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Abstract based on the linearized Vlasov equation of coasting k
= 3le = i 1

Bursting of coherent synchrotron radiation has been o Here I me”/e 170.45 Ais the Alfve_n curren
. L o the momentum compaction factdf(k) the impedanc

served and in fact used to generate THz radiation in man it | h & — 2 on

electron storage rings. In order to understand and cont ?L u{;"t ekngt ; andro I_ N b/ zﬁa . In gsneral

the bursting, we return to the study of the microwave in? = §Y/ac 05|’ IS akco(r)np ex num e; anh IS to be SOI

stability. In this paper, we will report on the theoretical or a given value ok. One can see that there Is a pole

understanding, including recent developments, of the mﬁbe real axis in the integral in Eq. (1). The correct treatr

crowave instability in electron storage rings. The historiQ'c the pole leads to the Landau damping. Actually, one

cal progress of the theories will be surveyed, starting frorlarSt eyaluate th(_a mte_g_ral in the upper half plane and
the dispersion relation of coasting beams, to the work (ﬁnalytl_cally Cof‘t'”.”e itinto the lower half plane. The re
Sacherer on a bunched beam, and ending with the Oide a?lfothe integral is given by

Yokoya method of discretization. This theoretical survey T a

will be supplemented with key experimental results over Gla) = -1+ \/;ae ¢ (erﬁ(ﬁ
the years. Finally, we will describe the recent theoretical ) )
development of utilizing the Laguerre polynomials in thd! iS €asy to see from the perturbation that the beam i
presence of potential-well distortion. This self-consistertable iflm[Q2] > 0.

method will be applied to study the microwave instability .

driven the impedances due to the coherent synchrotron &SR Impedance in Free Space

diation.
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For electrons, orbiting on a circle with radiysinside
bending magnets, the longitudinal wakefield due ta
INTRODUCTION steady CSR in free space was given by Murphy, Krir

and Gluckstern[2]
Over the past quarter century, there has been steady

. . 4 1/3
progress toward smaller transverse emittances in electron W (2) = — 0 3)
storage rings used for synchrotron light sources, from tens or (32)4/3’

of nm.decades ago to the nm range recentl_y. I_n contragly .~  and the wake vanishes when< 0. Unlike &
there is not much progress made in the longitudinal planeonventional wake, the CSR force is acting on the ele:

For an electron bunch in a typical ring, its relative energy, .4 |is corresponding impedance was actually fou
spreadss remains about0—2 and its lengthy, is still in Faltens and Laslett[3]

between 5 mm to 10 mm. Now the longitudinal emittance
(0s0.) becomes a factor of thousand larger than those in 27 I'(2/3)(V3 +1)
the transverse dimensions. In this paper, we will address esr (k) = (?) 31/3
questions Qf:. How short a bunch can be? What i_slthe_ fulzherer is the Gamma function.
damental limit? If there is a limit, is there any mitigation
method? Since the synchrotron radiation is so fundameN,I
tal in electron storage rings, let us start with the coherent

(k) @

icrobunching

synchrotron radiation (CSR). Using Zes (k) = Zers(k)/2mp, Stupakov an
Heifets[1] analyzed the dispersion relation of Eq. (1)

COASTING BEAM THEORY showed that the beam becomes unstable if
kp < 2.0A%/2, (5)

If one studies a perturbatioh; = W(§)e—¥s/¢+ik= for
an electron beam with an energy 8§ = ymc?, a current where A = I/ayo?l4. In this model, given a currel
1, and a Gaussian distribution with a relative energy spredtere is always an unstable mode when its wave nurh
os, one can derive (for example see[1]) is low enough.

. This stability condition was confirmed[4] experim
; c Z(k) /°° dFo/dpd (1) tally at the Advanced Light Source, where the evidenc
ayoila® k e P—a p: microbunching in the bolometer signal was found whel

bunch current
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for the wavelengths at = 2 mm and\ = 3.2 mm at var- The scaled impedances written in Egs. (8) and (10) are
ious beam energies. This expression can be derived frgootted in Fig 1. As one can see in the figure, for the parallel

Eq. (5) provided, plate model, its real part becomes zero rnigat/'? /p'/? =
2 at the low end of frequency. Clearly, there is a strong
I =V2rphy/o, (7)  shielding effect at the long wavelength by the metal plates.

At the end of short wavelength, its impedance is asymptot-

which is a result of identifying the peak current of theically approaching the impedance in free space as it should

bunched beam with. be.

CSR Impedance with Snielding Stability Analysis with Shielding
The calculation of the exact impedance with the shield-

ing from two paral_lel metal plates, separafced by a dISdispersion relation of Eq. (1) for various values of a scaled
tance h, was carried out by Warnock[5] in terms Ofcurrent,S:Ih/a'ya(%IAp, as shown in Fig. 2. The disper-

the Bessel functions. Utilizing the uniform asymptoticgjnn orves clearly show the shielding effect at the low end

expansion[6] of the Bessel functions, one can approxima&q kh3/2/p1/2. As one can see, the beam is stable for all
the impedance with the Airy functions Ai and Bi, :

values of the wave number whéh< 6/7. The threshold
of the instability occurs at the current §f* = 6 /7 with

Using the impedance defined in Eq. (8), we analyzed the

o Zn 1673213 h g0
Oy ZD),,, = Ly
P kth =572 /312 (11)
X [Ai' (u)C4' (u) + udi(u)Ci(u)], (8)
p>=1.3,... Above the threshold, the lowest unstable wave number is

. _ also proportional tap'/2/h3/2; However, its coefficient
wheren = kp, Ci = Ai — iBi, andu is defined as varies as a function of the current and is not a fixed value
as suggested in many previous publications.

72p2 h 3
/21—4/3 ( )
22/3 [ ( ) ]

T
21

Note that the dependency ofon the left side of the equa-
tion is all throughn(h/p)3/2. This kind of scaling law was
proposed as an approximated property by Murphy, Krinsky,
and Gluckstern[2]. In fact, one can show that Eq. (8), gives
the impedance that corresponds to their wakefield, which
was used in our recent simulations[7].
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Figure 2: Scaled imaginary part of the dispersion curves

g 50 with three values of the scaled curréht 1,6/, 3 in the
§ """" color of blue, black, and red respectively.
S o0
- — real (parallel plates To compare the theory with the observations, we need to
60 I s I use Eq. (7) to rewrite the instability conditiofi,> 6/, in
- - -imag (free space) terms of the bunch current,
-100 - y r
0 5 10 15 20 32 27
kn¥2/p12 Ib > —\/_Oézag ATz (12)
w3/2h

Figure 1: Scaled Z(n)/n for the CSR impedances in parall®ote that the threshold does not depencgbon
plates and in free space.

Moreover, the same scaling property holds for the CSR Table 1: Measurements in the NSLS VUV Ring

impedance in free space as well; formally Eq. (4) can beParameter Measurement  Theory
rewritten as, Threshold wavelength!" 7.0 mm 6.9mm
th
. Zn) 27 T(2/3)(v/3 + i) Threshold current]} 100 mA 134mA
(E)(T)m = (7)T

A comparison of the theory, using Egs. (11) and (12),

3/21-2/3
X / ] 2, (10)  with the observation[8] in the VUV ring of the National

n(

>



Synchrotron Light Sources at BNL is presented in Table 1.

As one can see, the agreement in the wavelength of the un-
stable mode is excellent. The calculated threshold is 30%
higher than the measured value. Its kernel is given by

> /0 AK' Gy (K, K"\ P (K').  (15)

m=—0o0

. _(K Vmin)
BUNCHED BEAM THEORY G (K, K') = V21, ce” KF

. . VRO,
In a storage ring, electrons inside a bunched beam ex- o 4
ecute synchrotron oscillation at frequenfy = v frev, xIm[/ duMhl(z/, K)h:, (v, K")], (16)
where f,.., is the revolution frequency. The synchrotron 0 v
tunev, is given by

where )
afry eViy h(v, K) = / ’T %e%lwwq(d)’m- 17)
vy = \/Qﬂf” ( E;f)cosqss, (13) 0 2m
v Here we have the normalized current
wheref, is the RF frequency. The RF voltadg; is nec- ro N,
essary to compensate the energy |6gsdue to the syn- I, = m7 (18)

chrotron radiation in every turn of the circulation, namely
Uo = eV;ysing,. The equilibrium bunch distribution is a herer, — ¢2/m¢? is the classic radius of electron and

Gaussian. The bunch length is given by[9] N, the bunch population. It can be rewritten in terms of the
02 = acosws, (14) bunch currenty,
wherew, = 27 f,. I, = o=l , (19)
ayoila
0.5
0.45 _izgé u;ing Eq. (14)«, Vinin, w(K_), gndg(gz?, K_) can be (_jeter-
04 — =05 mined by the underling Haissinski distribution. Since the
Boas Haissinski solution is a function of the current, they depend
P o onI, as well.
éozs Given a current,,, one needs to solv& (K) for all [
z 62 along withQ2. WhenIm[2] > 0, the beam is unstable. One
S 01'5 method to solve the integral equations is to discretize[11]
8" the variableX'. Here we will present an alternative.
0.1
0.05 . .
Polynomial Expansion

a=zlo, Using the generalized Laguerre ponnomiaﬂgl(K),
we decompose

Figure 3: Haissinski distributions at various scaled cur- o
rents,§ = 0.1,0.3,0.5, for the CSR in free space. The P(K)=¢K Z af fO(K), (20)
head of the bunch is to the right. =

When there are longitudinal wakefields in the storag@here
ring, the equilibrium becomes a Haissinski distribution[10]
ata sufficient!y low bunch cu_rrent. For the Wake_fie_ld drive_zn f(l) (K) = o Kl (K). (21)
by the CSR in free space in Eq. (3), the Haissinski dis- “ (1] + a)! “
tributions are shown in Fig. 3. To study the stability at
a higher current, one can make a small perturbation neAPPlying the orthogonal and normal condition of the La-
the Haissinski distribution and then analyze the linearizeguerre polynomials, we reduce the Sacherer integral equa-
Vlasov equation for the perturbation. This leads to an séions to a set of linear equations,

of integral equations[11, 12].

Q o0 oo
. —al, = Yy M3ag, (22)
Sacherer Integral Equation Ws m=—oo =0

For all azimuthal mode numbér —oo, ...co, we have forl —

) i —00,...00 anda = 0, ...co.
the integral equation

Clearly, it becomes an eigen value probléiw;, is the
O w(K) eigen value. In fact, M is a real matrix. When the current

(w_s =1 o JP(K) = is small, all eigen values are real and therefore the beam is




stable. It becomes unstable, when the first pair of complex 3

value emerges as the current increases.
The matrix elements are given by

My = 1603 — G2l (23)
and
o < w(K) _
O3 = /0 dK —fu Lo 0 0 (K), (24)
of \/§In06_vmm
Cop=—"F7=—"
TR,
< Z/oy) *
aauf [ X g w)g o) @)
0
where

G W) = / AKe S fO(K)h (v, K).  (26)

o VFP simulation
25k Bunched beam theory
—— Coasting beam theory
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Figure 5: Thresholdst® as a function of the shield-
ing parametery. The circles are the result of the VFP
simulation[7].

The solid line in the figure is plotted using the formula,
¢ = 3v2x?/3/x%/2. It can be derived from the coast-

Now, the problem of analyzing the instability of bunched.ng beam threshold in Eq. (12) using the definitionstof

beamis reduced to first evaluating the integrals in Egs. (1
(26), (24), and (25), and then finding the eigen values al

eigen vectors of the matrix M.

Instability Driven by the CSR in Free Space

ndx and Eqg. (19). Clearly, the agreement between the
{mulation and the coasting beam theory is excellent when
x > 2. Finally, the bunched beam theory confirms the dip
aty = 0.25, seen first in the simulation.
Finally, for the theoreticaf*”, one may simplify the re-
sult in the figure to

For the impedance given by Eq. (4), a complete analysis

of the stability of the Haissinski distribution as a function
of the current was carried out[12]. As shown in Fig 4, the

threshold of the instability is &t" = 0.482.
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Figure 4: Imaginary part of the eigen values fofw, as

a function of the scaled currert,= I,,p'/3/o2/*, for the

impedance driven by the CSR in free space.

Threshold of the CSR Instability with Shielding

Similar analysis is carried out using the impedance de-
fined in Eq (8). Because of the additional paraméier
and the scaling property in the impedance formula, the

M (x) = 0.5 +0.34x, (27)

except the dip afy = 0.25. This linear relation was first
obtained by fitting to the result of the VFP simulation[7].

COMPARISON TO THE
MEASUREMENTS

Although the bursting phenomenon at THz was observed
under various momentum compaction factors, RF voltages,
bunch lengths, and energies in many synchrotron light
sources, its threshold currefjf* satisfies a simple scaling
law[13] with respect to the bunch lengif (in MKS units),

7/3 _ C2Z0
i 2w F31/3

whereF' is a constant. Note that, is the bunch length at
zero current not at the threshold current. This scaling prop-
erty with ' = 7.456 was derived[14] based on the coast-
ing beam theory developed by Stupakov and Heifets[1]. It
agrees very well with the BESSY Il measurement[15].

A similar equation can be derived easily from the
bunched beam theory. Starting frgm= I,,p'/%/o/* and
using Egs. (19), (14), and (13), we obtain (in MKS units)

g

Iéhpl/g/(Wj'frffrev)7 (28)

7/3 2 1/3
a = -l /(Vrf COS d)Sfrffrev)'

= o (29)

threshold becomes a function of the shielding parametéiiere we have usedly = 47 /cto change from CGS units to
x = 0.p"/?/h3/2, as shown in Fig. 5 as the green stars. MKS units. So far, this is merely a general relation between



the scaled currergtand the bunch currerfy,. In particular, see, the agreement is not perfect but reasonably good con-

applying it to the threshold, we have (in MKS units) sidering that only the CSR impedance is included in the
theory.
oI I (1, cos dufosfrer). (30)
TSy ’ CONCLUSION
where¢™ (x) is given by Eq. (27), ignoring the dip. For a long bunchy = o.p'/2/h3/2 > 2, the coast-

For very short bunchis, the shielding parameter is $ag beam theory with the shielding impedance works well,
small that one can us¢" = 0.5 in Eq. (30) to make Eq. (12) should be used for estimating the threshold.
a comparison with the threshold measurement. Such awhen a bunch is shorty < 2, the bunched beam the-

measurement[16] was carried out at different momentugyy should be applied. According to Eq. (30), the beam

compaction factors with the same RF voltage at ANKApecomes unstable if
The result is shown in Fig. 6. As one can see, the agree- 7/3
ment between the theory and the measurement is excellent. < 82 (x)o 2 " Vi p €08 Gs fr f frew

Iy 2 Zopt/3

(32)

04 A shorter bunch is always more unstable. However, it is
much better to reduce the bunch length with an increase in
RF voltage than with a decrease of the momentum com-

paction factor.
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