 
calculations for the ONR sheet beam klystron [11]. The slight 
error between results in Fig. 8 is primarily related to the 
difference in plasma reduction factor between the two 
calculations (the small signal analytic hand calculations 
assume an infinitely wide beam).   
 

 
Fig. 8.  Gain comparison between AJDISK and small signal 

analysis. 
 

IX. AJDISK VS MEASUREMENT 

Fig. 9 compares AJDISK with measured data of SLAC’s 
W-band sheet beam klystron [2].  The results are in good 
agreement and it is believed that most of the error is due to the 
difficulty of maintaining tight mechanical tolerances at 95 
GHz.  A more thorough comparison of AJDISK with 
measurement will be conducted when the ONR sheet beam 
klystron is tested at SLAC. 
 

 
Fig. 9.  Comparison of AJDISK with measurements from 

SLAC’s W-band sheet beam klystron (Solid Line – AJDISK 
Simulation,  Filled Circles - Measured Results) 

 

X. CONCLUSION 

The disk simulation algorithm provided in [3] and [4] was 
extended to sheet beam devices. It was shown that the 
algorithm could be extended to sheet beams by replacing the 
space charge equation for cylindrical beams with the space 
charge equation for rectangular beams. The sheet beam space 
charge equation was derived for simple plates and for rods (to 
allow velocity taper in the beam). The results were shown to 
be in good agreement with simulation.  

The new space charge equations were implemented in 
SLAC’s klystron simulator, AJDISK. AJDISK was used to 
simulate SLAC’s W-band sheet beam klystron and good 
agreement was observed between the simulated results and 
measured results.  
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