4

5

6

23

24

25

UNVEILING THE NATURE OF THE UNIDENTIFIED GAMMA-RAYS SOURCES VIII: COMPUTING THE ASSOCIATION PROBABILITY

F. MASSARO¹, R. D'ABRUSCO², N. MASETTI³, N. OMODEI¹, HOWARD A. SMITH² & S. FUNK¹

version January 9, 2014: fm

ABSTRACT

Despite the significant improvements of the *Fermi* satellite on the source localization with respect 7 to the previous γ -ray missions, the positional uncertainties of the *Fermi* sources are still large, making 8 the search for potential low-energy counterparts a challenging task. In the *Fermi* source catalogs 9 (i.e., 1FGL and 2FGL, respectively) for each counterpart associated with an high-energy source a 10 corresponding value of the association probability was provided. Thus several methods based on 11 the source position or on the logN-logS distribution of potential counterparts were developed to 12 derive the association probabilities. Recently, we discovered a tight connection between the infrared 13 (IR) surveys and the γ -ray sky that allowed us to create several lists of γ -ray blazar-like sources, 14 potential counterparts of *Fermi* objects. Here we complete our previous analyses presenting a new 15 approach based on Montecarlo simulations to determine the association probability for γ -ray blazar-16 like sources selected on the basis of their peculiar IR colors. We also describe a different version of the 17 likelihood ratio technique with some improvements based on the IR- γ -ray connection. Both methods 18 are compared with the 2FGL associations to asses their reliability. We found reliable counterparts for 19 20 39 previously unidentified γ -ray sources listed in the 2FGL and 5 new γ -ray blazar candidates out of 20 sources associated for a subsample of the 1FGL not detected in the 2FGL. Both methods are also 21 able to associate radio loud narrow line Seyfert 1 showing blazar-like IR colors. 22

Subject headings: methods: statistical - galaxies: active - quasars: general - surveys - radiation mechanisms: non-thermal

1. INTRODUCTION

²⁶ The association of γ -ray sources with their low-²⁷ energy counterparts detected in different radio, infrared ²⁸ (IR), optical or X-ray surveys is essential to under-²⁹ stand their origin. Despite the recent improvements ³⁰ achieved by the *Fermi* satellite in the source localiza-³¹ tion (Atwood et al. 2009), the association of *Fermi* ob-³² jects with their proper counterparts is still unsolved ³³ since about one third of sources listed in the sec-³⁴ ond *Fermi*-Large Area Telescope (LAT) catalog (2FGL ³⁵ Nolan et al. 2012) are unassociated.

In Figure 1 we show the comparison between the distribution of the positional uncertainties reported las in the 2FGL with those of the 70 months catalog (Baumgartner et al. 2013) of the Burst Alert Telescope (BAT) (Barthelmy et al. 2005) on board of the SWIFT satellite (Gehrels et al. 2004) scanning the sky in the hard X-ray band. It is clear how the *Fermi* positional uncertainty is still a factor of ~5 larger than that in the hard X-rays, being also larger than those at lower enersides.

⁴⁶ Given the large positional uncertainties in the γ -⁴⁷ ray catalogs, a basic requirement for their prepara-⁴⁸ tion is providing the association probability computed ⁴⁹ for each listed counterpart. Thus, several methods ⁵⁰ have been developed to accomplish the association task, ⁵¹ in particular for the γ -ray sources (Mattox et al. 1997;

 1 SLAC National Laboratory and Kavli Institute for Particle Astrophysics and Cosmology, 2575 Sand Hill Road, Menlo Park, CA 94025, USA

² Harvard - Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138, USA
 ³ INAF Istituto di Radioastronomia, via Gobetti 101, 40129,

³ INAF Istituto di Radioastronomia, via Gobetti 101, 40129, Bologna, Italy

⁵² Abdo et al. 2010a). There are basically two main pro-⁵³ cedures widely accepted to determine the counterparts ⁵⁴ while comparing different surveys and/or catalogs (e.g. ⁵⁵ Sutherland & Saunders 1992). The first is matching the ⁵⁶ nearest neighbor of the unidentified object above the ⁵⁷ flux limit of the comparison catalog, while the second ⁵⁸ is using the likelihood ratio technique. In particular, the ⁵⁹ latter procedure, originally proposed by Ritcher (1975) ⁶⁰ and subsequently applied by and modified by de Ruiter, ⁶¹ Willis & Arp (1977), Prestage & Peacock (1983), Wol-⁶² stencroft et al. (1986) or more recently by Sutherland ⁶³ & Saunders (1992) and Masci et al. (2001) was suc-⁶⁴ cessfully used to prepare both the first and the second ⁶⁵ LAT AGN catalogs (1LAC and 2LAC Abdo et al. 2010b; ⁶⁶ Ackermann et al. 2011, respectively).

Recently, we discovered a tight connection between 69 the IR colors and the γ -ray spectral shape occurring ⁷⁰ for the largest known population of *Fermi* sources: the ⁷¹ blazars (Massaro et al. 2011a; D'Abrusco et al. 2012). 72 They are the rarest among the AGN classes which 73 emission is interpreted as due to ultrarelativistc parti-74 cles accelerated in a jet closely aligned to the line of 75 sight (Blandford & Rees 1978; Urry & Padovani 1995). 76 Blazars come in two main flavors: the low lumi-77 nosity class, constituted by BL Lac objects, charac-78 terized by featureless optical spectra, and the flat-79 spectrum radio quasars with optical spectra typi-⁸⁰ cal of quasars (Stickel et al. 1991; Stoke et al. 1991; ⁸¹ Laurent-Muehleisen et al. 1999). In the following the $_{\rm 82}$ former class is labeled as BZBs while the latter one $_{\rm 83}$ as BZQs, according to the nomenclature proposed in ⁸⁴ the Multiwavelength Blazar Catalog⁴ (Roma-BZCAT,

⁴ http://www.asdc.asi.it/bzcat/

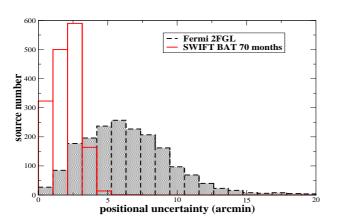


FIG. 1.— The distributions of the positional uncertainty radius at 95% level of confidence for the *Fermi* sources that belong to the 2FGL (black) (Nolan et al. 2012) in comparison with those in the 70 months catalog of SWIFT - BAT (red) (Baumgartner et al. 2013). For the *Fermi* positional uncertainties, being elliptical regions, we computed the radius shown above as the square root of the product between the semi major and the semi minor axes of the ellipse.

⁸⁵ Massaro et al. 2009; Massaro et al. 2011b).

the IR colors derived Wide-Using from 86 87 field Infrared Survey Explorer (WISE)all-5(Wright et al. 2010) 88 Skv survey alone $_{89}$ (Massaro et al. 2012b; D'Abrusco et al. 2013) or combination with other multifrequency obser-90 in (Paggi et al. 2013; Massaro et al. 2013b), 91 vations developed an association method to deter-92 WE $_{93}$ mine $\gamma\text{-ray}$ blazar-like sources that could be po-94 tential counterparts of the Fermi UGSs (see also 95 Massaro et al. 2013c; Massaro et al. 2013a). We are ⁹⁶ carrying on follow up campaigns, mostly via optical ⁹⁷ spectroscopy, to determine the nature of these po-⁹⁸ tential counterparts and to validate our associations ⁹⁹ (e.g., ? Cowperthwaite et al. 2013). Moreover on the $_{100}$ basis of this IR- γ -ray connection we also extracted ¹⁰¹ a catalog of γ -ray blazar-like source selected on the 102 basis of their IR colors and having a radio counterpart: ¹⁰³ namely the WISE blazar candidate (WBC) catalog ¹⁰⁴ (D'Abrusco et al. 2014).

The number of UGSs mostly decreased thanks to 105 The number of UGSs mostly decreased thanks to 106 our IR based association procedure and confirmed by 107 the preliminary results of our optical campaigns or 108 those of other colleagues (see also Masetti et al. 2013a; 109 Paggi et al. 2014). However we still have to compute the 110 association probability for each γ -ray blazar-like source 111 to complete our analysis and to asses the reliability of 112 our associations as in the *Fermi* catalogs. In this last pa-113 per of the series, we propose two procedures to compute 114 this association probability. The first method is based on 115 the sky distribution of the WBC catalog and uses Mon-116 tecarlo simulations, while the second one is a variation 117 of the likelihood ratio technique based on the IR color 118 distribution of the γ -ray blazar-like sources.

¹¹⁹ The paper is organized as follows: in Section 2 we de-

 5 In this paper the new version of the $W\!I\!S\!E$ catalog (i.e., ALLWISE data release) have been used. See http://wise2.ipac.caltech.edu/docs/release/allwise/ for details.

¹²⁰ scribed the WISE and the Fermi catalogs adopted for ¹²¹ our analysis, and in Section 3 we described our proce-¹²² dures to determine the association probabilities. Results ¹²³ are given in Section 4 while a comparison with previous ¹²⁴ γ -ray analyses in Section 5. Finally, Section 6 is devoted ¹²⁵ to our summary and conclusions. For our numerical re-¹²⁶ sults, we use cgs units unless stated otherwise. Spectral ¹²⁷ indices, α , are defined by flux density, $S_{\nu} \propto \nu^{-\alpha}$ and ¹²⁸ WISE magnitudes at the [3.4], [4.6], [12], [22] μ m (i.e., ¹²⁹ the nominal WISE bands) are in the Vega system respec-¹³⁰ tively; we also label the IR colors as $c_{12} = [3.4] - [4.6]$ ¹³¹ and $c_{34} = [12] - [22]$.

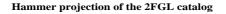
132 2. CATALOGS USED IN OUR INVESTIGATION

To achieve our goal we used the recent catalog of ¹³³ γ -ray blazar-like sources (i.e., hereinafter the WBC ¹³⁵ catalog) extracted from the ALLWISE sky survey ¹³⁶ (Wright et al. 2010) as described in D'Abrusco et al. ¹³⁷ (2014). It lists 11429 γ -ray blazar blazar-like sources ¹³⁸ selected having the same IR colors of the known pop-¹³⁹ ulation of *Fermi* blazars and with a radio counterpart ¹⁴⁰ in one of the three major radio surveys: the NRAO ¹⁴¹ VLA Sky Survey Catalog (NVSS; Condon et al. 1998), ¹⁴² the Faint Images of the Radio Sky at Twenty centime-¹⁴³ ter] (FIRST; Becker et al. 1995; White et al. 1997) and ¹⁴⁴ the Sydney University Molonglo Sky Survey (SUMSS; ¹⁴⁵ Mauch et al. 2003).

¹⁴⁶ We compared the WBC catalog with the 2FGL that is ¹⁴⁷ the most recent *Fermi* catalog available. Then, we also ¹⁴⁸ run our procedures on the subsample of the 1FGL cat-¹⁴⁹ alog that includes *Fermi* sources not listed in the 2FGL ¹⁵⁰ (Abdo et al. 2010a).

Although the 2FGL catalogs lists 1873 *Fermi* sources 152 only 1860 have a reported positional uncertainty that is 153 a minimal requirement to search for a potential counter-154 part, the same situation occurs for the 1FGL where there 155 are 1393 γ -ray sources with a non-null value of the posi-156 tional uncertainty out of 1451 listed in the whole catalog. 157 Those γ -ray sources lacking of the positional uncertain-158 ties are identified pulsars for which the radio positions 159 are reported in both the 1FGL and the 2FGL catalogs 160 rather than their γ -ray ones.

Hereinafter when we refer to the 2FGL catalog we conic sidered the subsample selected on the basis of their pois sitional uncertainty. We noted that 1099 sources out of the 1393 present in the 1FGL also belong to the 2FGL, is then the remaining 294 constitute the 1FGL subsample analyzed in the following. All the details about the γ ic analyzed in the discrepancies between the *Fermi* two is catalogs have been extensively discussed in Nolan et al. is (2012). We only analyzed separately both 1FGL and ir 2FGL samples to verify the presence of γ -ray blazar-like in sources associable with 1FGL sources that are not listed ir the 2FGL.


¹⁷³ Finally, we highlight that in the following analysis we ¹⁷⁴ did not exclude the *Fermi* sources that are listed in the ¹⁷⁵ 1FGL subsample or in the 2FGL with a gamma-ray anal-¹⁷⁶ ysis flag as done in our previous investigations (e.g., ¹⁷⁷ Massaro et al. 2012b; Massaro et al. 2013c).

1783. METHODS TO ESTIMATE THE ASSOCIATION179PROBABILITIES

180 3.1. Positional method based on Montecarlo simulations

237

260

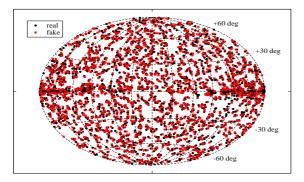


FIG. 2.— The comparison between the sky distribution of the *Fermi* sources in the 2FGL and those in one of the η fake catalogs generated by shifting their γ -ray positions of the objects in a random direction. It is clear how the sky distribution of the sources is preserved in the fake catalog. The shift used to create the fake catalogs has a fixed length of 2° (see Section 3.1 for more details).

¹⁸¹ This first method assigns a value of the association ¹⁸² probability to all the γ -ray blazar-like source that lie ¹⁸³ within the positional uncertainty region of a *Fermi* ¹⁸⁴ source. Once this probability is assigned a γ -ray blazar-¹⁸⁵ like source could be considered a candidate counterpart ¹⁸⁶ of the corresponding *Fermi* object.

¹⁸⁷ We computed the probability that a real crossmatch ¹⁸⁸ occurring at angular separation R_{real} can be spurious ¹⁸⁹ comparing η fake replicas of the 2FGL with the WBC ¹⁹⁰ catalog. This procedure takes into account the sky dis-¹⁹¹ tribution of both the *Fermi* and the WBC sources. Here ¹⁹² we described this method step-by-step.

1. We crossmatched the WBC catalog with all the 193 position of the N sources in the 2FGL to com-194 pute the distribution of the real angular separa-195 tions between the two catalogs. The initial, arbi-196 trary, radius adopted to perform the crossmatch 197 was chosen larger than the maximum semi major 198 axis among all the positional uncertainties ellipses 199 at 99.9% level of confidence. 200

201 2. We created a number η of fake γ -ray catalogs by 202 shifting the positions of each γ -ray source in the 203 2FGL in a random direction of the sky by a fixed 204 length L_{rand} .

²⁰⁵ The shift L_{rand} to create the fake γ -ray catalogs has to be ²⁰⁶ larger than the largest positional uncertainty region re-²⁰⁷ ported in the 2FGL (~1°) but not too distant from the ²⁰⁸ original location of the *Fermi* source. This guarantees ²⁰⁹ to obtain fake catalogs with a sky distribution similar ²¹⁰ to the original 2FGL and to have crossmatches between ²¹¹ each fake and the WBC catalog that takes into account ²¹² the local density distribution of the candidate counter-²¹³ parts. Creating the fake γ -ray catalogs, we adopted the ²¹⁵ constraint that no real γ -ray sources has to be located ²¹⁶ within the positional uncertainty region at 99.9% level of ²¹⁷ confidence of each fake object. We tried different values ²¹⁸ for L_{rand} between 1° and 5° and then we chose $L_{rand} = 2^{\circ}$ ²¹⁹ (similar to the value adopted by Ackermann et al. 2011). ²²⁰ The total number of γ -ray sources in each fake 2FGL ²²¹ replica is also preserved being equal to that in the real ²²² one. An example of the sky distribution of one of the ²²³ fake 2FGL catalogs is shown in Figure 2 in comparison ²²⁴ with the real one.

- 3. We considered an angular separation R, and we counted the number of *Fermi* sources n(R) having at least one WBC correspondence occurring at angular separation $R_{real} < R$. Our first choice of Ras set to 10".
- 4. For each fake replica of the 2FGL, we counted the number of fake γ -ray sources $n_{fake,i}(R)$ having at least one WBC counterpart at angular separation R_{fake} smaller than R.

5. We calculated the mean number $\lambda(R)$ of fake associations occurring at angular separation $R_{fake} <$

R, averaged over the η fake catalogs as $\lambda(R) =$

 $\sum_{i=1}^{\eta} n_{fake,i}(R)/\eta$ and its variance σ^2 .

²³⁸ The distribution of n_{fake} at each angular separation is ²³⁹ Poissonian being also clear since $\lambda = \sigma^2$. To verify accu-²⁴⁰ rately this condition we found that the minimum num-²⁴¹ ber of fake 2FGL η built has to be larger than ~50. The ²⁴² value adopted in our simulations is $\eta = 100$. We then pro-²⁴³ ceeded as follows to determine the probability of spurious ²⁴⁴ associations as function of the angular separation.

6. We increased the radius by ΔR and we computed the difference $\Delta n(R)$ and $\Delta \lambda(R)$ defined as:

$$\Delta n(R) = n(R + \Delta R) - n(R) \tag{1}$$

$$\Delta \lambda(R) = \lambda(R + \Delta R) - \lambda(R), \qquad (2)$$

²⁴⁷ The ΔR value adopted in our calculation is 10". This ²⁴⁸ value has been chosen to be at least one of order of mag-²⁴⁹ nitude smaller than the *Fermi* typical positional uncer-²⁵⁰ tainty. However we remark that it is also possible to in-²⁵¹ crease the radius multiplying the previous one by a factor ²⁵² of $\sqrt{2}$, so to have annuli of equal area and the results are ²⁵³ unchanged.

²⁵⁴ 7. When we found the first radius R_1 at which $\Delta \lambda$ is ²⁵⁵ equal to 1 within 1σ , we stopped and we computed ²⁵⁶ the ratio:

$$f(R_1) = \frac{1}{N - n(R_1)}$$
(3)

where the difference $N - n(R_1)$ is the number of remaining *Fermi* source to be associated at radius larger than R_1 .

²⁶⁰ The ratio $f(R_1)$ is the probability to find one spurious ²⁶¹ association within the angular separation R, since the ²⁶² numerator of Eq. 3 is the number of favorable events ²⁶³ while $N - n(R_1)$ is the number of possible events.

8. We iterate the above procedure by increasing the radius of ΔR and recounting $n(R_k)$ as Δn and $\Delta \lambda$, obtained in each annulus $\Delta (R)$. We stopped at each radius R_k every time we reached the condition $\Delta \lambda = 1$ within 1σ range computing the ratio

$$f(R_k) = \frac{1}{N - n(R_k)}$$
 (4)

The $f(R_k)$ curve obtained is shown in Figure 3.

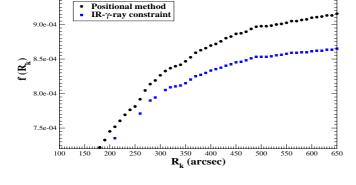


FIG. 3.— The curves for the ratio $f(R_k)$ computed using the Positional method when comparing the 2FGL and the WBC. The black circles refers to the simple procedure while the blue squares to the implemented procedure taking into account the IR- γ -ray correlation (see Section 3.1 for details).

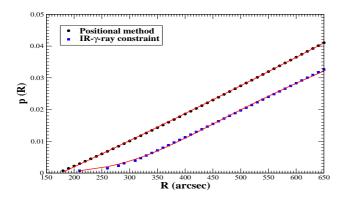


FIG. 4.— The probability curve p(R) computed using the Positional method when comparing the 2FGL and the WBC. The black circles refers to the simple procedure while the blue squares to the implemented procedure taking into account the IR- γ -ray correlation (see Section 3.1 for details). The best fit regression curves are indicated by the solid red lines.

9. Adding all the values obtained for $f(R_k)$ we can compute the probability that a generic source lying at angular separation smaller than R_Q is a spurious association according to the following equation:

$$p(R_Q) = \sum_{k=1}^{Q} f(R_k)$$
 (5)

Finally, interpolating $p(R_Q)$ we obtained the probability curve p(R). For the comparison between the 277 2FGL and the WBC, p(R) is plotted in Figure 4. This allows us to compute $p(R_{real})$ for each WBC 280 source lying at angular separation R_{real} from the 281 closest 2FGL object.

²⁸² 10. We also derived a reliability threshold by compar-²⁸³ ing the $\Delta n(R)$ and $\Delta \lambda(R)$. We considered reli-²⁸⁴ able only sources at angular separation $R_{real} <$ ²⁸⁵ $R_{th} = 500''$, where this radial threshold R_{th} is set ²⁸⁶ to the first R value for which $\Delta \lambda(R) > \Delta n(R)$.

25 20 15 15 4 10 4 10 5 4 n = 0 -5 0 20 4 n = 0 -5 0 4 n = 0 -5 0 0 4 00 500 600 700 800 900 1000 R (arcsec)

Positional method

FIG. 5.— The values of $\Delta \lambda(R)$ (red squares) and $\Delta n(R)$ (black circles) as function of the angular separation R for the positional method based on the Montecarlo simulations. We restricted the y axis to $\Delta \lambda(R)$ and $\Delta n(R)$ values below 25. Our conservative choice of R_{th} is marked by the vertical dashed line. It occurs at the first R value for which $\Delta \lambda(R) > \Delta n(R)$. The dotted, vertical, red line indicates a different threshold that could be choose.

This implies that when considering associations occurring at R_{th} there is higher chance to obtain a fake crossmatch than a real one.

²⁹⁰ To simplify the calculation of $p(R_{real})$, we approximated ²⁹¹ the p(R) curves with the following function:

$$p(R) = C \cdot \frac{R^{a+1}}{R^a + R_o} \tag{6}$$

²⁹² in the range of angular separations $[0, R_{th}]$.

It is worth noting that different choices of R_{th} can be assumed as for example considering the first radius at which the fluctuations of $\Delta \lambda(R)$ are similar to those of $\Delta n(R)$, that for the comparison between the 2FGL and the WBC catalogs occurs at 730" (see Figure 5). In addition, we note that the $\Delta \lambda(R)$ and the $\Delta n(R)$ curves occurs are reached by the search for R_{th} .

11. Since $n_{fake}(R)$ follows the Poisson distribution with the expected value λ , we can also compute the probability of having a total number of n(R)associations according to the formula:

$$P_{all}(R) = e^{-\lambda} \frac{\lambda^n}{n!} . \tag{7}$$

³⁰⁴ This is the probability of finding all the crossmatches ³⁰⁵ occurring within angular separation R by chance. It is ³⁰⁶ worth noting that the total $n \gg \lambda$ thus it is possible ³⁰⁷ to approximate the probability derived from Equation 7 ³⁰⁸ using the Stirling formula and computing its logarithm ³⁰⁹ as:

$$\log P_{all}(R) = (n-\lambda)\log e - \frac{1}{2}\log(2\pi n) + n\log\left(\frac{\lambda}{n}\right) .$$
(8)

³¹⁰ In Figure 6 we show the values computed for $log P_{all}$ as ³¹¹ function of the angular separation R. The extremely low ³¹² values of $log P_{all}$ indicates that the two catalogs matches ³¹³ very well together strengthening the reliability of our ³¹⁴ candidates. This curve could be also used to select the ³¹⁵ radial threshold R_{th} , for example at the minimum values

FIG. 6.— The probability P_{all} that all the crossmatches occurring at angular separation R could be spurious associations. The red dashed lines mark the value of the angular separation at which $log P_{all}$ has the same value achieved at the first association radius.

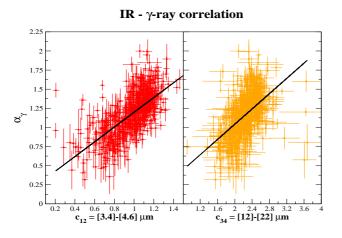


FIG. 7.— The correlations between the γ -ray spectral index α_{γ} and the IR colors c_{12} (left panel) and c_{34} (right panel) known for the *Fermi* blazars (D'Abrusco et al. 2012).

 $_{316}$ of $log P_{all}$ or when it reaches the same value that occurs $_{318}$ at the first association radius.

The method described above can be also implemented taking into account the known correlation between the IR and the γ -ray spectral shapes occurring to the *Fermi* blazars. The constraint set on the angular separation to compute $\Delta n(R)$ and $\Delta \lambda(R)$ can be strengthen considering the one derived from the IR- γ -ray spectral index correlation known for *Fermi* blazars (e.g., Figure 7 and ze see also D'Abrusco et al. 2012; Massaro et al. 2012b).

As shown in Figure 7 the IR colors correlate with the ³²⁸ As shown in Figure 7 the IR colors correlate with the ³²⁹ γ -ray spectral index. Thus when counting n(R) and the ³³⁰ $\lambda(R)$ for a given real or fake γ -ray source of spectral in-³³¹ dex α_{γ} , we added the constraint that the WBC sources ³³² must have the IR colors consistent with the IR- γ -ray cor-³³³ relations within 3σ range. Also in this case the radial ³³⁴ threshold R_{th} , computed according to the previous cri-³³⁵ terion, corresponds to 500" (see Figure 8).

There are advantages on using the additional con-338 straint on the IR- γ -ray correlations. The probabilities 339 to have spurious associations derived adopting this con-

Positional method with IR-y-ray constraint

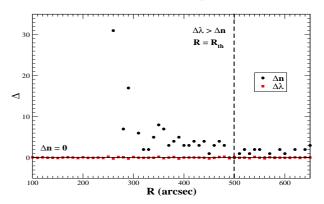


FIG. 8.— Same of Figure 8 computed with the positional method but taking into account the constraint on the IR colors. We restricted the y axis to $\Delta \lambda(R)$ and $\Delta n(R)$ values below 35.

³⁴⁰ straint are smaller than those derived when taking into ³⁴¹ account only of the angular separation as shown in Fig-³⁴² ure 4. The first radius at which the condition $\Delta \lambda = 1$ ³⁴³ occurs at larger distances than for the simple positional ³⁴⁴ method making the associations more reliable and phys-³⁴⁵ ically justified.

Finally, we emphasize that it is possible to take into at account the *Fermi* point spread function (PSF) a posteriate ori to determine the most reliable associations. Once the at radial threshold is selected and all the associations are computed, we performed the crossmatches taking into account the elliptical shape of the positional uncertainty regions reported in both the *Fermi* (Nolan et al. 2012) and WBC catalog (Cutri et al. 2012). Then we selected and within the positional uncertainty regions at a 95% below of confidence to compare our results with the 2LAC are 257 and 2FGL catalogs.

3.2. The likelihood ratio procedure

Our second procedure adopted to estimate the association probability is a variation of the likelihood ratio method described in Sutherland & Saunders (1992) and ac adopted by Ackermann et al. (2011) for the 2LAC.

1. We crossmatched the WBC catalog with the 2FGL to create the list of all the γ -ray blazar-like sources that lie within the positional uncertainty region at 95% level of confidence of each *Fermi* object. The results of this crossmatch corresponds to all the potential counterpart of the 2FGL sources: N_{real} .

³⁶⁹ For the 2FGL sources, the elliptical uncertainty regions ³⁷⁰ have the semi major axis (i.e., θ_{68}) and the semi minor ³⁷¹ axis (i.e., ϑ_{68}) at 68% level of confidence reported in the ³⁷² 2FGL (e.g., Nolan et al. 2012).

As previously described in Section 3.1, we also took are into account the IR- γ -ray correlation to select the sources the WBC catalog when computing this crossmatch. However, for the likelihood ratio method, we explored a different procedure, that we verified a posteriori being the area procedure, that we verified a posteriori being the into account the uncertainty on the γ -ray spectral index. This reduces the surface density of WBC sources as by ~10-15% depending on the value of α_{γ} .

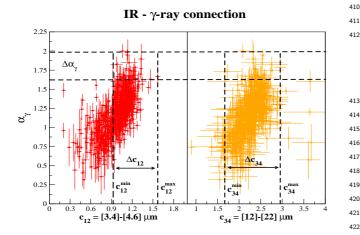


FIG. 9.— The relations between the γ -ray spectral index α_{γ} and the IR colors c_{12} (left panel) and c_{34} (right panel) for the known Fermi blazars. The range $\Delta \alpha_{\gamma}$ and the corresponding Δc_{12} = $\binom{nin}{2}, \binom{max}{12}$ and $\Delta c_{34} = [c_{34}^{min}, c_{34}^{max}]$ intervals are also indicated by the dashed black lines in each panel, for a generic source having $\alpha_{\gamma} = 1.75$ and $\sigma_{\gamma} \simeq 0.1$.

For each 2FGL source, we considered the interval 382 383 $\Delta \alpha_{\gamma} = [\alpha_{\gamma} \pm 1\sigma_{\gamma}]$. Then, given the relations between $_{384} \alpha_{\gamma}$ and c_{12} and c_{34} , respectively, we selected from the 385 WBC catalog only those sources with IR colors within ³⁸⁶ the ranges $\Delta c_{12} = [c_{12}^{min}, c_{12}^{max}]$ and $\Delta c_{34} = [c_{34}^{min}, c_{34}^{max}]$ ³⁸⁷ corresponding to the $\Delta \alpha_{\gamma}$ interval, as shown in Figure 9. ³⁸⁸ This subset of the WBC catalog has been used to perform ³⁰⁰ the crossmatch between the real catalogs.

2. For all the potential counterparts of each γ -ray 391 source we calculated the dimensionless difference 392 between the WISE (i.e., α_i, δ_i) and the Fermi (i.e., 393 α_k, δ_k) positions according to the equation: 394

$$r_{ik} = \left[\frac{(\alpha_i - \alpha_k)^2}{\sigma_{\alpha_i}^2 + \sigma_{\alpha_k}^2} + \frac{(\delta_i - \delta_k)^2}{\sigma_{\delta_i}^2 + \sigma_{\delta_k}^2}\right]^{1/2} \quad , \tag{9}$$

where $\sigma_{\alpha_{i,k}}$ and $\sigma_{\delta_{i,k}}$ are the uncertainties on the 395 right ascensions $(\alpha_{i,k})$ and the declinations $(\delta_{i,k})$ 396 for both the WISE and the Fermi position, respec-397 tively (see Masci et al. 2001, for the r_{ik} formula). 398

399 While WISE the catalog (Wright et al. 2010; 400 Cutri et al. 2012) reports the uncertainties on the 401 right ascensions and on the declinations (i.e., σ_{α_i} and 402 σ_{δ_i} , respectively), these are not listed in the *Fermi* cata-403 logs that instead provides the semi major axis (i.e., θ_{68}), 404 the semi minor axis (i.e., ϑ_{68}) and the position angle $_{405}$ (i.e., *PA*) of the elliptical uncertainty region at 68%406 level of confidence. Thus we computed the uncertainties ⁴⁰⁷ on the *Fermi* right ascensions and declinations according 408 to the following relations:

$$\sigma_{\alpha_k}^2 = \theta_{68}^2 \sin^2(PA) + \vartheta_{68}^2 \cos^2(PA)$$
(10)

457

461

$$\sigma_{\delta_k}^2 = \theta_{68}^2 \cos^2(PA) + \vartheta_{68}^2 \sin^2(PA)$$
(11)

 $_{409}$ as, for example, shown in Cutri et al. $(2012)^6$.

6 http://vizier.u-strasbg.fr/viz-bin/VizieR-n?source=METAnot&catid=2311¬id=6&-out=text

3. For each IR counterpart we computed the likelihood ratio LR_{ik} derived from the following equation:

$$logLR_{ik} = log\left[\frac{Q(\Delta c_{12}, \Delta c_{34})}{N(\Delta c_{12}, \Delta c_{34})} \cdot f(r_{ik})\right] , \qquad (12)$$

where $Q(\Delta c_{12}, \Delta c_{34})$ is the probability to find a WBC source with the IR colors within the ranges Δc_{12} and Δc_{34} over the entire catalog, while $N(\Delta c_{12}, \Delta c_{34})$ is the local surface density of WBC sources having IR colors within the same ranges. The function $f(r_{ik})$ is the distribution function of the normalized angular separations (i.e., the Gaussian distribution, the same adopted in the previous analyses, e.g., Sutherland & Saunders 1992; Ackermann et al. 2011):

$$f(r_{ik}) = \frac{e^{-r_{ik}^2}}{2\pi \cdot \sqrt{(\sigma_{\alpha_i}^2 + \sigma_{\alpha_k}^2)(\sigma_{\delta_i}^2 + \sigma_{\delta_k}^2)}} \quad . \tag{13}$$

The quantity $Q(\Delta c_{12}, \Delta c_{34})$ has been computed as the 423 424 ratio between the number of WBC sources having IR col- $_{425}$ ors in the ranges Δc_{12} and Δc_{34} and the total number of ⁴²⁶ WBC sources. On the other hand, $N(\Delta c_{12}, \Delta c_{34})$ is the 427 surface density of the "background" objects at the ap-428 propriate Galactic latitude within a circular region cen- $_{429}$ tered on the 2FGL source position with 6° radius. It is 430 worth noting that $N(\Delta c_{12}, \Delta c_{34})$ was not be evaluated $_{\rm 431}$ using the IR color distributions of the entire WBC cat-432 alog but it was restricted to the same range of colors of 433 $Q(\Delta c_{12}, \Delta c_{34}).$

The underlying reason of considering the local surface 434 435 density of "background" IR sources resides in the pos-436 sibility that within the WBC catalog there could be a 437 contaminant population of Galactic origin with a sur-438 face density dependent by sky position. So computing ⁴³⁹ $N(\Delta c_{12}, \Delta c_{34})$ locally reduces the effect of a source den-⁴⁴⁰ sity increased because of the presence of Galactic sources 441 at least above and below the Galactic plane. We also re-⁴⁴² mark that computing $N(\Delta c_{12}, \Delta c_{34})$ locally permits to ⁴⁴³ mitigate possible effects of non-uniform *WISE* sky cover-444 age (significant at scales larger than $\sim 10^{\circ}$) corresponding 445 to a non-uniform flux limit in the WBC catalog used for 446 the comparison.

At this step we have a value of $\log LR_{ik}$ for each WBC 447 ⁴⁴⁸ source correspondent to a *Fermi* object in the 2FGL. 449 Then we proceed computing the $log LR_{ik}$ threshold at ⁴⁵⁰ which we can consider our candidates reliable. Such reli-⁴⁵¹ ability threshold is calculated generating η fake replicas ⁴⁵² of the 2FGL catalog, crossmatching them with the real $_{453}$ WBC catalog and determining the LR_{ik} distributions for ⁴⁵⁴ the fake potential associations (see steps 4 to 6 below).

4. Similarly to the previous method, we created a 455 number η of fake γ -ray catalogs by shifting the posi-456 tions of each γ -ray source in the 2FGL in a random direction of the sky and ensuring that there are no 458 real Fermi sources located within the positional un-459 certainty region at 99.9% level of confidence for all 460 the fake objects. The procedure to estimate the reliability threshold via Montecarlo simulations has 462 been also used by Lonsdale et al. (1998). 463

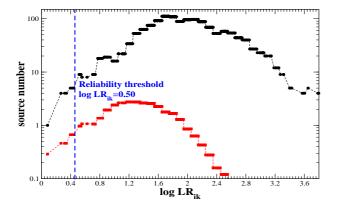


FIG. 10.— Left panel) The distribution of both N_{real} (black circles) and $\langle N_{fake} \rangle$ (red square) as function of the $lg LR_{ik}$. The reliability threshold chosen in our analysis is indicated by the vertical, blue dashed line.

5. We repeated the calculation of $\log LR_{ik}$ for all the sources that belong to the η fake catalogs to compute the total distribution function of fake LR_{ik} and the average value of $\langle N_{k+1} (LR_{i}) \rangle$

and the average value of $\langle N_{fake}(LR_{ik}) \rangle$.

$$\langle N_{fake}(LR_{ik}) \rangle = \frac{1}{\eta} \sum_{j}^{\eta} N_{fake,j}$$
 (14)

468 We note that the total number of fake catalogs generated for our investigation is determinate by the condition: $\sum_{j}^{\eta} N_{fake,j} \geq N_{real}$.

6. We compared the real and the fake distributions of $log LR_{ik}$ to determine the reliability threshold for the real associations computing:

$$\rho(LR_{ik}) = 1 - \frac{\langle N_{fake}(LR_{ik}) \rangle}{N_{real}(LR_{ik})} \quad . \tag{15}$$

The reliability computed according to Equation 15 represents an approximate measure of the association probability for a potential counterpart having a given $log LR_{ik}$ (e.g., Masci et al. 2001).

As shown in Figure 10 the difference between N_{real} 478 and $\langle N_{fake} \rangle$ is almost constant at low values 479 on $log LR_{ik}$ where the two curves rise similarly as 480 function of $\log LR_{ik}$. Thus, we chose as reliability 481 threshold for our associations the latest values of 482 $log LR_{ik}$ for which the difference between N_{real} and 483 $< N_{fake} >$ is almost constant, corresponding to 484 $log LR_{ik} = 0.44.$ 486

⁴⁸⁷ In Figure 11, we also show the distribution of the dimen-⁴⁸⁸ sionless angular separation r_{ik} computed for the WBC ⁴⁸⁹ sources that lie within the positional uncertainty regions ⁴⁹⁰ at 95% level of confidence of each 2FGL source together ⁴⁹² with their $log LR_{ik}$ distributions between 0 and 4.

493 4. RESULTS

⁴⁹⁴ Once the reliability thresholds were chosen, we com-⁴⁹⁵ puted and compared the results of both our association ⁴⁹⁶ methods with those of the 2FGL and with the 1FGL sub-⁴⁹⁷ sample (see Section 2 for more details). To prepare the

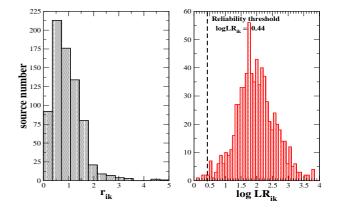


FIG. 11.— Left panel) The distribution of the dimensionless angular separation r_{ik} computed between the real sources in the 2FGL and their potential counterparts in the WBC catalog. Right panel) The distributions of the $\log LR_{ik}$ for the real associations. The reliability threshold chosen in our analysis is indicated by the vertical dashed line. The distribution of r_{ik} is shown between the values of 0 and 5 while that of $\log LR_{ik}$ between 0 and 4.

⁴⁹⁸ final list of our associations we considered only the coun-⁴⁹⁹ terparts of the WBC lying within the *Fermi* positional ⁵⁰⁰ uncertainty regions at 95% level of confidence so to com-⁵⁰¹ pare the positional method with the modified likelihood ⁵⁰² ratio procedure.

The total number of potential candidates in the WBC 503 $_{\rm 504}$ catalog for the 2FGL sources is 750 with 5 double ⁵⁰⁵ matches. The first method has 724 potential counter-⁵⁰⁶ parts (including 3 out of 5 double matches) below the re-507 liability threshold $R_{th} = 500''$. In detail, according to the ⁵⁰⁸ 2FGL classification: 4 sources are generic active galactic ⁵⁰⁹ nuclei (AGNs), 115 are AGN of uncertain type (AGUs) ⁵¹⁰ with 1 double matches, 311 BZBs (1 double matches), ⁵¹¹ 252 BZQs (1 double matches), 3 Seyfert galaxies (SEYs), ⁵¹² 2 radio galaxies (RDGs), 37 UGSs. While considering $_{513}$ the IR- γ -ray constraint, the method provides 682 asso-⁵¹⁴ ciations with respect to the previous one. Their list in-515 cludes: 4 AGNs, 97 AGUs, 297 BZBs (1 double matches), 516 238 BZQs (1 double matches), 2 SEYs, 2 RDGs, 31 ⁵¹⁷ UGSs. All the associations found using the positional ⁵¹⁸ method with the constraint on the IR colors were found 519 by the positional procedure, but with higher probabili- $_{520}$ ties. This is due to the same radial threshold R_{th} chosen ⁵²¹ for the two procedures.

⁵²² On the other hand, the likelihood modified procedure ⁵²³ provides 725 associations (including 7 double matches) ⁵²⁴ above the $log LR_{ik}$ threshold of 0.44, listing: 3 AGNs, ⁵²⁵ 109 AGUs, 300 BZBs with 1 double match, 242 BZQs ⁵²⁶ with 2 double matches, 3 SEYs, 2 RDG, 1 candidate ex-⁵²⁷ tended source (SPP) and 39 UGSs with 1 double match. ⁵²⁸ It is worth noting that all the associations computed with ⁵²⁹ the LR method were also found with the positional pro-⁵³⁰ cedure, with the only exception of 17 objects, 15 already ⁵³¹ known in the 2LAC and 2 UGSs. A similar situation oc-⁵³² curs when comparing the LR method with the positional ⁵³³ method implemented by the IR- γ -ray constraint, where ⁵³⁴ the discrepancy in their results is limited to 15 sources, ⁵³⁵ 14 known and 1 UGS.

There are 23 sources out of the 750 2FGL associations 537 (1 AGN, 7 BZBs, 13 BZQs and 1 SEY) that due to their ⁵³⁸ variability simultaneously detected at lower energies than ⁵³⁹ the *Fermi* range are indicated in the 2FGL as "identified" ⁵⁴⁰ rather than "associated" and all of them were found with ⁵⁴¹ all our methods.

We also applied our calculation of the association prob-542 ⁵⁴³ abilities also to the subsample of the 1FGL catalog pre-⁵⁴⁴ viously defined (see Section 2 for more details) adopting ⁵⁴⁵ the same reliability thresholds. Also in this case the re-⁵⁴⁶ sults are in agreement with the associations of the 1FGL 547 and the 1LAC. We found a total of 20 crossmatches be-548 tween the WBC catalog and the 1FGL with only 2 double ⁵⁴⁹ matches. In detail, according to the 1FGL classifications ⁵⁵⁰ the positional method finds 1 AGNs, 2 AGUs, 5 BZBs ⁵⁵¹ with 1 double match, 5 BZQs, 5 UGSs. While consider- $_{552}$ ing the IR- γ -ray constraint on the IR colors, there are 1 553 AGNs, 2 AGUs, 3 BZBs 4 BZQs, 5 UGSs, all included in ⁵⁵⁴ the previous list and with no double matches. Then, the ⁵⁵⁵ likelihood modified procedure provides: 1 AGN, 2 AGUs, $_{\rm 556}$ 5 BZBs with 1 double match, 7 BZQs and 5 UGSs.

In Table 1 we listed all the 750 2FGL candidate coun-557 ⁵⁵⁸ terparts with their values of the probabilities derived ⁵⁵⁹ with all procedures. For all these WBC sources we report 560 the 2FGL name, the name of the WISE counterpart and ⁵⁶¹ its coordinates with the probabilities derived from both 562 the positional method with and without the constraint on ⁵⁶³ the IR colors and together with the $log LR_{ik}$ values. We ⁵⁶⁴ also report the class assigned by the 2FGL/2LAC asso-565 ciations and the name of the 2LAC counterpart. On the ⁵⁶⁶ other hand, Table 2 summarizes all these 1FGL associa-⁵⁶⁷ tions with their values of the probabilities as for Table 1. ⁵⁶⁸ Finally, we remark that none of PSRs listed in the sec-⁵⁶⁹ ond pulsar LAT catalog (Abdo et al. 2013) has a WBC ⁵⁷⁰ source located within their *Fermi* positional uncertainty ⁵⁷² regions at 95% level of confidence.

573 5. COMPARISON WITH PREVIOUS ANALYSES

574 5.1. First method: the Montecarlo based technique

We compare the positional method based on the Mon-⁵⁷⁵ tecarlo simulations with the Bayesian procedure pro-⁵⁷⁷ posed by Mattox et al. (1997) to associate flat spectrum ⁵⁷⁸ radio sources then refined and used in both the 1FGL ⁵⁷⁹ (Abdo et al. 2010a) and the 2FGL (Nolan et al. 2012). ⁵⁸⁰ Both methods compute the probability to find a spuri-⁵⁸¹ ous associations within a given angular separation from ⁵⁸² the position of a γ -ray source. However there are several ⁵⁸³ differences between these two procedures.

The Bayesian method assumes an a priori probabil-⁵⁸⁴ The Bayesian method assumes an a priori probabil-⁵⁸⁵ ity density function for a counterpart to lie at angular ⁵⁸⁶ separation R from the location of a γ -ray source. This ⁵⁸⁷ is in general described as a Gaussian distribution with ⁵⁸⁸ variance equal to positional uncertainty region at a cer-⁵⁸⁹ tain level of confidence. The Bayesian method also as-⁵⁹⁰ sumes an *a priori* probability density function to have ⁵⁹¹ a generic source lying at the same angular separation ⁵⁹² by chance. This is generally computed assuming a con-⁵⁹³ stant local density of the background sources in a region ⁵⁹⁴ close to the location of the γ -ray object. Thus the latter ⁵⁹⁵ probability density function scales as proportional to the ⁵⁹⁶ angular separation square (i.e., $\propto R^2$).

The main difference between the two procedures is that for the Bayesian method both the above assumptions are arbitrary while the positional method does not require any a priori hypothesis making our procedure more em⁶⁰¹ pirical. It is important to note that the Bayesian method ⁶⁰² needs to assume a model for the *Fermi* PSF a priori gen-⁶⁰³ erally used to determine the probability density function ⁶⁰⁴ for the real associations. Our positional associations are ⁶⁰⁵ independent by this hypothesis, thus also avoiding any ⁶⁰⁶ uncertainty due to calibration or incorrect estimates of ⁶⁰⁷ the positional error regions due to possible systematic ⁶⁰⁸ uncertainties. On the other hand in our positional pro-⁶⁰⁹ cedure it is possible to take into account the PSF a poste-⁶¹⁰ riori. A deeper analysis to verify the a priori hypotheses ⁶¹¹ underlying the Bayesian method should be performed to ⁶¹² justify the probability calculations.

The Montecarlo based technique takes into account the global match property between the two catalogs. The fact that at given angular separation the number of the real crossmatches is much larger than that of the fakes gests that the comparison catalog includes many real counterparts. This is can be easily verified computing P_{all} . The positional method takes also into account the sty distribution of both the 2FGL and the WBC sources as well as of their local surface density, since the simulations are computed to preserve both of them.

An additional advantage in the positional method is that the reliability threshold chosen on the radius R_{th} , to it is not an arbitrary choice but it can be selected on the basis of the $\Delta n(R)$ and $\Delta \lambda(R)$ curves to account threshold cannot be set to the same value for each comparison catalog used for the counterpart search, since they could have different source densities and thus difterent probabilities to obtain spurious associations. On the other hand, our positional procedure determines the reliability threshold R_{th} and the probability curve p(R)for each specific comparison catalog used for the counterpart search (i.e., the WBC in the analysis presented there).

⁶³⁸ We highlight that the implementation of this method ⁶³⁹ based on the IR- γ -ray spectral connection, introduces a ⁶⁴⁰ physical property that allows us to extend the reliability ⁶⁴¹ threshold on the radius beyond the one determined only ⁶⁴² by the positional condition. It permits to find reliable as-⁶⁴³ sociations at larger angular separations larger than those ⁶⁴⁴ com outed with the simple positional method.

Finally, we performed an additional test on the Roma-645 646 BZCAT to compare the Bayesian method with our po-647 sitional procedure. We run the positional procedure on 648 the Roma-BZCAT and we chose as reliability threshold $_{649} R_{th} = 500''$ to be very conservative as described in Sec- $_{650}$ tion 3.1. Then we selected in both the 2FGL/2LAC and $_{\rm 651}$ among our associated sources all the blazars with at an- $_{652}$ gular separation smaller than R_{th} and lying within the ⁶⁵³ positional uncertainty region at 95% level of confidence. ⁶⁵⁴ We found that our positional procedure provides 23 more 655 associations than the Bayesian procedure, all of them are 656 listed in Table 3. These are all reliable associations be-⁶⁵⁷ cause: (i) they all appear in the 2LAC catalog as associ-⁶⁵⁸ ated with different methods than the Bayesian one, (ii) ⁶⁵⁹ they are all confirmed blazars since they belong to the 660 Roma-BZCAT and (iii) they are also confirmed by our ⁶⁶¹ positional procedure. Thus we conclude that our proce-⁶⁶³ dure could supersede the Bayesian method.

TABLE 1 Association probabilities for 2FGL sources (first 10 lines).

2FGL name	WBC association	R deg.	р pos.	p IR cons.	$\log LR_{ik}$	ρ	2FGL class	2FGL counterpart
2FGLJ0000.9-0748	J000118.01-074626.9	0.1	0.0146	0.0076	1.33	0.95	bzb	PMN J0001-0746
2FGLJ0004.7-4736	J000435.65-473619.6	0.022	2.0E-4	0.0	1.92	0.99	bzq	PKS 0002-478
2FGLJ0006.1+3821	J000557.18+382015.1	0.032	6.0E-4	0.0	1.74	0.98	bzq	S4 0003+38
2FGLJ0007.8+4713	J000745.09 + 471130.5	0.045	0.0018	2.0E-4	1.97	0.99	bzb	MG4 J000800+4712
2FGLJ0007.8+4713	J000759.97+471207.7	0.033	6.0E-4	0.0	2.2	1.0	bzb	MG4 J000800+4712
2FGLJ0009.0+0632	J000903.93+062821.2	0.07	0.0063	0.0017	1.75	0.98	bzb	CRATES J0009+0628
2FGLJ0009.1+5030	J000922.75+503028.7	0.034	7.0E-4	0.0	1.95	0.99	agu	NVSS J000922+503028
2FGLJ0011.3+0054	J001130.39 + 005751.8	0.078	0.0083	0.0029	1.55	0.98	bzq	PMN J0011+0058
2FGLJ0012.9-3954	J001259.89-395425.9	0.0070	0.0	0.0	2.01	0.99	bzb	PKS 0010-401
2FGLJ0013.8+1907	J001356.37+191041.9	0.056	0.0034	6.0E-4	1.75	0.98	bzb	GB6 J0013+1910

(1) 2FGL name

 WISE name of the WBC candidate counterpart. Col.

Col. (2) WISE name of the WBC candidate counterpart.
Col. (3) p value computed with the positional association procedure (see Section 3.1).
Col. (4) p value computed with the positional association procedure including the IR-γ-ray constraints (see Section 3.1).
Col. (5) log LR_{ik} value computed with the LR method (see Section 3.2).
Col. (6) ρ value computed with the 2FGL/2LAC for sources associated with different methods: agu= AGN of uncertain type, bzb = BL Lac object, bzq = flat spectrum radio quasars, sey = Seyfert galaxy reg = radio galaxy. Capital letters have been used to indicate identified sources.
Col. (8) Counterpart name reported in the 2FGL/2LAC for sources associated with different methods.

	TABLE	2		
Association	PROBABILITIES	FOR	$1 \mathrm{FGL}$	SOURCES.

1FGL name	WBC association	R deg.	P pos.	p IR cons.	$\log LR_{ik}$	ρ	1FGL class	1FGL counterpart
1FGLJ0041.9+2318	J004204.55+232001.1	0.043	0.0016	2.0E-4	1.46	0.96	$\mathbf{b}\mathbf{z}\mathbf{q}$	PKS 0039+230
1FGLJ0147.4 + 1547	J014716.88 + 154943.9	0.05	0.0025	4.0E-4	1.76	0.98		
1FGLJ0305.0-0601	J030500.56-060741.5	0.108	0.0174	0.0101	1.29	0.94	bzb	CRATES J0305-0607
1FGLJ0422.1+0211	J042252.21+021926.9	0.228	0.0567	0.044	0.8	0.9	bzq	PKS 0420+022
1FGLJ0622.3-2604	J062222.06-260544.6	0.023	2.0E-4	0.0	2.18	0.99	agu	CRATES J0622-2606
1FGLJ0659.9 + 1303	J070014.31 + 130424.4	0.076	0.0079	0.0026	1.83	0.98		
1FGLJ0835.4 + 0936	J083543.20+093717.9	0.063	0.0047	_	1.75	0.98	\mathbf{bzb}	CRATES J0835+0937
1FGLJ0849.4-2912	J084922.10-291150.4	0.019	1.0E-4	0.0	1.84	0.98		
1FGLJ0949.8+1757	J094939.75 + 175249.4	0.082	0.0095	0.0036	1.49	0.96	$\mathbf{b}\mathbf{z}\mathbf{q}$	CRATES J0949+1752
1FGLJ1220.2 + 3432	J122008.29+343121.7	0.023	2.0E-4	0.0	1.67	0.98	\mathbf{bzb}	CGRaBS J1220+3431
1FGLJ1322.1 + 0838	J132210.17+084232.9	0.062	0.0046	0.0010	1.6	0.97		
1FGLJ1422.7+3743	J142245.16 + 374915.8	0.095	0.0132	0.0064	0.96	0.89	\mathbf{bzb}	CLASS J1423+3737
1FGLJ1422.7+3743	J142304.62+373730.6	0.119	0.0209	_	0.83	0.9	\mathbf{bzb}	CLASS J1423+3737
1FGLJ1616.1 + 4637	J161603.77 + 463225.4	0.087	0.0107	0.0044	0.66	0.85	$\mathbf{b}\mathbf{z}\mathbf{q}$	CRATES J1616+4632
1FGLJ1616.1 + 4637	J161614.81 + 464938.7	0.202	0.0484	0.0377	0.44	0.93	$\mathbf{b}\mathbf{z}\mathbf{q}$	CRATES J1616+4632
1FGLJ1735.4-1118	J173527.18-111734.2	0.022	2.0E-4	0.0	2.55	1.0	agu	CRATES J1735-1117
1FGLJ1804.1+0336	J180356.26+034107.3	0.097	0.0137	0.0068	1.73	0.98	bzq	CRATES J1803+0341
1FGLJ2008.6-0419	J200824.43-041829.1	0.059	0.0039	8.0E-4	1.47	0.96	agn	3C 407
1FGLJ2117.8 + 0016	J211817.39 + 001316.9	0.115	0.0196		1.49	0.96	bzq	CRATES J2118+0013
1 FGLJ2133.4 + 2532	J213314.36 + 252859.0	0.08	0.0089	0.0032	1.81	0.98		

Col. (1) 1FGL name.
Col. (2) WISE name of the WBC candidate counterpart.
Col. (3) p value computed with the positional association procedure (see Section 3.1).
Col. (4) p value computed with the positional association procedure including the IR-γ-ray constraints (see Section 3.1).
Col. (5) log LR_{ik} value computed with the LR method (see Section 3.2).
Col. (6) p value computed with the LR method (see Section 3.2).
Col. (7) Class reported in the 1FGL/1LAC for sources associated with different methods: agu= AGN of uncertain type, bzb = BL Lac object, bzq = flat spectrum radio quasars, sey = Seyfert galaxy reg = radio galaxy. Capital letters have been used to indicate identified sources.
Col. (8) Counterpart name reported in the 2FGL/2LAC for sources associated with different methods.

5.2. Second method: the likelihood ratio procedure 664

In this section we briefly compare the variation of the 665 ⁶⁶⁶ likelihood ratio technique (see Section 3.2), and the one ⁶⁶⁷ adopted in the 2LAC (Ackermann et al. 2011).

The main difference resides in the use of the IR color 668 669 distributions of the WBC catalog extracted on the basis $_{670}$ of the IR- γ -ray connection rather than the radio logN-671 logS distribution. Our likelihood procedure is also based 672 on the local surface density of "background" objects to 673 take into account sky distribution of the Fermi sources 674 (as suggested by Sutherland & Saunders 1992).

Ackermann et al. (2011) adopted the integrated all-675 676 sky radio logN-logS distribution to calculate the number $_{677}$ of "background" objects above a radio flux density S_i 678 chosen for each radio potential counterpart within the ⁶⁷⁹ positional uncertainty of a given *Fermi* source: $N(>S_i)$ 680 (see Equation 2 of Ackermann et al. 2011). This could 681 be improved selecting a particular range of expected ra-682 dio flux densities chosen for example on the basis of the ⁶⁸³ radio- γ -ray correlation (e.g., Ghirlanda et al. 2010;

₆₈₄ Mahony et al. 2010; Abdo et al. 2010b; 685 Petrov et al. 2013; Massaro et al. 2013a). As we performed in our procedure while computing $Q(\Delta c_{12}, \Delta c_{34})$ ₆₈₇ and $N(\Delta c_{12}, \Delta c_{34})$ using their differential IR colors 688 distributions. In addition, $N(>S_i)$ was not evaluated 689 locally but assuming that the surface density of the 690 radio survey was constant. These criteria adopted in ⁶⁹¹ the computation of $N(> S_i)$ could lead to low values ⁶⁹² of the likelihood ratios being less rigorous as stated by ⁶⁹³ Sutherland & Saunders (1992).

In particular, using $N(>S_i)$ implies that, having two 694 695 or more radio potential counterparts that lie at similar ⁶⁹⁶ distance (i.e., similar r_{ik} and thus same $f(r_{ik})$) from the $_{697}$ location of a γ -ray source but all within its positional un-⁶⁹⁸ certainty region, the brightest radio source has a larger ⁶⁹⁹ value of $log LR_{ik}$ and thus a smaller probability to be ⁷⁰⁰ a spurious associations (see Equation 2 in Section 3.2). ⁷⁰¹ There is no a priori reason to favor brightest objects since 702 according to the radio logN-logS distributions are the ⁷⁰³ rarest, as occurs when considering $N(>S_i)$. This ap-

F. Massaro et al. 2014

 TABLE 3

 Roma-BZCAT sources not found by the Bayesian procedure.

2FGL	2LAC	2LAC	Roma-BZCAT	R
name	class	counterpart	name	deg.
2FGLJ0024.5+0346	bzq	GB6 J0024+0349	BZQJ0024+0349	0.055
2FGLJ0037.8+1238	bzb	NVSS J003750+123818	BZBJ0037+1238	0.012
2FGLJ0043.7+3426	bzq	GB6 J0043+3426	BZQJ0043+3426	0.01
2FGLJ0047.9+2232	bzq	NVSS J004802+223525	BZQJ0048+2235	0.054
2FGLJ0105.3+3930	bzb	GB6 J0105+3928	BZUJ0105+3928	0.062
2FGLJ0115.4+0358	bzb	PMN J0115+0356	BZBJ0115+0356	0.049
2FGLJ0342.4+3859	bzq	GB6 J0342+3858	BZQJ0342+3859	0.028
2FGLJ0515.5+7355	bzb	GB6 J0516+7350	BZBJ0516+7351	0.101
2FGLJ0515.9+1528	\mathbf{bzb}	GB6 J0515+1527	BZBJ0515+1527	0.039
2FGLJ0517.5+0900	bzq	PMN J0517+0858	BZQJ0517+0858	0.047
2FGLJ0648.9+1516	agu	VERITAS J0648+152	BZBJ0648+1516	0.027
2FGLJ0849.2+6606	bzb	GB6 J0848+6605	BZBJ0848+6606	0.036
2FGLJ0941.4+2724	bzq	MG2 J094148+2728	BZUJ0941+2722	0.108
2FGLJ1048.6+2336	bzb	NVSS J104900+233821	BZUJ1049+2328	0.091
2FGLJ1251.2+1045	bzb	1RXS J125117.4+103914	BZBJ1251+1039	0.106
2FGLJ1330.9+7001	bzb	NVSS J133025+700141	BZBJ1330+7001	0.045
2FGLJ1520.8-0349	bzb	NVSS J152048-034850	BZBJ1520-0348	0.026
2FGLJ1649.6+5238	bzb	87GB 164812.2+524023	BZBJ1649+5235	0.071
2FGLJ1754.3+3212	bzb	RX J1754.1+3212	BZBJ1754+3212	0.03
2FGLJ1810.8+1606	bzb	87GB 180835.5+160714	BZBJ1810+1608	0.039
2FGLJ1811.3+0339	bzb	NVSS J181118+034114	BZBJ1811+0341	0.032
2FGLJ1836.2+3137	bzb	RX J1836.2+3136	BZBJ1836+3136	0.015
2FGLJ1841.7+3221	\mathbf{bzb}	RX J1841.7+3218	BZBJ1841+3218	0.042
Col. (1) 2FGL name.				

Col. (2) Class reported in the 2LAC for sources associated with different methods: agu= AGN of uncertain type, bzb = BL Lac object, bzq = flat spectrum radio quasars.
 Col. (3) Counterpart name reported in the 2LAC for sources associated with different methods. Col. (4) Roma-BZCAT name of the candidate counterpart.
 Col. (5) Angular separation between the Roma-BZCAT and the 2FGL positions.

⁷⁰⁴ proach appears to be less accurate when applied to faint ⁷⁰⁵ radio sources since their density increases as their radio ⁷⁰⁶ flux density decreases.

Given the radio- γ -ray connection, it is thus expected row that faint γ -ray sources should be associated with faint row radio objects. Thus the use of the integrated radio rulo logN-logS distribution to determine the surface density rul of "background" objects could lead to an "incorrect" rul associations if a spurious bright source lies by chance rul affected by the previously discussed "the brightest the rus favored" problem or a similar one defined for the rue favored" a flux density or a magnitude integrated rue distribution rather than the differential one (see also rue surface also rue surface also rue surface also rue surface also rue favored as flux density or a magnitude integrated rue distribution rather than the differential one (see also rue Sutherland & Saunders 1992).

There is also another difference in the equations used real to estimate the LR_{ik} between our method and the one real described in Ackermann et al. (2011, see also Masci real et al. 2001) As described by Sutherland and Saunreal ders (1992), we are taking into account the probability respective $C_{12}, \Delta c_{34}$ while according to the Ackermann et al. respective (2011) definition, this was set to 1.

Regarding the local estimates of $Q(\Delta c_{12}, \Delta c_{34})$ and 727 $_{728} N(\Delta c_{12}, \Delta c_{34})$, it is difficult to justify and assume 729 a constant density of the potential radio counterparts 730 over the survey footprint, (see Section 3.2 of Acker-731 mann et al. 2011) whenever the radio survey cov-732 ers several hundreds of square degrees in the sky as 733 the NVSS (Condon et al. 1998) or the SUMSS cases 734 (Mauch et al. 2003). To highlight the relevance of tak-735 ing into account the local source density, we show in ⁷³⁶ Figure 12 the Hammer projection of the northern re-737 gion of the SUMSS catalog (Mauch et al. 2003), where 738 the differences between the source density in different 739 regions are mild but evident. This situation is even 740 more emphasized in the case of the WISE all-sky sur-741 vey and on it sky distribution of the WBC catalog 742 (D'Abrusco et al. 2014). This effect could be also a

Hammer projection of northern region of the SUMSS

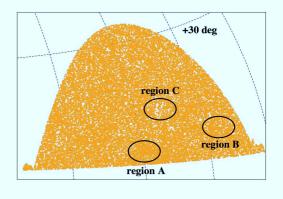


FIG. 12.— The Hammer (i.e., equal-area) projection of the source sky distribution in the northern region covered by the SUMSS (Mauch et al. 2003). It is clear how the surface density of radio sources could vary locally. For instance, the elliptical region (A) has a larger surface density with respect to region B or even more with respect to region C, whereas all the three ellipses have the same area. This stresses the idea of using the local surface density when computing $N(\Delta c_{12}, \Delta c_{34})$ in a comparison catalog.

⁷⁴³ problem when the *Fermi* source lies on the edge of the ⁷⁴⁴ radio survey footprint where this situations does not oc-⁷⁴⁵ cur in the *WISE* since it covers the entire sky. In Fig-⁷⁴⁷ ure 13 we also show the total number of NVSS radio ⁷⁴⁸ sources within a circular region of 0.2° radius computed ⁷⁴⁹ around the γ -ray positions of the 2FGL sources at differ-⁷⁵⁰ ent Galactic latitudes. Despite the fact that the average ⁷⁵¹ NVSS source density is quite uniform above and below ⁷⁵² the Galactic plane (Condon et al. 1998), it is quite evi-⁷⁵³ dent that the fluctuations around its mean value could ⁷⁵⁴ be up a factor of ~8 even if at high Galactic latitudes. ⁷⁵⁵ This indicates that the assumption of considering con-⁷⁵⁶ stant such density of "background" objects could reduce ⁷⁵⁷ the number of reliable associations when using a radio

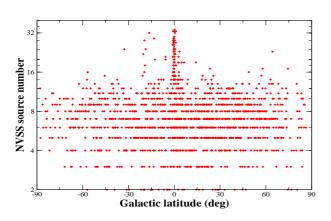


FIG. 13.— The total number of NVSS radio sources within a circular region of 0.2° radius counted around the γ -ray positions of the 2FGL sources at different Galactic latitudes. It is clear how the NVSS source density fluctuates around its mean value even at high Galactic latitudes.

⁷⁵⁸ survey as the NVSS searching for the low-energy coun-⁷⁶⁰ terparts of *Fermi* sources as performed in the 2LAC.

Finally, we also highlight that computing and restrictrespondent to the ranges of Δc_{12} and Δc_{34} using the correlation respectively between the γ -ray spectral index and the IR colors allows respectively noticed it respectively reduces the surface density of the blazar-like candidates respectively α_{γ} very different from that of blazars (e.g., PSRs), respectively reduced by up 95% or even more. Form Figure 9, it row is clear that for sources with $\alpha_{\gamma} = 0.25$, there are basirul cally no expected WBC sources that could be a potential respectively.

6. SUMMARY AND CONCLUSIONS

773

We have presented two methods to determine the 774 775 association probability related to the comparison be-⁷⁷⁶ tween the WBC catalog and the current available 777 Fermi catalogs (i.e., 1FGL and 2FGL Abdo et al. 2010a; 778 Nolan et al. 2012). The former procedure is based on 779 Montecarlo simulations and it takes into account the ⁷⁸⁰ sky distribution of the sources in the comparing catalog. 781 The latter is a variation of the likelihood ratio method 782 (e.g., Sutherland & Saunders 1992; Masci et al. 2001) 783 whereas the underlying parameters used to compute the 784 sources densities are not their magnitudes or their fluxes 785 but their IR colors. This allows us to take into ac-786 count the underlying correlation between the IR and 787 the γ -ray spectral shape found for the *Fermi* blazars 788 (Massaro et al. 2011a; D'Abrusco et al. 2012) and used 789 to extract the WBC catalog (D'Abrusco et al. 2014).

⁷⁹⁰ Once the reliability thresholds for each method were ⁷⁹¹ established, we selected the associated sources in the ⁷⁹² comparison WBC catalog for the 2FGL sources and for ⁷⁹³ a subsample of 1FGL sources, not listed in the 2FGL. ⁷⁹⁴ Our associations are in agreement with previous analy-⁷⁹⁵ ses but we also found new potential counterparts of sev-⁷⁹⁶ eral UGSs. In particular, 39 UGSs of the 2FGL and 5 of ⁷⁹⁷ those listed in the 1FGL have now at least one potential ⁷⁹⁸ counterpart, being a γ -ray blazar-like source, to which an ⁷⁹⁹ association probability has been assigned as required for ⁸⁰⁰ the sources listed in the *Fermi* catalogs. It is also worth ⁸⁰¹ noting that none of PSRs listed in the second pulsar LAT ⁸⁰² catalog (Abdo et al. 2013) has a γ -ray blazar-like source ⁸⁰³ located within their *Fermi* positional uncertainty region ⁸⁰⁴ This is in agreement with the fact that the chance of spu-⁸⁰⁵ rious associations for our WBC potential counterparts is ⁸⁰⁶ extremely low all over the sky.

We highlight that all the UGSs associated with a 807 ⁸⁰⁸ WBC counterpart in the 2FGL or in the 1FGL analy-⁸⁰⁹ ses presented here were not listed in any of the previ-⁸¹⁰ ous *Fermi* catalogs, and now thanks to their assigned ⁸¹¹ association probability they could be included in fu-^{\$12} ture releases. It is also worth mention that our asso-^{\$13} ciation procedures indicates as reliable correspondences ⁸¹⁴ many AGUs that having also peculiar IR colors have ⁸¹⁵ a larger chance to be blazar-like sources. Then it is ⁸¹⁶ also relevant to point that both procedures lists among ⁸¹⁷ their reliable associations several Seyfert galaxies in-^{\$18} cluded in the 2FGL and classified as radio-loud narrow-819 line Seyfert 1 (RLNLSy1; e.g., Komossa et al. 2006; 820 Abdo et al. 2009). This strongly supports the under- $_{s21}$ lying connection between the γ -ray emission and the 822 peculiar IR colors used to extract our WBC catalog ⁸²³ and could indicate that these RLNLSy1 are more sim-⁸²⁴ ilar to blazars than expected (e.g., Foschini et al. 2011; 825 D'Ammando et al. 2012; D'Ammando et al. 2013). Finally, we emphasize that extensive ground-826 ⁸²⁷ based spectroscopic observations in the IR-optical ⁸²⁸ are necessary to verify the nature of the selected 829 WISE counterparts and to estimate the fraction 830 of non-blazar objects eventually present in the ⁸³¹ WBC catalog, as already performed for the *Fermi*

⁸³² UGSs (Masetti et al. 2013a; Paggi et al. 2014) sim⁸³³ ilarly to the INTEGRAL follow up campaigns
⁸³⁴ (e.g., Masetti et al. 2010; Masetti et al. 2012;
⁸³⁵ Masetti et al. 2013b).

F. Massaro is grateful to the colleagues of the Fermi 836 ⁸³⁷ LAT collaboration, in particular to S. Digel J. Ballet, 838 and B. Lott for their valuable comments. The work ⁸³⁹ is supported by the NASA grants NNX12AO97G and 840 NNX13AP20G. Part of this work is based on archival ⁸⁴¹ data, software or on-line services provided by the ASI 842 Science Data Center. This research has made use of ⁸⁴³ data obtained from the high-energy Astrophysics Sci-⁸⁴⁴ ence Archive Research Center (HEASARC) provided 845 by NASA's Goddard Space Flight Center; the SIM-846 BAD database operated at CDS, Strasbourg, France; 847 the NASA/IPAC Extragalactic Database (NED) oper-848 ated by the Jet Propulsion Laboratory, California In-849 stitute of Technology, under contract with the National 850 Aeronautics and Space Administration. Part of this work ⁸⁵¹ is based on the NVSS (NRAO VLA Sky Survey): The ⁸⁵² National Radio Astronomy Observatory is operated by ⁸⁵³ Associated Universities, Inc., under contract with the 854 National Science Foundation. This publication makes 855 use of data products from the Wide-field Infrared Sur-⁸⁵⁶ vey Explorer, which is a joint project of the University 857 of California, Los Angeles, and the Jet Propulsion Labo-⁸⁵⁸ ratory/California Institute of Technology, funded by the 859 National Aeronautics and Space Administration. TOP-

REFERENCES

- 863 Abdo, A. A., et al. 2009, ApJ, 707, L142
- 864 Abdo, A. A. et al. 2010a ApJS 188 405
- ⁸⁶⁵ Abdo, A. A. et al. 2010b ApJ, 715, 429
 ⁸⁶⁶ Abdo, A. A. et al. 2013 ApJS, 208, 17
- ⁶⁰⁰ Ackermann, M. et al. 2010 ApJ, 743, 171
 ⁸⁶³ Atwood, W. B. et al. 2009 ApJ, 697, 1071
- 869 Baumgartner, W. H. et al. 2013 ApJS, 207, 19
- 870 Barthelmy, S.D. et al., 2005 SSR, 120, 143
- 871 Becker, R. H., et al. 1995 ApJ, 450, 559
- 872 Blandford, R.D. & Rees, M.J., 1978, in Proc. Pittsburgh Conf. on
- BL Lac objects, (Pittsburgh, PA: Univ. Pittsburgh), 328 873
- 874 Condon, J. J. et al. 1998, AJ, 115, 1693
- 875 Cowperthwaite, Philip S. et al. 2013 AJ, 146, 110
- 876 Cutri et al. 2012 wise.rept, 1C
- 877 D'Abrusco, R. et al. 2012 ApJ, 748, 68 878 D'Abrusco, R. et al. 2013 ApJS, 206, 12
- $_{\rm 879}$ D'Abrusco , R. et al. 2014 ApJS submitted
- 880 D'Ammando, F. et al. 2012 MNRAS, 426, 317
- 881 D'Ammando, F. et al. 2013 MNRAS, 436, 191
- 882 de Ruiter, H. R., Willis, A. G., Arp, H. C. 1977 A&AS, 28, 211
- 883 Foschini, L., et al. 2011, MNRAS, 413, 1671
- 884 Gehrels, N. et al., 2004, ApJ, 611, 1005
- 885 Ghirlanda, G. et al. 2010 MNRAS, 407, 791
- 886 Komossa, S. et al. 2006, AJ, 132, 531
- ⁸⁰⁰ Homosol, S. et al. 2000, 101, 102, 001
 ⁸⁰⁷ Laurent-Muehleisen, S.A. et al., 1999, ApJ, 525, 127
 ⁸⁰⁸ Lonsdale, C. et al. 1998, in IAU Symp. 179, New Horizons from
- Multi-Wavelength Sky Surveys, ed. B. J. McLean, D. A. Golombek, J. J. E. Hayes, & H. E. Payne (Cambridge: 889
- 890
- 891 Cambridge Univ. Press), 450
- ⁸⁹² Mahony, E. K. et al. 2010 ApJ, 718, 587
- 893 Masci, F. J. et al. 2001, PASP, 113, 10

- ⁸⁹⁴ Masetti, N. et al. 2010 A&A, 519A, 96
- 895 Masetti, N. et al. 2012 A&A, 538A, 123
- 896 Masetti, N. et al. 2013a A&A, 559, 58
- 897 Masetti, N. et al. 2013b A&A, 556, 120
- ⁸⁹⁸ Massaro, E. et al. 2009 A&A, 495, 691
- ⁸⁹⁹ Massaro, F. et al. 2011a ApJ, 740L, 48
- 900 Massaro, E. et al. 2011b "Multifrequency Catalogue of Blazars
- 901 (3rd Edition)", ARACNE Editrice, Rome, Italy 902 Massaro, F. et al. 2012b ApJ, 752, 61
- 903 Massaro, F., 2012b ApJ, 750, 138
- 904 Massaro, F. et al. 2013a ApJS, 207, 4
- 905 Massaro, F. et al. 2013b ApJS, 209, 10
- 906 Massaro, F. et al. 2013c ApJS, 206, 13
- 907 Massaro, F. et al. 2014 ApJS in prep.
- Mattox, J. R., Schachter, J., Molnar, L., Hartman, R. C.,
 Patnaik, A. R. 1997 ApJ, 481, 95
- 910 Mauch, T. et al. 2003 MNRAS, 342, 1117
- 911 Nolan et al. 2012 ApJS, 199, 31
- 912 Paggi, A. et al. 2013 ApJS, 209, 9
- 913 Paggi, A. et al. 2014 AJ accepted
- 914 Petrov, L. et al. 2013 MNRAS, 432, 1294
- 915 Prestage, R. M., & Peacock, J. A., 1983, MNRAS, 204, 355
- 916 Richter, G. A., 1975, Astroh. Nachrichten, 296, 65
- 917 Stickel, M. et al. 1991 ApJ, 374, 431
- 918 Stocke et al. 1991, ApJS, 76, 813
- 919 Sutherland, W. & Saunders, W. 1992 MNRAS, 259, 413
- 920 Taylor, M. B. 2005, ASP Conf. Ser., 347, 29
- 921 Urry, C. M., & Padovani, P. 1995, PASP, 107, 803
- 922 White, R. L. et al. 1997 ApJ, 475, 479
- 923 Wolstencroft, R. D. et al. 1986, MNRAS, 223, 279
- 924 Wright, E. L., et al. 2010 AJ, 140, 1868