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Abstract

Recent claims of a line in the Fermi-LAT photon spectrum at 130 GeV are suggestive of dark
matter annihilation in the galactic center and other dark matter-dominated regions. If the Fermi
feature is indeed due to dark matter annihilation, the best-fit line cross-section, together with the
lack of any corresponding excess in continuum photons, poses an interesting puzzle for models
of thermal dark matter: the line cross-section is too large to be generated radiatively from open
Standard Model annihilation modes, and too small to provide efficient dark matter annihilation in
the early universe. We discuss two mechanisms to solve this puzzle and illustrate each with a simple
reference model in which the dominant dark matter annihilation channel is photonic final states.
The first mechanism we employ is resonant annihilation, which enhances the annihilation cross-
section during freezeout and allows for a sufficiently large present-day annihilation cross section.
Second, we consider cascade annihilation, with a hierarchy between p-wave and s-wave processes.
Both mechanisms require mass near-degeneracies and predict states with masses closely related to
the dark matter mass; resonant freezeout in addition requires new charged particles at the TeV
scale.
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1 Introduction

The existence of dark matter (DM) is one of the strongest pieces of evidence for physics beyond the

Standard Model. Searches in cosmic rays for evidence of DM annihilation or decays are a cornerstone

of the experimental effort to detect DM. Monochromatic photon lines, though in most models a

subdominant signal, provide a particularly clean astrophysical signal [1, 2, 3, 4, 5].

Several recent analyses have claimed evidence for a distinct spectral feature in the Fermi-Large

Area Telescope (LAT) [6] photon spectrum at around 130 GeV [7, 8, 9, 10], in regions near the galactic

center. Evidence for this feature has also been reported in galactic clusters [11] and in non-associated

sources [12], although the latter claim remains contentious [13, 14, 15]. While the statistics are limited,

the morphology of the signal may favor an explanation as annihilating DM [16, 17, 11]. The presence

of an additional photon line at approximately 111 GeV [10, 12] is highly suggestive, if also statistically

limited, and would lend more credence to a particle physics explanation [18]. The Fermi collaboration’s

own search for photon lines uses slightly different search regions and methodology and sets an upper

limit marginally in conflict with the claimed signal [19].

It remains to be established whether the excess is instrumental, astrophysical, or representative

of an overly optimistic characterization of the systematic uncertainties in the galactic background

[20, 21]. However, standard thermal WIMPs are not capable of explaining the Fermi signal, and it is

of interest to work out the necessary structure in DM models which could give rise to the 130 GeV

line.

Any dark matter model for the Fermi 130 GeV line must account for two interesting facts. First,

there is no evidence for an excess in the continuum photon spectrum, which strongly constrains DM

annihilation into the usual SM annihilation channels (f f̄ , W+W−, ZZ) [17, 22, 23, 24] or indeed

into any charged final states. Since in most thermal models DM-photon couplings are generated

radiatively from the DM couplings to charged final states [25, 26], the typical line cross section is

generically related to the cross-section for annihilation into charged modes X,X† by

〈σv〉γγ ∼
(α
π

)2
〈σv〉XX† . (1)

As the fragmentation and decay of the final states X,X† give rise to a continuum photon spectrum

dΦγ(E)/dA ∝ n2
DM 〈σv〉XX†dNγ/dE, if annihilation to charged states is open, the expected line flux

is smaller than the continuum flux by several orders of magnitude. Models for the Fermi 130 GeV line

must therefore explain the absence of annihilation into charged (or hadronic) modes.

This brings us to the second interesting fact. The best fit cross-sections for the 130 GeV feature

[7, 8] are more than an order of magnitude smaller than the expectation for (s-wave) thermal freezeout.
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If annihilation to SM or charged modes is absent or suppressed as the continuum limits suggest,

reconciling this inefficient annihilation to photons with the WMAP relic density Ωχh
2 = 0.1109 ±

0.0056 [27] requires either: (1) a nonthermal relic abundance [28, 29]; (2) non-photonic annihilation

modes which are suppressed, possibly only post-freezeout, relative to the naive radiative scaling of

Eq. (1) [30, 29]; or (3) a mechanism to enhance the thermal annihilation cross-section to photonic

final states in the early universe [31].

In the present work we will study two mechanisms which give enhanced DM annihilation to photons

while also obtaining the correct thermal relic abundance, and build simple reference models for both.

Our first example is resonant freezeout, where the presence of a resonance in the DM sector spectrum

enhances the annihilation cross-section into photons during freezeout. Our second example introduces

an intermediate annihilation mode, so that DM annihilation proceeds through a cascade decay of a

non-photonic intermediate state, χ̄χ → φφ′ → 4γ. In this example, the relation between the cross-

section necessary for thermal freezeout and the present-day gamma line cross section is explained by

the interplay of s-wave and p-wave contributions to the annihilation.

In section 2, we perform an effective operator analysis of DM-photon couplings and demonstrate

the need for new particles at mass scales comparable to the DM mass. In section 3 we perform

a detailed examination of resonant freezeout, and consider cascade decays in section 4. Section 5

contains our conclusions.

2 Effective Operators for DM Annihilation to Photons

To demonstrate the need for multiple new states in thermal models for the Fermi 130 GeV line, we begin

by writing effective operators to describe the interaction between DM and one or two photons. We

assume an unbroken Z2 symmetry to explain the stability of the DM particle, and for simplicity work

after electroweak symmetry breaking. We first consider the case when DM is a (Dirac) fermion. The

leading operators coupling DM to photons are the electric and magnetic dipole operators, χσµνχF
µν

and χσµνχF̃
µν , appearing at dimension five [32, 33]. However, the dominant annihilation process

mediated by these two operators is χχ → f f̄ through a photon in the s-channel [30]. This problematic

annihilation to f f̄ can be suppressed in the present day if the Dirac fermion is split into two Majorana

χ1,2, with a small mass gap m2−m1 such that the depleted abundance of the heavier χ2 post-freezeout

shuts off the charged annihilation channel [30, 29]; in this case, the DM is the Majorana χ1 and the

EFT containing only χ1 is indeed insufficient to describe the freezeout.

At dimension six, there are four operators which couple DM pairs to two photons, two CP-

2



conserving operators

c1
4Λ3

χχFµνF
µν +

c5
4Λ3

χγ5χFµν F̃
µν , (2)

and two CP-violating operators

c̄1
4Λ3

χχFµν F̃
µν +

c̄5
4Λ3

χγ5χFµνF
µν . (3)

In addition there are operators with a single photon, such as χχFµνZ
µν , χγ5χFµν Z̃

µν , and χγµχF
µν∂νh.

We will concentrate on the operators with two photons, but we will comment on other operators when

we introduce a concrete UV model.

For scalar DM, the first DM-photon interactions appear at dimension 6,

Osc,1 = φ†∂µ∂νφF
µν , Osc,2 = |φ|2FµνF

µν , Osc,3 = |φ|2Fµν F̃
µν . (4)

For simplicity we have taken φ complex, but this is only necessary for Osc,1. As for the fermionic

dipole operators, Osc,1 will dominantly mediate annihilation to f f̄ , which can be suppressed by a

mass splitting between real and imaginary parts of φ.

For fermionic DM, the presence of independent operators which contribute in different leading

partial waves to the DM annihilation cross-section show that it is easy to accommodate an apparent

suppression in the DM annihilation cross-section. In an EFT consisting of the CP-conserving operators

in Eq. (2), the cross-section is

σv =
m4

χ

16πΛ6

[
4 c25 + (2 c25 + c21) v

2
]
+O(v4) ≡ s+ p v2 +O(v4). (5)

For a mixed partial wave freezeout process, the dark matter relic abundance is approximately given

by [34]

Ωχh
2 ≈ 1.07× 109

GeVMpl
√
g∗

xF
s+ 3(p− s/4)/xF

, (6)

in terms of the freeze-out temperature

xF = ln

[
5

4

√
45

8

g

2π3

Mpl mχ(s+ 6 p/xF )√
g∗
√
xF

]
. (7)

In Fig. 1 we show in the left panel the region of s and p giving the correct relic density, and in the

right panel translate that into the region of operator coefficients c1/Λ
3 and c5/Λ

3. From Fig. 1, we can

see that to simultaneously accommodate the thermal relic abundance and the best-fit cross section for
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Figure 1: Left panel: the red solid lines are the allowed region of s and p cross sections in pb to
satisfy the dark matter relic abundance within one σ. The blue dotted line denotes s = 0.042 pb·c,
the present-day gamma line cross section in Ref. [8] (Einasto profile). Right panel: same as the left,
but in terms of operator coefficients c1/Λ

3 and c5/Λ
3. The effective number of relativistic degrees of

freedom g∗ is taken to be 75.75, gχ = 4, and mχ = 130 GeV.

the Fermi-LAT 130 GeV line requires a large hierarchy between p- and s-wave scattering, p/s ≈ 130,

or c1/c5 ≈ 23.

Fig. 1 also shows that to obtain a reasonable relic abundance through annihilation to photons only,

the cutoffs of the effective operators are order 500 GeV if c1 and c5 are order of unity. Unfortunately

the natural magnitude of c1 and c5 is α/π, so without additional enhancement factors, the necessary

cutoff Λ is much smaller than mχ, invalidating the EFT.

In the next two sections, we study two models which extend some of the effective operators of in

Eq. (2) and Eq. (3) by introducing a (pseudo-)scalar degree of freedom φ which couples to hypercharge

gauge bosons through a loop of charged fermions,

L = f̄i(i/∂ − gY Y Bµγµ −mf )fi − λr
χχ̄χφ− λi

χiχ̄γ5χφ− yfφf̄ifi −
m2

φ

2
φ2 , (8)

where Y is the hypercharge of the new charged fermions fi under U(1)Y , and i = 1 · · ·Nf is the flavor

index of the Nf fermions. We integrate out fi to generate the following effective operators [35]

Nf yf Y
2 αY

4πmf

2

3
φBµνB

µν ⊃
Nf yfα e2f
4πmf

2

3
φFµνF

µν ≡ α

4π m̂f
φFµνF

µν . (9)

Here we have absorbed the electric charge ef , the Yukawa coupling yf and the multiplicity factor nf

into the definition of m̂f
1. There are two more operators FµνZ

µν and ZµνZ
µν generated. They provide

1If φ is a pseudo-scalar, coupling as φ i f iγ5fi, one needs to replace 2

3
× φBµνB

µν by 1× φBµνB̃
µν .
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Figure 2: Feynman diagram for resonant annihilation.

a sub-leading contribution to the dark matter annihilation cross section because of the . θ2W ∼ 0.05

suppression factor. We neglect these operators in our analysis. We also point out that if the ∼ 114 GeV

gamma line becomes robust, our analysis should be extended to include operators constructed from

W a
µν to fit the relative fluxes in χ̄χ → γγ and χ̄χ → γZ.

3 Resonant Freezeout

One way to enhance the dark matter annihilation cross section at freezeout relative to the cross-section

today is by introducing a resonance with mass slightly above twice the DM mass,

m2
a = 4m2

χ(1 + δ) , (10)

for 0 < δ ≪ 1 [31, 36]. In this section we will discuss the parameter space for a resonant freezeout

model where DM annihilation to photon pairs is entirely responsible for setting the thermal abundance.

To be concrete, we consider a simple UV completion of the EFT in the previous section, namely Dirac

fermionic dark matter χ coupling to photons through a pseudo-scalar a with

L ⊃ −i λi
χχγ5χa−

1

4Λ
aFµν F̃

µν . (11)

We take the loop-induced aF F̃ coupling to be given by a loop of charged fermions, as shown in Fig. 2,

so the effective coupling is

1

Λ
=

αyfNfe
2
f

πmf
≡ α

πm̂f
, (12)

where yf is the Yukawa coupling of a to the heavy fermions f whose mass, number, and charge are

given by mf , Nf , and ef .
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3.1 s-wave

The operators in Eq. (11) yield the annihilation cross section

σv =
m4

χ

4π

(
αλi

χ

π m̂f

)2

1
[
(4m2

χ +m2
χv

2)−m2
a

]2
+ Γ2

am
2
a

≡ 1

64π

(
αλi

χ

π m̂f

)2

1

(δ − v2/4)2 + γ2(1 + 2δ)
(13)

where Γa is the total width of a, γ ≡ Γa/ma, and in the second line we have taken v, δ, γ ≪ 1 [31].

We can write the thermally averaged cross-section as

〈σv〉 ≡ 〈σv〉∞ f(x; δ, γ), (14)

where x ≡ mχ/T ,

〈σv〉∞ =
1

64π

(
αλi

χ

πm̂f

)2

1

δ2 + γ2(1 + 2δ)
(15)

is the cross-section at x → ∞, and

f(x; δ, γ) =
x3/2√
4π

∫
v2dv e−xv2/4 δ2 + γ2(1 + 2δ)

(δ + v2/4)2 + γ2(1 + 2δ)
(16)

contains the information about the nontrivial velocity dependence of the cross-section. The width of

the pseudo-scalar is bounded from below by its couplings to dark matter (in the relevant parameter

space, the radiative width into photons is negligible). For δ ≪ 1,

γ =

√
δλi 2

χ

8π
(1− 1

2
δ) . (17)

We first establish that our model has a reasonable range of parameter space which can give a

sufficiently large cross-section for χχ̄ → γγ. Requiring 〈σv〉0 = 〈σv〉∞f(x0),

(
64π3m̂2

f

α2λi 2
χ

)
〈σv〉0 =

(
m̂f/λ

i
χ

300 GeV

)2(
1

0.06

)2

=
1

δ2
f(x0; δ) ≈

1

δ2
, (18)

where we have used the Einasto value for 〈σv〉0 and dropped terms of order γ2. This determines m̂f

as a function of δ and λi
χ, showing that obtaining the present-day cross-section requires δ . 0.1.

After using the present-day best fit cross-section to fix m̂f in terms of λi
χ, δ, the thermal freezeout

is controlled by δ and the minimum allowable width, as determined by Eq. (17). Figure 3 illustrates

the dependence of the final relic abundance on δ and λi
χ. Since the resonance sees significant overlap
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Figure 3: The dependence of the relic abundance Ωχh
2 on δ for different values of λi

χ (left) and m̂f

(right), with the present-day cross-section fixed to the (Einasto) best-fit value for the Fermi-LAT
gamma line excess.

with the bulk of the velocity distribution during freezeout, the strength of the resonant enhancement

to the cross-section is enhanced when γ is smaller, increasing the value of the cross-section at the pole.

Therefore if γ is too small, e.g. λi
χ ≤ 0.4 in Fig. 3, the annihilation is too efficient and the yield is too

small to account for the present-day dark matter abundance in the absence of other decay modes for

a. If, on the other hand, γ is too large, e.g. λi
χ ≥ 0.6 in Fig. 3, annihilation is inefficient and could even

over-close the universe. Annihilation becomes less efficient both gradually at large δ and rapidly at

very small δ, as the pole passes outside the main peak of the Maxwell-Boltzmann distribution during

freezeout.

In Fig. 4 we show the contours in the δ-λi
χ plane yielding Ωχh

2 = 0.11. To illustrate the as-

trophysical uncertainties, we quote results for both the Einasto and NFW gamma line best-fit cross

sections. Comparing the resulting contours, we can see that the astrophysical uncertainty introduces

an order 50% uncertainty on the couplings of the pseudo-scalar to dark matter. In the green dashed

line of Fig. 4, we show the contour for the case where a has an additional decay mode XX† with

Br(a → XX†) = 10Br(a → γγ).

As can be seen from Fig. 4, there is no real upper bound on the (scaled) fermion mass m̂f .

However, from Eq. (18), m̂f is inversely proportional to δ, to obtain the present-day annihilation cross

section. If one requires δ > 0.01 from considerations of fine-tuning, the scale for the charged fermion

masses should be bounded from above by around 500 GeV, or in other words, within collider-accessible

energies.
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Figure 4: Contours in the δ-λi
χ plane (left) and m̂f - λ

i
χ plane (right) yielding Ωχh

2 = 0.111 after fixing
present-day cross-sections to best-fit Fermi-LAT gamma line values. The dashed line is the contour
for the present-day Einasto gamma line cross section with the assumption that Br(a → γγ) = 10%.

3.2 s+ p-wave

We now consider the case where more than one partial wave is important for freezeout. For concreteness

we extend the single pseudo-scalar model of the previous subsection to include a CP-violating coupling

λr
χaχ̄χ to the dark matter,

L ⊃ −iλi
χχγ5χa− λr

χaχ̄χ− α

4πm̂f
aFµν F̃

µν . (19)

Pure p-wave freezeout would require extremely tuned values of the resonance mass, δ ∼ 10−5, to

obtain the present-day observed cross-section. In the more interesting case of mixed s and p-wave

resonant freezeout, the present-day observed cross-section, and hence the necessary values of δ, are

set by the s-wave contribution, but p-wave scattering can dominate the annihilation at freezeout.

When p-wave scattering dominates freezeout, the additional v2 dependence of the cross-section shifts

the velocity integral to higher values, reducing the overlap with the pole; narrower resonances are

therefore required to achieve cross-sections sufficiently efficient to yield the observed relic abundance.

Therefore when p-wave scattering dominates during freezeout, additional contributions to the a width

are more constrained than in the s-wave case. Since we will be interested in cases with a hierarchy
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between p-wave and s-wave modes, it is important to include the contribution to γ from λr
χ, γr =

δ3/2λr 2
χ (1− 1

2
δ)/(8π).
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Figure 5: Left panel: contours in the δ-λi
χ plane yielding Ωχh

2 = 0.11, for different ratios of λr
χ/λ

i
χ.

Results are shown for the the Einasto best fit cross-section for the gamma line excess. Right panel:
the same as the left one but in the m̂f -λ

i
χ plane.

As for the pure s-wave case, we show the contours of Ωχh
2 = 0.11 in the δ-λi

χ and m̂f -λ
i
χ planes

in Fig. 5. We plot three different ratios of λr
χ/λ

i
χ. For λ

i
χ & λr

χ

√
δ, the contribution to the resonance

width from λr
χ is negligible. The additional p-wave contribution to the freeze-out cross section prefers

a smaller value of λi
χ, which explains why the pure s-wave contour (red, solid) in the left panel lies

at larger values of λi
χ than the blue dashed contour, which denotes a case where p-wave scattering is

important for annihilation but not for the resonant width. For λi
χ . λr

χ

√
δ, the contribution to the

resonance width from λr
χ is non-negligible, reducing the enhancement from the resonance. As a result,

larger values of λi
χ are required to obtain sufficiently efficient annihilation, as can be seen from the

green, dotted contour in the left panel.

As can been from the right panel of Fig. 5, the photon vertex scale m̂f is again below around

500 GeV for δ & 0.01, implying collider-accessible charged particles.
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Figure 6: The Feynman diagram to describe DM cascade annihilation into four photons.

4 Cascade Annihilation

Another way to reconcile the large photon line cross-section with the lack of continuum photons while

obtaining the proper relic density is to have the dark matter first annihilate into (neutral) intermediate

states, which then decay into photons. The advantage of extending the DM annihilation process with

a cascade decay is that the relic abundance is now only controlled by the couplings of dark matter

to the intermediate particles. The small radiative couplings of photons to the intermediate state are

only relevant for the lifetime of that state, and are irrelevant for the annihilation cross section. The

gamma ray signals from cascading DM annihilations have been discussed in [37, 38, 39] and applied

to the Fermi-LAT gamma line excess in [40, 9]. Here, we write down a simple explicit model and

discuss the parameter space for realizing a thermal relic abundance together with an explanation for

the Fermi-LAT gamma line excess.

As before, we consider Dirac dark matter χ, together with a real scalar field which we denote φ,

and study the following set of interactions

L ⊃ −λr
χχχφ− iλi

χχγ5χφ− α

4π m̂f
φFµνF

µν . (20)

Here, as before, the scale m̂f ≡ 2Nfyfe
2
f/3mf arises from some heavy charged fermions that are

integrated out to generate the φFF operator; we require only that mf is sufficiently large to forbid DM

from annihilating into charged fermions. We are interested in the parameter space where mφ < mχ,

so the dominant annihilation channel for DM is χχ → φφ → 4γ, as shown in Fig. 6.

The energies of the two photons from each φ decay are, in the dark matter rest frame,

Eγ1,2 =
mχ

2


1±

√

1−
m2

φ

m2
χ

cos θ


 , (21)

where θ is the angle between the photon direction in the φ rest frame and the φ direction of motion.

Because φ is a scalar field, the distribution is isotropic in θ, and the photon spectrum is evenly
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distributed between the kinematic endpoints:

dNγ

NγdEγ
=

1√
m2

χ −m2
φ

Θ


E − mχ

2


1−

√

1−
m2

φ

m2
χ




Θ


mχ

2


1 +

√

1−
m2

φ

m2
χ


− E


 ,

ǫ≪1−−→ 1

mχ

√
2ǫ

Θ
[
E − mχ

2

(
1−

√
2ǫ
)]

Θ
[mχ

2

(
1 +

√
2ǫ
)
− E

]
, (22)

which, as ǫ → 0, limits to a delta function centered at mχ/2. Here Θ(x) is the usual Heavyside

function.
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Figure 7: The energy-smeared rectangular photon spectra of Eq. (22) for different values of the mass
splitting ǫ. The dark matter mass is chosen to be 260 GeV for the red solid, green dotdashed, orange
dotted lines. As a comparison, we also show a smeared delta function at 130 GeV in the blue dashed
line.

Since the gamma line spectrum can provide a good fit to Fermi LAT data, we also anticipate a

good fit for this model for sufficiently small ǫ. To estimate upper bounds for ǫ, we consider the average

Fermi-LAT energy resolution for gamma ray energies above 50 GeV, σ(E)/E ≈ 0.10 + 0.0001E/GeV

[41]. We use this energy resolution to smear the spectra in Eq. (22) for different values of ǫ and

compare them with a smeared delta function spectrum centered at 130 GeV. The results are shown

in Fig. 7, where we have shown three different values of ǫ = 0.01, 0.02, 0.04 in the red solid, green dot-

dashed, and orange dotted lines. The delta function spectrum is shown in the blue dashed line. As

one can see, once O(
√
ǫ/2) is smaller than the energy resolution (order 10%) the distinctions between

the smeared delta function and the smeared cascade spectra are minimal.

To work out the parameter space for this model we translate the best-fit line spectra of [8] to the

cascade model. Since the photon flux from dark matter annihilation is inversely proportional to the
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square of the DM mass, and there are now four photons in the final state, the required annihilation

cross section for this case should be approximately twice that found for a photon line. Thus we require

〈σv〉0 = 0.084 pb·c for the Einasto profile and 0.152 pb·c for the NFW profile.
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Figure 8: The contours of couplings λi
χ and λr

χ which yield the best-fit cross-sections for the gamma
line excess. The solid circles indicate the points which yield a thermal relic abundance of Ωχh

2 = 0.11.
The green dotted line is the case when Br(φ → γγ) = 0.2 of the total.

Our explicit model considers fermionic DM and, for economy, a single real scalar φ. Thus parity

dictates that the annihilation is p-wave suppressed unless both λr
χ and the CP-violating λi

χ are nonzero.

In terms of the mass splitting ǫ, the cross-section for χχ → φφ is

σv =
λr 2
χ λi 2

χ

√
ǫ√

2πm2
χ

+ v2

[
λr 2
χ λi 2

χ

16
√
2πm2

χ

√
ǫ
+

λr 2
χ (16λr 2

χ − 87λi 2
χ )

√
ǫ

64
√
2πm2

χ

]
+O(v4) (23)

where we have kept the leading terms in the limit ǫ ≪ 1.

In Fig. 8, we show the contours in the λi
χ-λ

r
χ plane which give the required dark matter annihilation

cross section for explaining the Fermi-LAT gamma line excess, for mχ = 260 GeV and ǫ = 0.02. The

points which give the relic abundance Ωχh
2 = 0.11 are indicated by heavy circles. Hierarchies of

order ∼ 10 between CP-preserving and CP-violating couplings are required, suggesting small (but not

tiny) CP violation in a DM sector. We also show the case where the branching fraction of φ into two

photons is 20%.

12



An equally well-motivated alternative to the CP-violating reference model considered here would

be to allow the Dirac DM χ to annihilate to a nearly degenerate pair of scalars with opposite parity,

φ and a, with subsequent decays to photons. In this case, the s-wave annihilation χχ → φa is

proportional to (λφ
χλa

χ)
2, while the p-wave annihilation is proportional to ∼ (λφ

χ)4 + (λa
χ)

4. If the

branching fractions of φ, a into photons are order 1, accommodating the dark matter thermal relic

abundance and the present-day annihilation cross section for the Fermi-LAT gamma line still requires

a factor of ∼ 10 hierarchy between λφ
χ and λa

χ.

5 Discussion and Conclusions

We have explored the possibilities for thermal models for the Fermi-LAT 130 GeV gamma line excess

where the dominant DM annihilation channel is into photons. We consider two mechanisms, (1)

models where a resonance in the DM spectrum enhances the annihilation rate during freezeout and to

a lesser extent at the present day, and (2) models where DM annihilates to a new intermediate state

which subsequently decays to photon pairs. Here the interplay of the s-wave and p-wave annihilation

is responsible for reconciling the necessary cross-section at freezeout with the observed cross-section

today. For the resonance model, charged fermions at the TeV scale are predicted and are accessible

at the Large Hadron Collider, which could be interesting if the excess in the Higgs diphoton decay

channel persists [42, 43].

Both of the classes of models considered in this paper require coincidences in the mass spectrum.

For resonant freezeout, the resonance mass ma must be within a percent of twice the dark matter

mass, a striking coincidence. For cascade decays, the intermediate state(s) φ must be within again

about a percent of the dark matter mass in order to have a sharp enough spectral feature to fit the

data well. These near-degeneracies are suggestive of a dark sector with one scale Λm setting the

overall mass scale, and another ΛG ≪ Λm determining splittings. Composite dark sectors are an

appealing avenue to flesh out the models we have considered. Near-degeneracies in the dark sector

spectrum, as necessary for the cascade annihilation model, are readily accommodated in composite

sectors. Resonances above threshold pose a somewhat more complicated picture. As we know from

heavy quarkonia in the SM, a spectrum with resonances slightly above threshold could certainly be

obtained; the complication is that such resonances would necessarily be accompanied by a resonance

below threshold, giving the thermal relic abundance a detailed dependence on the parameters of the

model. We leave detailed model building to future work.
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