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Abstract

We describe a simple technique based on a modified
echo-enabled harmonic generation (EEHG) scheme to ma-
nipulate the three-dimensional electron beam microbunch-
ing distribution in order to generate higher-order optical
modes in an FEL. As with EEHG, the concept uses two
modulators and two chicanes to produce microbunching.
However, in one of the modulators, the resonant inter-
action with the laser has a well-defined transverse struc-
ture that becomes strongly correlated to the longitudinal
microbunching distribution. Both high-harmonic frequen-
cies and high transverse mode numbers can be generated
through a transversely-dependent echo effect.

INTRODUCTION

Modern x-ray free-electron lasers (FELs) have become a
remarkable tool for probing matter at Angstrom length and
femtosecond time scales. In most X-ray FELs, the ampli-
fication process starts from noise in the electron beam (e-
beam) emission spectrum, which leads to limited temporal
coherence. To achieve fully coherent radiation, the echo-
enabled harmonic generation (EEHG) scheme has been
proposed to frequency up-convert long wavelengths with
high efficiency [1, 2, 3].

The standard EEHG scheme uses two modulators and
two chicanes to generate longitudinal microbunching in the
e-beam at the frequency k = nk; + mks, where k1 and ko
are the frequencies of the lasers in the modulating sections.
High harmonics can be obtained for large values of n or
m by precise tuning of the modulation amplitudes and dis-
persions. Because the light emitted by the bunched beam
will have a phase structure determined by the microbunch-
ing distribution, the transverse phase and intensity profile
of the modulating lasers are typically assumed constant
over e-beam profile so that the final harmonic microbunch-
ing structure has no transverse spatial dependence. This
ensures maximal harmonic bunching and also facilitates
emission into the Gaussian-like fundamental FEL mode,
which is peaked on-axis and has an axisymmetric trans-
verse phase profile.

There are, however, numerous theoretical and experi-
mental contexts in which higher-order light beams are de-
sirable or required. Of particular recent interest are optical
vortices, or light beams that carry well-defined, discrete az-
imuthal phase ¢ about the axis of propagation, where [ is
an integer called the topological charge. Starting from the
work of Allen [4], who showed that certain types of opti-
cal vortex modes carry discrete values [ of orbital angular
momentum (OAM) per photon, there has been considerable
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Figure 1: General setup for echo-enabled harmonic mode
generation.
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work exploring the interaction of optical vortices with mat-
ter. OAM can be transferred to trapped particles [5], atoms
[6], or Bose-Einstein condensates [7]. Optical vortices also
have a corresponding ringlike intensity profile that can fa-
cilitate subwavelength microscopy[8], sub-diffraction fluo-
rescence microscopy [9], imaging [10], and optical pump
schemes [11]. At x-rays, optical vortices have been pro-
posed as a method to separate quadrupolar from dipolar
electronic transitions at K-edges [12].

The generation of low-order I OAM modes in FELSs has
been examined previously [13, 14]. Here, we examine a
new variation on the EEHG scheme that enables the gen-
eration of coherent, high-order optical vortices at x-rays by
up-conversion of the frequency and/or helical mode num-
ber [ of a microbunched e-beam. In this scheme, the en-
ergy modulation imposed on the e-beam has a well-defined
helical dependence. This would be the case if the com-
plex laser mode field profile is an OAM mode (as in Fig-
ure 1), or, more generally, if the resonant modulator phase
bucket has a helical phase structure [15]. In contrast to
standard EEHG, recoherence of the imprinted helcial mod-
ulations here occurs as a correlated function of transverse
position in the e-beam after passage through the beamline.
As a result, both the frequency and helical mode number [
can be up-converted through a process we refer to as echo-
enabled harmonic mode generation, or EEHMG. The final,
highly-correlated helical microbunched distribution can be
tailored to preferentially emit optical vortices with varying
[ values and harmonics in a downstream radiator through
proper adjustment of the laser modulation profile, ampli-
tude, and beamline dispersion.

A striking feature of the spatial recoherence effect in
EEHMG is that it allows large up-conversion of the fre-
quency and [ mode either simultaneously, or independently.
By upconverting both together, one can generate large [
modes at harmonics. Alternately, large frequency harmon-
ics can be generated without changing the magnitude of [
so that the helical distribution generated at one frequency
can be passed to a vastly different frequency.
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FORMULATION

The modified echo scheme is shown Figure 1. The e-
beam distribution at the entrance to the first modulator
is given by f;(r, ¢,p), where r and ¢ are the radial and
azimuthal coordinates, p = (E — Ey)/og is the scaled
electron energy with respect to the central beam energy
Ey = ymc?, and o is the rms energy spread. We consider
the complex modulation amplitude in the first modulator to
be of the form Ay (r, ¢) = A1 (r)Exp(il¢), where I; is an
integer that describes the azimuthal phase variation across
the profile, and A; is the radially dependent field ampli-
tude. At the exit of the first modulator section, the beam
energy is modulated such that an electron acquires a new
energy p' = p + Ay sin(kyz + [16) where ky = 27/ is
the laser frequency and z is the initial longitudinal position
of the electron in the beam. Due to the transverse depen-
dence, the energy kick depends on the electron’s azimuthal
position ¢ radial position r. Note that the mathematical
form of the modulating field is in fact quite general, in that
it describes a modulation generated either by an OAM laser
seed, or by the interaction of the e-beam with a Gaussian
laser at harmonics of a helical undulator, as in HGHMG
seeding [14]. The beam then passes through a longitu-
dinally dispersive section characterized by the matrix el-

ement Rég, which shifts the electron to the position 2 ac-

cording to 2’ = z + B1p’/ki, where By = Réé)kloE/Eo.
The beam is then modulated by the second laser, with fre-
quency ko = 27/ A9, in the second modulator according the
the field distribution Ay (r, ¢) = Aa(r)Exp(il2¢). The new
energy is p”’ = p'+ Ay sin(kyz'+12¢). The second chicane,

with dispersion Ré%), transforms the longitudinal position

as, 2" = z' + Bop k1, where By = R2 ko /Ey. In
terms of the final variables at the end of the last dispersive
element, the e-beam bunching factor at the frequency k and
at the azimuthal mode [ is given by

b (k) = —

i (e7k"= e (r 2" p" N (1)

where fr(r,¢,2”,p") is the final e-beam distribution,
and brackets denote averaging over the final coordinates.
Transforming back to the initial coordinates, the exponen-
tial term is then,

—ikr—ild—i
Bxp [—ika" = il] = 32, ,, ORI
% ein(k'lz+l1¢)+im(kgz+l2¢+KB1p)

XJn Z1(771[{81 - % (Bl + B2))i| Jm (7%)(2)

where K = ky/ky. Averaging over z picks out the domi-
nant microbunching frequencies,

k= (lkl = nk1 + ka, (3)

where a = n + mK. This is precisely the same fre-
quency conversion relation as EEHG. Here, however, there
is also an /-mode conversion relation, found by averaging
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Figure 3: Bunching spectrum optimized forn = —1, m =

50. Both the OAM mode and frequency are up-converted
withly = 0,10 =1, A; = Ay = 3, B = 29.5, B, = 0.61,
/\1 = )\2 = 240 nm

over the azimuthal coordinate ¢. Assuming an axisymmet-
ric, uncorrelated initial e-beam distribution f;(r, ¢,p) =
N0<27T)_1/2€_p2/2f0(7"), the ¢ integral in (1) is straight-
forward, and the final azimuthal density mode excited in
the beam has the same up-conversion as the frequency:

I =nly +mis. 4

One can therefore simultaneously convert both the fre-
quency and azimuthal mode number of the microbunched
distribution in EEHMG. The final bunching factor is ex-
pressed in general as,

o = [ [ 1, (i) 2 (a8
&)

where £ = —(nBj + aBs). If the transverse variation of
the fields is negligible over the e-beam such that {1, [y = 0,
Ay} = A; and Ay = A,, this reduces to the expression in
[1] for standard EEHG. With A, = B, = 0, the general
formula for HGHMG is recovered [14].



EXAMPLES

Among the numerous possible combinations of helical
mode numbers {; and /5 and harmonic numbers n and m,
two examples illustrate the primary aspects. First consider
an l; = 1 modulation in the first stage of Fig 1 from a
field of the form A; (r) = Al(\/ﬁr/wo)”l‘e*’ﬁ/w%, where
wy is the laser spot size. The e-beam is then modulated in
the second stage by a simple Gaussian laser with [, = 0.
From Eq. (4) the final azimuthal mode number is given by
I = nly, and thus does not depend on the potentially large
harmonic number m of the frequency up-conversion. As
with EEHG, for m > 1, the bunching factor is maximized
when n = —1 and By, B> have the same sign. Thus, the
final mode number is | = nl; = —1. Figure 2 shows the
microbunching bunching spectrum (calculated from Eqgs. 1
and 2 for a finite beam with rms length co;) from a helical
modulation in the first stage. The spectrum is composed
of different frequency spikes, each of which corresponds to
an [ = —1 helical modulation. In a radiator, this beam will
emit light with a helical phase at the frequency (or frequen-
cies) within the radiator bandwidth.

It is interesting to note that the final mode [ has the oppo-
site sign as [; by virtue of the choice n = —1. This ability
to transform between different azimuthal mode numbers is
a key feature of the 3D echo recoherence effect. Consider a
reversal of the previous arrangement, where now, the heli-
cal modulation is performed in the second modulator. The
first modulation has no transverse dependence (I; = 0),
so that the final azimuthal mode number is then [ = mlis,
which can be made large during harmonic upconversion for
m > 1. The spectrum shown in Figure 3 displays the result
from this arrangement where each frequency peak is now
characterized by a distinct [ value. Thus, a narrowband ra-
diator can be tuned to pick out a single peak to emit a co-
herent vortex with a specific value of topological charge.
Large [ modes are not amplified in FELs due to their large
emission angles and weak coupling, but can be emitted su-
perradiantly in an undulator or from a CTR foil.

It is noted that, not only does the long term memory of
the correlated phase space have to be preserved to obtain
the high-harmonic values, but the highly correlated heli-
cal structure is also highly susceptible to wash out from
transverse motion of the electrons. Optimization of this
scheme requires precise tuning of the betatron phase ad-
vance (which should be a multiple of 7 ) in order to reestab-
lish the 3D structure. Note that odd-7 phase angles mir-
ror the x and y electron positions across the z axis and
thus change the sign of odd ! modes (even modes are un-
changed).
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