Electronic Structure and Oxidation State Changes in the Mn₄Ca Cluster of Photosystem II

Junko Yano,¹ Yulia Pushkar,¹ Johannes Messinger,² Uwe Bergmann,³ Pieter Glatzel,⁴ Vittal K. Yachandra¹

¹Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

²Max-Planck-Institut f
ür Bioanorganische Chemie, M
ülheim an der Ruhr, Germany, ³Stanford
 Synchrotron Radiation Laboratory, Menlo Park, CA 94025, USA
 ⁴European Synchrotron Radiation Facility, F-38043 Grenoble Cedex, France

Keywords: electronic structure, Mn₄Ca Cluster, oxygen-evolving complex, photosystem II, RIXS, X-ray spectroscopy.

ABSTRACT

Oxygen-evolving complex (Mn_4Ca cluster) of Photosystem II cycles through five intermediate states (S_i -states, i = 0-4) before a molecule of dioxygen is released. During the S-state transitions, electrons are extracted from the OEC, either from Mn or alternatively from a Mn ligand. The oxidation state of Mn is widely accepted as $Mn_4(III_2,IV_2)$ and $Mn_4(III,IV_3)$ for S_1 and S_2 states, while it is still controversial for the S_0 and S_3 states. We used resonant inelastic X-ray scattering (RIXS) to study the electronic structure of Mn_4Ca complex in the OEC. The RIXS data yield twodimensional plots that provide a significant advantage by obtaining both K-edge pre-edge and L- edge-like spectra (metal spin state) simultaneously. We have collected data from PSII samples in the each of the S-states and compared them with data from various inorganic Mn complexes. The spectral changes in the Mn $1s2p_{3/2}$ RIXS spectra between the S-states were compared to those of the oxides of Mn and coordination complexes. The results indicate strong covalency for the electronic configuration in the OEC, and we conclude that the electron is transferred from a strongly delocalized orbital, compared to those in Mn oxides or coordination complexes. The magnitude for the S₀ to S₁, and S₁ to S₂ transitions is twice as large as that during the S₂ to S₃ transition, indicating that the electron for this transition is extracted from a highly delocalized orbital with little change in charge density at the Mn atoms.

INTRODUCTION

Most of the oxygen in the atmosphere which supports aerobic life on earth is generated by plants and cyanobacteria by the photo-induced oxidation of water to dioxygen. The oxygen-evolving complex (OEC), of the photosynthetic apparatus that catalyzes the oxidation of H_2O to O_2 contains a Mn_4Ca cluster (Wydrzynski and Satoh 2005). Water oxidation in photosystem II (PSII) is a stepwise process wherein each of 4 sequential photons absorbed by the reaction center powers the advance of the OEC through the S-state intermediates S_0 - S_4 . Upon reaching the S_4 state, the complex releases O_2 and returns to the S_0 state.

A promising approach to study the Mn oxidation states in the native S-states is to step samples through the S-state cycle by the application of saturating single-turnover flashes and to characterize these samples by X-ray spectroscopy.

A key question for the understanding of photosynthetic water oxidation is whether the four oxidizing equivalents generated by the reaction center are accumulated on the four Mn ions of the OEC during S-state turnover, or whether a ligand-centered oxidation takes place, especially, before the formation and release of molecular oxygen during the S_3 to (S_4) to S_0 transition. It is crucial to solve this problem, because the Mn redox states form the basis for any mechanistic proposal. The description of the Mn OEC in the various S-states in terms of the formal oxidation states is very useful, but it is also important to determine a detailed view of the electronic structure of the Mn cluster.

We have addressed these questions by using Mn K-edge XANES (1s-4p absorption), K β XES (3p-1s emission) (Glatzel et al 2004) and the recently introduced resonant inelastic X-ray scattering spectroscopy (RIXS) (1s to 3d/4p absorption followed by 2p-1s K α emission) to obtain L-edge-like spectra (2p-3d absorption) (Fig. 1).

<Figure 1>

RESULTS and DISCUSSION

S₁ to **S**₂ transition

The 2D data are best shown as contour plots (Fig. 2A). The comparison of Mn(II), Mn(III), Mn(IV) complexes and PSII in the S_1 state and S_2 states shows that the S_1 and S_2 states contain a mixture of both oxidation states (Glatzel et al 2004). The integrated cross sections (Fig. 2B) along the Raman or energy transfer axis are the L₃-like edge (2p to 3d), and the integrated cross sections along the incident energy are the K-edge (1s to 3d) transition. It is clear from Fig. 2 that Mn in the S_1 state contains oxidation states III and IV; thus providing confirmation for the (III₂,IV₂) assignment for the S_1 state.

We have focused on the 1s to 3d aspect of the RIXS spectra, where line splittings have been interpreted within a ligand field multiplet model. The spectral changes in the Mn 1s to 3d transition between the oxides, coordination complexes and PSII in the S_1 and S_2 states have been compared.

The results (see below) indicate strong covalency for the electronic configuration in the OEC and we conclude that the electron is transferred from a strongly delocalized orbital for the S_1 to S_2 transition, in accordance with the assignment of the formal oxidation states of Mn(III,IV₃) to the S_2 state (Messinger at al 2001).

<Figure 2>

S_2 to S_3 and S_0 to S_1 transitions

Although there has been general agreement with respect to the increasing oxidation of Mn in the cluster during S_0 to S_1 and S_1 to S_2 , there is a lack of consensus concerning Mn oxidation during S_2 to S_3 . It is also not clear whether the S_0 state contains any Mn(II).

The XANES results showed that there is a larger shift in the inflection point energy between the S_0 to S_1 and S_1 to S_3 transitions compared to that occurring between the S_2 to S_3 transition (Messinger et al 2001). The K β emission spectroscopy results based on the shifts, or lack thereof, of the 1st moments, also showed that a Mn-centered oxidation does not occur during the S_2 to S_3 transition (Messinger et al 2001). At the same time it is worth noting that this need not be an all-or-none situation. If the Mn is not oxidized, presumably some other species (a protein side-chain ligand or bound water) is oxidized. The delocalization of a small amount of electronic charge from a Mn atom to the ligand could account for the small residual changes seen in the X-ray energies (Messinger et al 2001).

1st Moment Analysis

The 1st moment of the spectrum integrated along the incident energy axis was calculated for all the S-states and compared with the 1st moments obtained from Mn oxides and Mn coordination compounds in formal oxidation states of (II), (III) and (IV). The changes per oxidation state in the first moment positions are more pronounced between the Mn oxides than between the Mn coordination complexes, due to stronger covalency in the coordination complexes. Mn oxidation between the S₁ and S₂ states of PSII is even less pronounced than in the coordination complexes. The spectral change per Mn ion between Mn^{III}(acac)₃ and Mn^{IV} (salicylate)₂(bipy) is by a factor of 2 more pronounced than between S₁ and S₂. In other words, the orbital population change Δn_{3d}^{eff} per change in oxidation state is largest between the Mn oxides and smallest between S₁ and S₂. The reason is an increased covalency or delocalization of the Mn valence orbitals. We thus find that the electron that is transferred from the OEC in PSII between S₁ and S₂ is strongly delocalized.

The orbital population change Δn_{3d}^{eff} per change in oxidation state between the S₂ and S₃ states is half as much as that between S₀ and S₁, and S₁ and S₂ transitions indicating that the electron is removed from a more covalent form or a more delocalized orbital with little change in charge density at the Mn atoms.

These results are in agreement with the earlier qualitative conclusions derived from the shifts in the XANES inflection point energies and the K β emission peaks from the S-states.

Acknowledgments-- This work was supported by the NIH Grant GM-55302, and by the Director, Office of Science, Basic Energy Sciences (BES), Division of Chemical Sciences, Geosciences, and Biosciences of the Department of Energy (DOE) under Contract DE-AC02-05CH11231. Synchrotron facilities were provided by SSRL, supported by DOE, BES. The SSRL Structural Molecular Biology Program is supported by the DOE, OBER, and by the NIH, NCRR, Biomedical Technology Program, and at the BioCAT, APS, Argonne supported by DOE, BES under contract W-31-109-ENG-38. BioCAT is a NIH-supported Research Center RR-08630.

REFERENCES

- Wydrzynski T, and Satoh S (2005) Photosystem II: The light-driven water:plastoquinone oxidoreductase, Springer, Dordrecht.
- Glatzel P, Bergmann U, Yano J, Visser H, Robblee JH, Gu WW, de Groot FMF, Christou G,
 Pecoraro VL, Cramer SP, and Yachandra VK (2004) The electronic structure of Mn in
 oxides, coordination complexes, and the oxygen-evolving complex of photosystem II
 studied by resonant inelastic x-ray scattering. J. Am. Chem. Soc. 126:9946-9959
- Messinger J, Robblee JH, Bergmann U, Fernandez C, Glatzel P, Visser H, Cinco RM, McFarlane KL, Bellacchio E, Pizarro SA, Cramer SP, Sauer K, Klein MP, and Yachandra VK (2001)
 Absence of Mn-centered oxidation in the S₂ to S₃ transition: Implications for the mechanism of photosynthetic water oxidation. J. Am. Chem. Soc. 123:7804-7820

FIGURE LEGENDS

Figure 1. A two-dimensional plot showing the RIXS spectrum from a Mn(II)acetylacetonate complex. The 1s-3d K-edge spectrum is plotted in the back in black. A cross-section of the 2D plot parallel to the Y-axis yields L-edge like spectra, the more intense feature at 640 eV corresponds to transitions to J=3/2 like states (L_3 edges) and transitions to 655 eV correspond to J=1/2 final states (L_2 edges). Cross sections parallel to the energy transfer axis sort the spectrum according to the final state.

Figure 2. A. Contour plots of the $1s2p_{3/2}$ RIXS planes for three molecular complexes $Mn^{II}(acac)_2(H_2O)_2$, $Mn^{III}(acac)_3$, and $Mn^{IV}(sal)_2(bipy)$ and PSII in the S_1 - and S_2 -state. One axis is the excitation energy and the other is the energy transfer axis. The L-edge like spectra are along the energy transfer axis and the 1s to 3d transition is along the excitation energy. The assignment of $Mn(III_2,IV_2)$ for the S_1 state is apparent in these spectra. **B**. Integrated spectra along the incident energy axis, (K-edge, 1s to 3d) (right), and energy transfer axis, (L₃ edge, 2p to 3d) (left) of the contour plot shown in Fig. 2A for $Mn^{III}(acac)_3$ and $Mn^{IV}(sal)_2(bipy)$ and S_1 -state of PSII. The spectra show that the Mn oxidation state of S_1 is a combination of (III) and (IV).

Figure 1

