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ABSTRACT
We provide new constraints on the connection between galaxies in the local Universe, identified by the

Sloan Digital Sky Survey (SDSS), and dark matter halos and their constituent substructures in the ΛCDM
model using WMAP7 cosmological parameters. Predictions for the abundance and clustering properties of
dark matter halos, and the relationship between dark matter hosts and substructures, are based on a high-
resolution cosmological simulation, the Bolshoi simulation. We associate galaxies with dark matter halos and
subhalos using subhalo abundance matching, and perform a comprehensive analysis which investigates the
underlying assumptions of this technique including (a) which halo property is most closely associated with
galaxy stellar masses and luminosities, (b) how much scatter is in this relationship, and (c) how much subhalos
can be stripped before their galaxies are destroyed. The models are jointly constrained by new measurements
of the projected two-point galaxy clustering and the observed conditional stellar mass function of galaxies in
groups. We find that an abundance matching model that associates galaxies with the peak circular velocity
of their halos is in good agreement with the data, when scatter of 0.20± 0.03 dex in stellar mass at a given
peak velocity is included. This confirms the theoretical expectation that the stellar mass of galaxies is tightly
correlated with the potential wells of their dark matter halos before they are impacted by larger structures. The
data put tight constraints on the satellite fraction of galaxies as a function of galaxy stellar mass and on the
scatter between halo and galaxy properties, and rule out several alternative abundance matching models that
have been considered. This will yield important constraints for galaxy formation models, and also provides
encouraging indications that the galaxy–halo connection can be modeled with sufficient fidelity for future
precision studies of the dark Universe.
Subject headings: galaxies: formation — galaxies:halos — galaxies:groups — large-scale structure of universe

— dark matter — methods:n-body simulations

1. INTRODUCTION
The connection between galaxies and their dark matter ha-

los is the fundamental link between predictions of a given cos-
mological model and models of galaxy formation. Galaxies
form in the gravitational potential wells of dark matter halos,
and our modern understanding of galaxy formation therefore
depends on an understanding of dark matter. Dark matter ha-
los are virialized structures that began as high density peaks
in the early Universe and grew and collapsed through self-
gravity. Halos grow by accreting additional material from the
smooth density field as well as nearby smaller halos. The
galaxies within them grow in tandem with their respective
halos. Accreted halos (or subhalos) generally also contain
galaxies. These subhalos (and the galaxies they contain) are
stripped by the tidal forces of the (host) halo that have ac-
creted them and are eventually destroyed. The halo that ac-
creted the subhalo gains this mass, and stellar mass of the dis-
rupted galaxy either accretes onto another galaxy in the host
halo or is dispersed into the intracluster light.

Given this general understanding of the relationship be-
tween galaxies and dark matter, it is possible to predict the
spatial distribution of galaxies from an N-body simulation of
dark matter only. The baryonic matter of the galaxies is a
small fraction of all matter, and its effects on the formation
of dark matter halos are subdominant, with observable im-
pacts only on small scales (Kravtsov et al. 2004; Springel
et al. 2005; Trujillo-Gomez et al. 2011). However, populat-
ing a dark matter simulation with galaxies requires a detailed

model to connect the dark matter with the galaxies. Precise
models of this galaxy–halo connection and its evolution are
important for constraining galaxy formation models. They are
also of increasing importance in the era of precision cosmol-
ogy. In particular, the detailed relationship between the dark
matter distribution — directly related to cosmological param-
eters — and the galaxies that trace it is likely to be a dominant
systematic in studies of cosmic acceleration with galaxy sur-
veys using a range of probes (e.g., Cacciato et al. 2009; More
et al. 2009; Tinker et al. 2011; Nuza et al. 2012 and references
therein).

The most direct approach to understanding the relationship
between galaxies and halos is to run a full, hydrodynamic sim-
ulation, which may explicitly include the effects of star for-
mation and feedback (e.g., Bryan & Norman 1998; Springel
& Hernquist 2003; Vogelsberger et al. 2011 and references
therein). Unfortunately, this approach remains computation-
ally expensive, and therefore cannot currently be applied to
large volumes. Additionally, the results are complicated by
differences in numerical techniques and the treatment of im-
portant physics below the resolution limit of the simulation.
An alternative is to use a semi-analytical model of galaxy for-
mation (see, e.g., Somerville et al. 2012; Lu et al. 2012; Hen-
riques et al. 2012; Benson 2012 for recent examples). This
has the advantage of including many different processes that
act on the galaxies in question, such as relations between
star formation and feedback. However, these models tend
to be complex, having many parameters and requiring care-

SLAC-PUB-15183

Work supported by US Department of Energy contract DE-AC02-76SF00515.

KIPAC, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA  94025



2 Reddick et al

ful tuning, complicating efforts to understand the underlying
physics. A simpler option is to use a Halo Occupancy Dis-
tribution (HOD), which is based on knowing the number of
galaxies of some type that may be assigned to each halo (e.g.
Yang et al. 2008, 2009; Zehavi et al. 2011; Leauthaud et al.
2012, and references therein). This approach still has the dif-
ficulty of using many parameters, and therefore requires mul-
tiple measurements of the galaxy distribution as inputs to con-
strain the model.

An alternative to these is a semi-empirical approach known
as subhalo abundance matching (Kravtsov et al. 2004; Vale
& Ostriker 2004). Rather than input galaxy formation pro-
cesses directly, abundance matching models make the simple
assumption that some halo property is monotonically related
to some galaxy property, typically galaxy luminosity or stel-
lar mass. That is, each halo (or subhalo) contains one galaxy
at its center, whose luminosity or stellar mass is determined
by some property of its host. This property is often related to
host halo mass, but there are many different possibilities. Ad-
ditional choices must be made to specify the specific model,
such as whether to include nonzero scatter between the given
halo property and the galaxy stellar mass. Nonetheless, abun-
dance models have the advantage of requiring few (or no) pa-
rameters, and using the full predictions of numerical simula-
tions to model the dark matter distribution into the fully non-
linear regime.

In general, for a given input luminosity or stellar mass func-
tion, abundance matching can produce a galaxy population
that accurately reproduces measured galaxy statistics and pro-
vide insight into galaxy formation (Conroy et al. 2006; Vale
& Ostriker 2006; Moster et al. 2010; Behroozi et al. 2010).
Previous studies have demonstrated that abundance match-
ing models are generally sufficient to statistically reproduce
the observable properties of galaxies, including the two-point
clustering, the galaxy bias, and the Tully-Fisher relation (Vale
& Ostriker 2004; Conroy et al. 2006; Trujillo-Gomez et al.
2011). Recent improvements in numerical dark matter simu-
lations present the opportunity to test this model on a simula-
tion large enough to have excellent statistics for L* galaxies
while resolving halos small enough to host galaxies as dim as
the Magellanic Clouds. Bolshoi is one such simulation, which
also uses cosmological parameters consistent with WMAP5
and other measurements (Klypin et al. 2011). Trujillo-Gomez
et al. (2011) showed that an abundance matching model ap-
plied to halos in this simulation could provide a good match
to clustering statistics and the Tully–Fisher relation.

Testing any model requires statistics of the galaxy distribu-
tion. The Sloan Digital Sky Survey (Abazajian et al. 2009) has
provided a quantitative advance in measuring galaxy statistics
in the local Universe, yielding increasingly precise measure-
ments of the clustering of galaxies (e.g. Zehavi et al. 2011)
and large numbers of groups or clusters (e.g. Koester et al.
2007; Yang et al. 2007). Because measurements of cosmo-
logical parameters depend heavily on galaxies as tracers, sys-
tematics of such measures may be reduced by an improved
understanding of how galaxies are associated with dark mat-
ter (e.g. Rozo et al. 2010; Tinker et al. 2012; More et al. 2012).

Our intent is two-fold: (1) to examine the ability of differ-
ent abundance matching models to simultaneously reproduce
the correlation function and conditional stellar mass function
measured from the Sloan Digital Sky Survey (SDSS), and (2)
to systematically test the underlying assumptions in the abun-
dance matching ansatz. To do so, we also make new measure-
ments of the clustering and conditional stellar mass function

from the Sloan Digital Sky Survey.
We first describe the data used in our study (§ 2). This is

followed by a description of the Bolshoi simulation and the
models considered (§ 3). § 4 describes our measurements of
the correlation function and the conditional stellar mass func-
tion, and additional statistics of the galaxies in groups. An
evaluation of how these vary as the model parameters are var-
ied is presented in § 5. The principle results of this work are
the constraints on the model parameter space derived from
these measurements (§ 6). We then consider the impact of
using different stellar mass functions and a comparison with
another measurement of the conditional stellar mass function
(§ 7). A summary of our results and conclusions may be found
in § 8. We find that our best-fit model provides an excellent
fit to the data. We also find that the parameters in the model
are well constrained, and that models that abundance match to
many commonly used halo properties are ruled out by current
data.

Throughout this work, we assume the same cosmology as
the Bolshoi simulation, using ΛCDM with Ωm=0.27, ΩΛ =
1−Ωm, Ωb = 0.042, σ8=0.82, and n = 09. Absolute magnitudes
and stellar masses are quoted with h = 1. Except where oth-
erwise specified, stellar masses are those given by the KCOR-
RECT algorithm of Blanton & Roweis (2007). We use log for
the base-10 logarithm, and ln for the natural logarithm. Halo
masses are given in terms of the virial mass, here defined as
the mass within a radius such that the average enclosed den-
sity is ∆virρcritΩm for ∆vir = 360 at z=0 as given by Bryan &
Norman (1998) unless stated otherwise.

When referring to dark matter halos, the terms "halo" or
"host halo" are used to refer to distinct halos only, which do
not lie within the virial radius of a more massive dark mat-
ter halo. In contrast, "subhalo" is used to refer to dark matter
halos whose centers lie within the virial radius of a more mas-
sive halo. A galaxy group is a set of galaxies that all lie within
the virial radius of the same (distinct) halo, which may range
in size from only one galaxy up to galaxy clusters. A central
galaxy (or "central") is the galaxy which resides at the cen-
ter of a halo. Satellite galaxies (or just "satellites") are those
which reside in subhalos inside a more massive dark matter
halo.

2. SDSS DR7 DATA
Our study uses the New York University Value Added

Galaxy Catalog (NYU-VAGC) (Blanton et al. 2005), based
on Data Release 7 of the Sloan Digital Sky Survey (SDSS)
(Padmanabhan et al. 2008; Abazajian et al. 2009). We fo-
cus primarily on two measurements: the projected two-point
correlation function and the conditional stellar mass function
(CSMF). To measure the clustering, we use a set of volume-
limited samples corresponding to a series of cuts in stellar
mass. For the group statistics such as the CSMF, we focus
on one volume-limited sample, with a cut in absolute r-band
luminosity of Mr − 5logh < −19. The area of the sample we
use is 7235 deg2, with a median redshift of z = 0.05. The
Mr − 5logh < −19 sample contains a total of 74,987 galaxies
with a maximum redshift of z = 0.064, covering a volume of
roughly 4.8×106 ( h−1 Mpc)3. We focus on the distribution of
galaxies in terms of their stellar mass. Throughout, we quote
stellar masses in M�h−2. The cut of log(M∗) > 9.8 leaves a
complete sample of 54,119 galaxies in the same range in red-
shift.

The details of the group finder are described in the appendix
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of Tinker et al. (2011), which is based on the algorithm of
Yang et al. (2005). Galaxy groups are found by initially doing
"inverse" abundance matching. The highest host halo mass
expected in the observed volume is assigned to the most mas-
sive galaxy. The next most massive galaxy that is not within
the virial radius of the most massive halo, is assigned the
second most massive host halo, and so on. This matching
is done with zero scatter, using the mass function of Tinker
et al. (2008). Galaxies within the virial radii of the assigned
host halos are treated as satellites. This initial assignment is
used to calculate an initial group stellar mass for each group.
Groups are then reassigned host halo masses using the total
stellar mass within virial radius of the initially assigned ha-
los. This procedure is iterated until group assignments remain
unchanged. These results are distinct from the results of Tin-
ker et al. (2011) in that we use ∆vir = 360, rather than 200,
for consistency with the mock catalogs, and in how the initial
halo-to-galaxy assignment is done. This results in a total of
∼ 43,000 groups, of which 17,178 are assigned a host halo
mass greater than 1012 M�. We impose this limit because be-
low a mass of ∼ 1012 M� essentially all "groups" are have
only one galaxy above the log(M∗) > 9.8 threshold. There-
fore, the group assignment is not very informative below this
mass.

The group finder introduces two major sources of bias.
First, groups with low total stellar mass may consist of only
one or two galaxies. Because host masses are assigned based
on total group stellar mass, the assigned host halo mass relates
directly to the stellar mass of the dominant galaxy. This arti-
ficially reduces the scatter between the central galaxy stellar
mass and the host halo mass for low-mass host halos. Sec-
ond, the assumption that galaxy with the most stellar mass
is the central is not always true (e.g. Skibba et al. 2011) and
can bias results based on the central galaxies. To take these
changes into account, we create a galaxy distribution by pop-
ulating halos in the simulation, and this galaxy distribution is
passed through the group finder before making comparisons
to the groups found in the volume-limited catalog. The effects
of group finding on our measurements are discussed in more
detail in § 4 and Appendix A.

The NYU-VAGC is based on the SDSS spectroscopic sam-
ple. This allows precision measurements of redshifts, which
are required for measuring the projected two-point correla-
tion function and to making group assignments. However,
the spectroscopy was obtained by assigning targets to spec-
troscopic plates connected to a fiber-fed spectrograph. The
size of the fibers prevents any two targets separated by 55" or
less from being observed at the same time on the same plate.
Though overlapping plates partially alleviates this problem, a
significant fraction of galaxies in the sample lack redshifts for
this reason. These galaxies are "fiber-collided; " this occurs
for∼ 5% of the galaxies in our sample. A detailed explanation
of the SDSS survey and hardware can be found in Stoughton
et al. (2002). The tiling algorithm for the spectroscopic plates
is described in Blanton et al. (2003a).

Our clustering measurements were made on the same
volume-limited sample as the groups. Clustering measure-
ments are presented in § 5, with the error estimation discussed
in § 4.

To use the fiber-collided galaxies, the simplest correction
is to assign the galaxy the redshift of the galaxy with which
it is fiber-collided. As demonstrated by Zehavi et al. (2005),
this correction is adequate for the correlation function down

to scales of∼ 0.1 Mpc/h. However, it has a significant impact
on the conditional stellar mass function, since a fiber-collided
galaxy is likely to be assigned to the same group as the galaxy
it is fiber-collided with. Our volume-limited sample has a me-
dian redshift of z = 0.05. At this redshift, the 55" angle corre-
sponds to ∼ 40 kpc/h (comoving).

3. SIMULATED GALAXY CATALOGS
3.1. Simulations

The Bolshoi simulation is a recently completed cosmologi-
cal dark matter simulation, described in Klypin et al. (2011).
The simulation uses 20483 particles and has a volume of
(250 Mpc/h)3, roughly three times bigger than the SDSS Mr
< -19 volume-limited sample. The large volume is combined
with the capability to resolve subhalos, dark matter halos that
lie within the virial radius of larger host halos, down to a cir-
cular velocity of ∼ 55 km s−1. This permits a precise study of
subhalos and the satellite galaxies that inhabit them.

Because our models rely on abundance matching, we re-
quire knowledge of the dark matter halo distribution. There-
fore, halo finding is necessary to locate the potential wells
where galaxies form. There are several different algorithms
used for this purpose, and they may produce different re-
sults even when working on the same test halos (see Knebe
et al. 2011, Onions et al. 2012 and references therein). For
our work, we use the ROCKSTAR halo finder (Behroozi et al.
2011a), which has the advantage of using velocity as well as
position information to locate substructure. This halo finder
produces results that are comparable to other modern halo
finders (e.g. BDM and AHF) on small scales; the use of phase
space information allows it to track subhalos better in the in-
ner regions of their hosts (Knebe et al. 2011; Onions et al.
2012; Behroozi et al. 2011a). The halo (and subhalo) masses
and maximum circular velocities (vmax) are calculated using
only bound particles, but including substructures. We also
use the merger trees produced by the algorithm described in
Behroozi et al. (2011b). The merger trees allow us to use the
past history of the halos and subhalos when assigning galaxy
properties. This combination of codes provide better tracking
of subhalos over time (Behroozi et al. 2011b).

3.2. Abundance matching
Abundance matching is a simple and effective method

for associating dark matter halos with galaxies (see, e.g.,
Kravtsov et al. 2004; Vale & Ostriker 2004; Conroy et al.
2006; Behroozi et al. 2010; Moster et al. 2010). A sim-
ple example is that given halo mass and stellar mass func-
tions, halos are assigned galaxies so that the most massive
halo hosts the most massive galaxy, the second most mas-
sive halo hosts the second most massive galaxy, and so on.
More generally, this approach is complicated by scatter in the
halo mass-stellar mass relation (e.g. Tasitsiomi et al. 2004;
Behroozi et al. 2010), and the question of which halo property
is more closely correlated with galaxy stellar mass (Conroy
et al. 2006). We consider both the effect of various nonzero
values of scatter and the use of different halo properties on
observable galaxy properties.

The most natural theoretical expectation may be that galaxy
properties are strongly correlated with the depth of their po-
tential wells. If this is the case, the property vmax is likely to
be the most relevant for galaxy properties. Dark matter ha-
los can be significantly stripped after they are influenced by
larger halos (before or after they enter the virial radius), in
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FIG. 1.— Top: Evolution of various halo properties with scalefactor a,
for for a single central galaxy, whose host halo has a mass of 3.7 × 1013

at z = 0. Note that the distinct halo has no mass loss, so M0 = Macc = Mpeak =
M0,peak. Further, vmax = vacc = v0,peak by definition. Only when vmax drops
significantly following a merger (due to the drop in concentration) does vpeak
deviate from vmax. Bottom: The same plot, but for a galaxy which is a satellite
at z = 0, with a present mass of 1.2× 1012 in a host of mass 3.1× 1013. The
satellite is accreted at around a = 0.85. Prior to this time, it is a central halo
with the same general properties as in the top plot. After accretion, however,
vacc is fixed, and v0,peak = vpeak. Because the halo starts being stripped here as
well, M0 is no longer the same as the other mass measures; the rest, however,
remain identical. The jumps at a = 0.95 are associated with a merger event
between this particular subhalo and another subhalo.

a way that galaxies are not. Because of this, is reasonable
to expect that galaxy properties should be most strongly cor-
related with their mass before this stripping occurs (see, e.g.
discussion in Conroy et al. 2006). At present, there is still a
wide range of halo properties used in the literature. For com-
pleteness, we consider a range of possible choices for the halo
properties, and evaluate their consistency with data:

• M0: This is the simplest form of abundance match-
ing, using only the masses of halos (or subhalos) at the
present time. Note that the mass of a subhalo is not
measured out to the subhalo’s virial radius; the subha-
los identified by ROCKSTAR include all particles that
are bound to the subhalo (see Behroozi et al. 2011a
for further details). Because the subhalos’ dark mat-
ter is more readily stripped than the galaxies hosted at

their centers, the M0 approach generally underestimates
satellite stellar masses (or luminosities).

• Macc: The mass of halos at accretion, or infall. For
(distinct) halos, this is the mass at the present time, the
same as M0. For subhalos, this is the mass of the halo
when it crosses the virial radius of its host, and is gen-
erally greater than M0. This boosts the stellar mass of
satellites relative to centrals of the same M0.

• Mpeak: The maximum mass that the halo (or sub-
halo) has ever had in its merger history. This mass
is nearly the same as M0 for isolated halos, but may
be significantly greater for subhalos than either their
present mass or their mass at infall, as some fraction
of halos will be stripped prior to accretion. Behroozi
et al. (2012) have found that most subhalos start being
stripped at ∼ 3 Rvir, regardless of host mass.

• M0,peak: For isolated halos, this is equal to M0; for sub-
halos, it is equal to Mpeak.

• vmax: Similar to M0, vmax is the maximum circular ve-
locity of a halo (or subhalo) at the present time. This
model generally suffers from the same difficulties as
M0, having too few satellite galaxies with a given stellar
mass.

• vacc: As with to Macc, vacc is the maximum circular ve-
locity of a halo at the present time (equivalent to vmax
for isolated galaxies), or at the time of infall. As with
M0, this boosts the stellar mass of satellites over that
when using vmax, increasing the satellite fraction at a
given stellar mass.

• vpeak: Similar to Mpeak, vpeak is the highest circular ve-
locity a halo has had over its entire merger history. This
is generally slightly greater than vmax or vacc for iso-
lated halos and significantly greater than either vmax or
vacc for subhalos.

• v0,peak: Similar to M0,peak, v0,peak assigns the halos their
present maximum circular velocity, and the subhalos
their peak circular velocity. Because v0,peak has the
largest difference between (distinct) halos and subha-
los, this is the model with the most massive satellite
galaxies, and consequently the highest satellite frac-
tions.

A comparison of how the properties we discuss here change
for a single halo can be seen in Fig. 1.

Additionally, there is a significant difference between the
vmax- and M0-based matching. In particular, a direct compar-
ison between vpeak and Mpeak shows that at fixed Mpeak, sub-
halos tend to have slightly higher peak vmax (by as much as
∼ 7%; see Fig. 2). This may be due to a combination of two
factors. One is that less concentrated subhalos may be more
easily disrupted, and less likely to survive to be included in the
sample. An alternative is halo assembly bias (e.g. Wechsler
2001; Gao & White 2007; Wechsler et al. 2006). In this case,
smaller halos that formed earlier and in lower-density regions,
prior to accretion, tend to have higher concentrations. This al-
ternative is plausible, as it has been demonstrated in Guo et al.
(2011) and Rodriguez-Puebla et al. (2012) that satellite galax-
ies tend to have slightly more stellar mass than central galax-
ies with the same (sub)halo mass. This difference is most
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FIG. 2.— Relationship between vpeak and Mpeak for satellites and central
galaxies. The solid blue line indicates the median vpeak at fixed Mpeak for
distinct halos. The dashed and dotted lines indicate the 68% and 95% bounds,
respectively. The green lines are the corresponding results for subhalos. Note
that subhalos tend to have larger vpeak and a wider dispersion, particularly at
low masses, where the difference in the medians is ∼ 10%.

significant in less massive host halos. A test using a lower-
resolution simulation (the Consuelo simulation discussed in
appendix B) recovers the same difference in vpeak between ha-
los and subhalos, suggesting that this difference is not likely
due to resolution issues.

The impact of changing the abundance matching parameter
is discussed in §5.1. Conroy et al. (2006) considered the use
of vmax and vacc, concluding that vacc was able to reproduce
the two-point correlation function, but vmax was not. Most
related studies have used one of these two properties.

To perform abundance matching, we use the stellar mass
function of the relevant galaxy sample as input. Because the
conditional mass and luminosity functions are sensitive to this
input, for consistency with the group catalog, we use the exact
stellar mass function of galaxies in the corresponding volume-
limited sample to perform the abundance matching instead of
using the global relations in the literature (e.g. Li & White
2009; Yang et al. 2009; Baldry et al. 2012).

Scatter is introduced using the deconvolution method de-
scribed in Behroozi et al. (2010). In brief, first abundance
matching with zero scatter (σ = 0) is performed using the ob-
served stellar mass function. A log-normal scatter is added
to the stellar masses of the galaxies. The "intrinsic" stel-
lar mass function (SMF), that is, the SMF to which scatter
is added in order to produce the observed SMF, is estimated
based on the difference between the observed and scattered
SMFs. This new "intrinsic" SMF is then used in abundance
matching. This procedure is repeated until the output of the
step where scatter is added is sufficiently close to the observed
SMF. While generally accurate, this approach is incapable of
adding extremely high scatter and maintaining the steepness
of the SMF above the characteristic stellar mass M∗,s (see
Fig. 3). This is not a significant problem, as such large scatter
(above∼ 0.3 dex at fixed stellar mass) appears to be excluded
by data at least for galaxies more massive than M∗,s. This has
been shown by previous authors (More et al. 2009; Leauthaud
et al. 2012), and is shown to be excluded by our later anal-
ysis. An alternative method of introducing scatter, presented
in Trujillo-Gomez et al. (2011), avoids this problem by se-
lecting stellar masses from a predetermined list, guaranteeing

FIG. 3.— Stellar mass function (SMF) from the SDSS sample (black),
used as input to the abundance matching, compared against the output re-
sults of abundance matching and observational systematics (colored lines;
blue, green, red, orange correspond to 0, 0.1, 0.2, and 0.3 dex of scatter).
Note that high values of scatter force the bright end of the stellar mass func-
tion high, because this steep region cannot be produced by convolution with
a too-broad Gaussian. Because there is no dependence of the scatter on the
matching parameter used or µcut, there is little change in the SMF between
models at fixed scatter. Error bars are derived from jackknife resampling.

that the SMF is exactly reproduced. This method does not
assume constant log-normal scatter in stellar mass, and there-
fore yields a somewhat skewed distribution of galaxy stellar
masses in large dark matter halos compared to a log-normal. It
is not yet clear whether these alternatives can be distinguished
by existing data.

In addition to the scatter, we consider the possibility that
satellites galaxies are disrupted before their halos are de-
stroyed in the simulation. To investigate this possibility, we
introduce a cutoff on the mass of subhalos. Once a subhalo
falls below some fraction of its maximum past mass Mpeak, we
consider its galaxy to have been disrupted, similar to the cut-
off examined in Wetzel & White (2010). These disrupted sub-
halos are excluded from abundance matching. Effectively, we
assign disrupted subhalos galaxies with zero stellar mass. We
use the parameter µcut to define the cutoff fraction of Mpeak,
ignoring all (sub)halos for which M0 < µcutMpeak. We con-
sider a range of µcut from zero (all subhalos are assigned a
galaxy) to 0.15. For reference, a value of µcut=0.1 removes
∼ 4% of subhalos that would have been included in the sam-
ple with µcut=0.

Once the abundance matching has been performed, we con-
vert the Bolshoi snapshot into a lightcone by taking the origin
as the point of observation. This allows us to produce an oc-
tant on the sky, including redshifts, to a depth of z = 0.083.
We use the snapshot at the mean redshift of the data, z = 0.05,
and ignore evolution in the dark matter distribution over this
narrow range. To introduce the same systematics present in
the group catalog, we first add fiber collisions (as described
below), then use the group finder to find galaxy groups and
determine whether galaxies are centrals or satellites.

3.3. Simulated Fiber Collisions
Once the mock catalog has been converted into a lightcone,

it is necessary to consider the effect of fiber collisions. The
simplest approach, which would be to find all galaxies in the
volume-limited sample within 55" of each other, does not



6 Reddick et al

fully emulate the set of possible fiber-collisions. A galaxy
may be fiber-collided with another galaxy that is either too
dim or too distant to be in the sample of interest. Therefore,
two samples must be included when creating fiber collisions.
The first is the volume-limited sample of interest. The sec-
ond is a flux-limited sample of all galaxies not within that
volume-limited sample. Fiber collisions are then determined
using galaxies from both sets, and must be applied before us-
ing the group finder.

We use the Bolshoi simulation to provide the volume-
limited sample. The sample of interest extends to a redshift
of 0.063. We use the remaining volume of Bolshoi, to a
redshift of 0.083, to provide a background of galaxies that
may be collided. Following this procedure, we find ∼ 4%
of galaxies are fiber-collided for the volume-limited sample
with log(M∗) > 9.8, compared to ∼ 5% of galaxies in our
sample. The algorithm that is applied to the SDSS for de-
termining the locations of spectroscopic fibers is discussed in
Blanton et al. (2003a). We use a related algorithm applied to
the mock lightcones. We initially include galaxies above the
stellar mass limit at any given redshift. Galaxies that have
neighbors within 55" are then placed into "collision groups"
of nearby galaxies. Of these galaxies, one is chosen to be the
galaxy for which a true redshift is known. Some of the other
galaxies may also have "measured" redshifts, partly at random
and partly depending on the geometry of the collision group.
The remainder are considered fiber-collided with the nearest
galaxy on the sky, and assigned its redshift.

After the mock catalogs are completed, we then apply the
same group finder as used on the SDSS groups to the mock
catalogs. This allows us to select galaxy groups consistently.

4. MEASUREMENTS
We use multiple measurements on both the SDSS DR7 cat-

alog and the synthetic galaxy catalogs constructed by populat-
ing simulations with abundance-matched galaxies. In partic-
ular, we focus on the projected two-point correlation function
and the conditional stellar mass function, and use these in con-
straining our models. We also consider other measurements,
such as the group stellar mass function and the satellite frac-
tion, to provide additional tests and to better understand the
underlying galaxy distribution.

4.1. Projected Correlation Function
In its most basic form, the two-point correlation function

counts pairs of galaxies at different separations, relative to
the number of such pairs one would expect from a random
distribution (see, e.g. Davis et al. 1985; Zehavi et al. 2005). A
clustered distribution, such as occurs in dark matter halos and
thus, in galaxies, results in a larger value for the correlation
function. Smaller scales (<∼ 1 Mpc/h) generally correspond
to clustering in a single host halo, between the central galaxies
and its satellites and between pairs of satellites, while larger
scales relate to clustering between isolated host halos.

We use the projected two-point correlation function, wp(rp)
because it does not suffer from peculiar velocities in the radial
positions of galaxies. We present new measurements of the
stellar-mass clustering in DR7 based on our volume-limited
catalogs, using the Landy–Szalay estimator (Landy & Sza-
lay 1993). We use thresholds in stellar mass of log(M∗) >
[10.6,10.2,9.8]. The covariances are drawn from spatial jack-
knife sampling.

Measurement of wp(rp) in the mock catalogs was done us-
ing the set of abundance matching models described in sec-

tion 3.2 applied to Bolshoi, with varying values of scatter and
µcut. Because the simulation volume is similar to the volume
of some of the volume-limited catalogs, it is important to un-
derstand the errors in the theoretical clustering measurements.
The covariance matrices were estimated by finding the corre-
lation function for each of a set of 300 PM simulations of
the same volume as Bolshoi, but with the dark matter down-
sampled to the same number density as the observed sample.
These covariances were then scaled to the correlations mea-
sured on Bolshoi, according to:

CB,i j = Ci j
wB,i×wB, j

w̄i× w̄ j
, (1)

where CB is the covariance matrix we use, and C that esti-
mated from the multiple simulations. The wB are the Bolshoi
correlations, while w̄ is the mean from the simulations. The
indices [i,j] denote the bin. We use this procedure for each
stellar mass threshold.

4.2. Conditional Stellar Mass Function
The conditional stellar mass function (CSMF) is the ex-

pected number of galaxies Φ(M∗|Mh) in a dark matter halo
of mass Mh with a stellar mass of M∗. An equivalent mea-
sure, the conditional luminosity function, carries similar in-
formation. The CSMF (or CLF) is a useful measurement for
understanding both galaxy properties and cosmology (Yang
et al. 2003, 2009; Cacciato et al. 2009; Hansen et al. 2009).
A group catalog may be used to obtain the CSMF directly, by
determining the mass of each group, then counting the galax-
ies in bins of stellar mass for each group mass. This allows
direct counting of the number of galaxies in halos, indepen-
dent of the clustering described above.

The CSMF may be split into two parts:

Φ(M∗|Mh) = Φc(M∗|Mh) +Φs(M∗|Mh). (2)

Here, Φc is the CSMF of central galaxies only, which are
the individual galaxies at the center of each dark matter halo.
Φc is a log-normal function. Φs is the CSMF of the satel-
lite galaxies, and well approximated by a Schechter function.
In the CLF, M∗ may be replaced by L, the luminosity of the
galaxies in the groups.

When we populate dark matter (sub)halos with galaxies,
which galaxy is the central galaxy is known by construction.
The group finder selects the most massive or brightest galaxy
to be the central galaxy. However, Skibba et al. (2011) showed
that the central galaxy as defined in a model is not always
the most massive or brightest galaxy in a group. Depending
on the scatter and the degree of stripping, we find the same
in our models. As a result, the intrinsic shape of the CSMF
in the models is different from the CSMF derived from the
group finder, particularly at low halo masses. Therefore, we
make all our comparisons with DR7 measurements using the
"observed" mock catalogs, which have been processed by the
same group finding algorithm.

The same procedure is used on both the DR7 volume-
limited catalog and the Bolshoi-based mock when measuring
the CSMF. Errors are estimated in both cases by using boot-
strap resampling of groups, with 100 samples.

4.3. Properties of satellites and centrals
We also investigate summary statistics of the CSMF. This

includes the observed scatter in central galaxy stellar masses,
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as a function of group stellar mass. We also consider the satel-
lite fraction in our models. We take this as the fraction of
galaxies in our sample that are found to be satellites by the
group finder, as a function of stellar mass.

4.4. Group Stellar Mass Function
The group stellar mass is the sum of the stellar masses of all

galaxies in a group above some threshold in stellar mass, for
each group. The least massive groups correspond to individ-
ual galaxies near the stellar mass threshold of log(M∗) > 9.8,
while the most massive correspond to clusters. The distribu-
tion of group stellar masses is the group stellar mass function
(GSMF). The group luminosity function is the equivalent pro-
cedure, using luminosity rather than stellar mass.

5. UNDERSTANDING THE PARAMETERS
Before discussing explicit constraints on the parameters of

the abundance matching models, it is helpful to consider the
effect of varying each of them individually on the several mea-
surements that we use. In §5.1, we consider varying the halo
parameter used for abundance matching (Fig. 4). In §5.2, we
consider varying the scatter in stellar mass at a given halo
property (Fig. 5). In § 5.3, we consider varying a the max-
imum amount halos can be stripped before galaxies are no
longer identified (Fig. 6).

5.1. Varying the Abundance Matching Parameter
The impact of varying the abundance matching parameter

is shown in Fig. 4. This figure shows the two-point correla-
tion functions for three cuts in stellar mass and the conditional
stellar mass function in three bins of total stellar mass, which
are later used to directly constrain the models. The satellite
fraction, the scatter in the stellar mass of the central galaxy
identified by the group finder, and the group stellar mass func-
tion, are also shown.

The impact of changing the abundance matching parameter
on many of the results is best understood in the context of a
halo occupation model. Correlations on small-scales, below
∼ 1 Mpc/h, are determined by the distribution of galaxies in
the same (host) halo, the one-halo term. Larger scales are
associated with the two-halo term, from the correlation be-
tween galaxies in different halos. For fixed values of scatter
and µcut, the most significant effect of changing the parame-
ter used in the abundance matching assignment is the change
in the one-halo term. Changing the halo parameter used for
abundance matching changes the relative circular velocities of
halos and subhalos that are used to assign central and satellite
galaxies, respectively. For example, the difference in the cor-
relation function between vmax and vacc is due primarily to the
fact that subhalos are stripped after accretion. This difference
can be seen in Fig. 1 at a = 1: vacc > vmax for the example
subhalo shown, but vacc = vmax for the distinct halo. Thus,
when abundance matching to vacc, this increases the fraction
of galaxies that are satellites (hosted by subhalos) at a fixed
number density (and therefore above a fixed threshold in stel-
lar mass) relative to the same procedure applied to vmax. This
increase in number of satellites enhances the one-halo term
due to additional satellites in clusters, but has little effect on
the two-halo term.

The same pattern can be seen among all four different abun-
dance matching methods using vmax. The parameter v0,peak re-
sults in the highest satellite fraction and the most small-scale
clustering. This is followed by vpeak and vacc; vmax the least

clustered. A similar trend can be seen among the models us-
ing mass, though the differences tend to be smaller due to the
smaller relative differences between mass definitions, as dis-
cussed in §3.2 and as can been seen for a pair of example halos
in Fig. 1. The mass-based matching is also less clustered than
the equivalent vmax method; for example, vpeak is more clus-
tered than Mpeak. This is because, as shown in Fig. 2, satellites
tend to have higher vpeak than centrals at fixed Mpeak. The re-
sults of all eight models with no scatter and µcut=0 are shown
in Fig. 4.

As is shown in the following two sections, using nonzero
values of either scatter or µcut can only reduce the clustering,
not increase it. Therefore, any model shown here that falls sig-
nificantly below the measured projected correlation function
cannot reproduce the clustering by any variation of these val-
ues, and is excluded from further consideration. This leaves
only vpeak and v0,peak as viable models. Because these are the
models with the highest values of the matching property for
subhalos relative to distinct halos, this implies that stripping
of the subhalo begins prior to the time of accretion, but that
the stripping of the satellite galaxy it hosts does not begin until
significantly later.

5.2. Varying Scatter
We evaluate the impact of scatter on galaxy statistics in

Fig. 5. For a fixed method of abundance matching, and fixed
µcut, the effect of adding scatter is to reduce the clustering
amplitude; this effect is most noticeable for the brightest, and
most strongly-biased, samples. This is due to the steepness of
the stellar mass function above the characteristic mass scale,
where the falloff becomes exponential. It is more likely that
less massive galaxies will be scattered to higher stellar mass
than the reverse, decreasing the bias of galaxies above a fixed
stellar mass threshold. However, this effect is reduced signifi-
cantly for stellar mass thresholds less massive than this scale,
since in this range the bias is only weakly mass-dependent,
and the stellar mass function flattens.

Similarly, increasing the scatter directly broadens the cen-
tral peak of the CSMF. In general, this scatter should increase
the width of the stellar mass distribution of central galaxies
in host halos of any mass. However, the assumption that the
brightest galaxy is the central galaxy, combined with the use
of the group finder, reduces this scatter dramatically in poorer
groups. This effect is most striking in the smallest halos,
where there may be one or no satellite galaxies, and the stellar
mass of the central galaxy becomes directly related to the host
halo mass determined by the group finder.

The scatter has some impact on the satellite portion of the
CSMFs, tending to slightly reduce the number of satellites in
clusters, and increase the number in small halos. This may be
most easily understood by first considering the satellite frac-
tion, which also tends to decrease at low stellar masses with
increasing scatter.

More massive galaxies are more likely to be centrals, be-
cause the fraction of halos of a given vmax which are subha-
los generally decreases with vmax (or mass) (Kravtsov et al.
2004; Conroy et al. 2006). As scatter increases, this relation-
ship weakens and the likelihood that a central galaxy is not
the most massive galaxy – and therefore determined to be a
satellite by the group finder – should increase. That is, there
is a significant likelihood that a satellite is more massive than
the central in a particular host halo. The intrinsic satellite
fraction of less massive galaxies should change only weakly
with scatter, since most such low mass galaxies are centrals
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FIG. 4.— Statistical properties of galaxies as measured from simulated galaxy catalogs and galaxy group catalogs, constructed using different halo properties
for abundance matching. All shown here have zero scatter and µcut = 0. Top: Projected two-point correlation function. Labels denote the stellar mass threshold.
Because increases in scatter or µcut can only decrease the clustering, it follows that any model which falls significantly below the measured clustering (black)
must be excluded. Center: Conditional stellar mass function (CSMF). Labels indicate the range in log(Mvir) for each plot, as well as the median total stellar mass
in each bin (M∗,tot ). Non-zero scatter broadens this part of the distribution. Bottom left: Satellite fraction as a function of stellar mass. As should be expected,
models with higher satellite fraction also have stronger one-halo clustering and more satellites in the CSMF. Bottom center: Group stellar mass function and
residuals. Bottom right: Standard deviation (scatter) in stellar mass of central as a function of total group stellar mass. The models are most readily distinguished
by the small-scale clustering and changes in the satellite fraction. Error bars on the model points have been omitted for clarity.
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with no satellites of sufficiently high stellar mass to scatter to
a higher mass than the central. On the other hand, particu-
larly in richer groups, some satellite galaxies will be scattered
to higher stellar mass, possibly more massive than the true
central. This suggests that the satellite fraction of low mass
galaxies should remain roughly constant with increasing scat-
ter, and should increase at high stellar mass with increasing
scatter. If this is surprising, consider the case of infinite scat-
ter, where galaxy stellar mass is completely unrelated to the
(sub)halo mass. In that case, the satellite fraction will be con-
stant with stellar mass, because satellites are as likely to be
the most massive as centrals.

However, in the data, we do not know whether a galaxy is a
central or satellite a priori. As a consequence, when the group
finder assumes that the most massive galaxy is the central, it
artificially reduces the satellite fraction of massive galaxies.
Furthermore, this assignment changes the center of the mea-
sured halo away from the true center, which means that some
galaxies that should be assigned as satellites are now outside
the inferred virial radius. This tends to reduce the satellite
fraction of low mass galaxies. This same effect reduces the
number of galaxies in massive clusters, as can be seen in the
CSMFs.

The opposite effect is seen in the least-massive groups that
we consider, where the number of satellites increases with
scatter. This is due to our method of host mass assignment,
where group stellar mass is used as the host mass proxy.
When a small group, with one or no satellites, gains a new
satellite above the stellar mass threshold due to scatter, the
group will be pushed up in group stellar mass and added to the
host mass selection. This effect is negligible on halos which
host many satellites, which are dominated by the miscentering
issue. (For more details, see Appendix A.)

The impact of scatter on the group stellar mass function is
also similar to that of µcut. That is, it increases the number
of low-stellar mass groups, and reduce the number of large
clusters, steepening the group stellar mass function.

In sum, increased scatter reduces the overall clustering am-
plitude, more strongly for higher stellar mass thresholds. It
also broadens the central part of the observed CSMF in mas-
sive groups, and alters the shape of the observed satellite
CSMF in a way that depends on the size of the group. The
clustering prohibits high scatter, while the CSMF requires
some moderate, nonzero scatter. The two parts of the CSMF
provide the strongest constraint in this regard.

5.3. Varying µcut

As discussed in §3.2, the µcut parameter defines a cutoff in
subhalo mass (see Fig. 6). This allows inclusion of satellite
galaxy disruption prior to the disruption of the simulated sub-
halo (see, e.g., Wetzel & White 2010). Those subhalos whose
mass at the present time falls below µcutMpeak are assumed
to have been destroyed, where Mpeak is the largest mass the
(sub)halo ever had in its history. The effect of this parame-
ter is to reduce the overall number of satellites at fixed stel-
lar mass. This reduces the number of small-scale pairs and
depresses the one-halo term in the correlation function. Be-
cause this removes satellites, the satellite fraction drops, es-
pecially at lower stellar masses, and the satellite part of the
CSMF is depressed. While the number of groups overall is
unchanged by increasing µcut, the groups with satellites tend
to lose satellites, reducing their total group stellar mass. This
tends to make the group stellar mass function steeper, pushing
more groups to lower total stellar masses.

Because µcut effectively removes satellites, and therefore
most strongly affects small scales, it cannot be too large. De-
tails of how µcut acts, however, depend somewhat on other
details of the model in question.

To summarize the implications of these initial tests:

1. Any model, to reproduce the clustering, must have at
least as many satellite galaxies as a model using vpeak
as the abundance matching property. Of the set of prop-
erties we consider, only vpeak and v0,peak pass this crite-
rion.

2. The µcut parameter most strongly affects small scales
and the number of satellite galaxies, removing those
whose subhalos were most stripped. To have enough
satellite galaxies to reproduce the clustering and CSMF,
µcut cannot be too large.

3. Increasing scatter reduces the clustering for the high
stellar mass thresholds, widens the central CSMF dis-
tribution, and alters the shape of the satellite CSMF.
It also reduces the satellite fraction. Scatter is most
strongly constrained by the two parts, satellite and cen-
tral, of the CSMF. Large scatter is also excluded by the
two-point clustering measurements (zero scatter is only
weakly disfavored by the clustering statistics alone).

6. CONSTRAINTS ON THE LOCAL GALAXY–HALO
CONNECTION

6.1. Parameter Constraints
We now investigate the two candidate models which plau-

sibly have enough substructure to match the data, abundance
matching stellar mass to vpeak and v0,peak. We systematically
vary the parameters in these models to determine which are al-
lowed by the data. For each model, we consider a large grid of
models in the scatter and µcut parameters described above, and
evaluate which range in these parameters provides an accept-
able fit to the correlation function and the conditional stellar
mass function measured in the SDSS data.

At every point in parameter space, we measure the CSMF
after passing the mock catalog through the group finding pro-
cedure and add fiber collisions, as discussed in § 3. This
ensures that we accurately mimic the systematic effect these
have on the galaxy groups. Additionally, we add a system-
atic error to account for shot noise in the galaxy assignment,
which is due to using a finite number of halos. For a fixed
set of model parameters, we produced 25 mock catalogs.
Though these have the same input parameters and stellar mass
function, the stochasticity of the algorithm produces a certain
amount of variation between individual implementations. We
estimated the point-by-point variation between these models
for all the measures we use to constrain the fit, and add this es-
timated variance to the diagonals of the covariance matrices.
Table 1 lists the overall fit results for vpeak and v0,peak, includ-
ing this systematic error. (Unless otherwise noted, error bars
shown in plots are statistical only.) Systematic errors are of
roughly the same magnitude as the statistical errors. There is
no large change in our conclusions when we do not include
these systematic errors.

To fully accommodate the variation between individual im-
plementations of any given model, we take the mean of each
data point and all of its neighbors in parameters space, and
the mean variances. For instance, for a point at µcut=0.02



10 Reddick et al

FIG. 5.— Impact of scatter in galaxy stellar mass at a given vpeak on observed statistics of the galaxy distribution. The models shown abundance match to
vpeak with fixed µcut=0, with varying values of scatter. Increasing scatter reduces the clustering, but does not strongly affect clustering for thresholds below the
characteristic stellar mass of the volume-limited sample. Individual plots are the same as described in Fig. 4.
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FIG. 6.— Impact of the µcut parameter, related to galaxy stripping, on observed statistics of the galaxy distribution. The models shown abundance match to
vpeak with zero scatter in stellar mass, with varying values of µcut. Increasing µcut pushes down the clustering on small scales only, and decreases the satellite
fraction. Individual plots are the same as described in Fig. 4.
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FIG. 7.— Constraints for the scatter and µcut parameters, for abundance matching models which assign galaxies to vpeak of both halos and subhalos. Clustering
constraints use data for galaxies with log(M∗) > 10.2. Levels give P(> χ2), corresponding to 1, 2, 3, and 5-σ contours. Upper left: Constraint from clustering
only. Upper right: Constraint from central part of CSMF only. Lower left: Constraint from satellite part of CSMF only. Lower right: Parameter constraints using
the total χ2 from all three measurements.

and σ = 0.20, we take the mean CSMF and two-point clus-
tering of the nine data points within µcut=0.02± 0.01 and
σ = 0.20± 0.01. This is a reasonable procedure as nearby
points in parameters space have relatively small changes in
output observables and it smooths fluctuations in the likeli-
hood due to occasional individual outlier points in the CSMF.

We find that only the model based on vpeak can produce an
adequate fit to both the CSMF and the clustering combined.
This model provides an excellent fit to the CSMF and cluster-
ing above log(M∗) ∼ 10. However, in general, even the best-
fit versions have slightly low clustering on small scales for the
log(M∗)> 9.8 samples. Because we cannot cleanly determine
whether this is due to a systematic issue with the simulation
or a problem with the model, we exclude this lowest threshold
from the total χ2 calculated for the combined measures. The
Mh = [12.6,12.9] host mass bin from the CSMF estimated χ2,
has significant fluctuations in neighboring bins in stellar mass,
which suggest some problematic behavior in the SDSS mea-
surement in that bin, and we omit this bin from our combined
fits.

Parameter constraints for this model are shown in Fig. 7.
Here we show the constraints from clustering alone, from the
central and satellite parts of the CSMF separately, and from all

of these statistics together. Notably, all three data sets require
scatter of< 0.25 dex. Marginalizing over scatter to obtain µcut
provides only upper limits: µcut< 0.07 (68%) and µcut< 0.11
(95%). Marginalizing over µcut and interpolating between
points in parameter space, the resulting constraints on scat-
ter using the vpeak model are σ = 0.200± 0.02 dex (68%) or
σ = 0.200±0.03 dex (95%). The scatter is most strongly con-
strained by the two components of the CSMF, while µcut is
determined largely by the clustering.

The measured statistics of the best-fit model are shown
in Fig 8. For the best-fit case, we use scatter of 0.20 dex,
and µcut=0.03, both well inside the constraints. This is the
best-fit model in the absence of the local averaging proce-
dure described above for estimating the constraints. We show
the clustering and stellar mass functions used to constrain
the model, which are in excellent agreement except for the
dimmest galaxies. We also compare the total group stellar
mass function, the satellite fraction, and the scatter in central
galaxy properties. All statistics are in excellent agreement
with the data for galaxies with stellar masses greater than
log(M∗) ∼ 10; there is slightly less clustering and a smaller
substructure fraction in the lowest bin of stellar mass.

As shown in Fig. 7, both the central and satellite parts of the
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FIG. 8.— Comparison of observed galaxy statistics between SDSS DR7 and our best-fit model, which uses vpeak, µcut=0.03 and scatter=0.20 dex. Note that
only the CSMF and correlation functions with log(M∗) > 10.2 are used for fitting. Plots are the same as described in Fig. 4.
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FIG. 9.— Maximum likelihood (black points) value of the scatter in each bin
in inferred host halo mass, marginalized over µcut, using constraints from the
conditional stellar mass function alone. Gray bands show the 68% bounds.
The scatter value is consistent with our overall best-fit scatter of 0.20 dex in
the full mass range from 1012–1014.

FIG. 10.— Same as Fig. 7, but using v0,peak, and using data for galaxies
with log(M∗)> 10.2. Levels give P(> χ2), corresponding to 1, 2, 3, and 5-σ
contours. The only constraint plot shown is that for the two-point correlation
function. The CSMFs have such high χ2 values that they are all completely
excluded over this parameter space at the 5 −σ level.

CSMF constrain the scatter in stellar mass at fixed (sub)halo
mass in our model. To check our assumption that scatter is
constant with respect to (sub)halo vpeak, we can obtain the
best fit in each bin in inferred host halo mass, or total group
stellar mass, which is strongly correlated with vpeak. This re-
sult is shown in Fig. 9. Here we are using the CSMF only (and
not the clustering), and use the results from the mass bins in-
dependently, thus the constraints at a given mass are weaker
than the full model constraint. However, it is clear that a scat-
ter of 0.20 dex is in excellent agreement with the result in each
individual mass bin, within the 68% bounds, after marginaliz-
ing over µcut. A very mild trend in the scatter parameter with
mass would still be consistent with these constraints.

The low clustering for the dimmest sample considered im-
plies that the model catalogs are missing dim satellites in gen-
eral; a deficit of satellites in groups and clusters will reduce
the small-scale clustering. A hint of this is also visible in the

TABLE 1
QUALITY OF FIT

Model type µcut σ (dex) χ2 N P(> χ2)
vpeak 0.02 0.20 107 116 0.70
v0,peak 0.15 0.24 260 116 < 10−4

satellite fraction, which is slightly low in the lowest stellar
mass bin. Further hints are seen in the radial profiles of galax-
ies, which show a slight deficit in the density of galaxies in
the innermost regions (see Appendix E). It is possible that
this is due to a lack of resolution in the N-body simulation on
the smallest scales, which could artificially destroy subhalos
that correspond to these galaxies. Equivalently, this may im-
ply support for the inclusion of "orphan" galaxies, which still
exist yet whose dark matter halos have already been signif-
icantly disrupted (see, e.g., Guo et al. (2011) and references
therein for a discussion of orphans). Adding a small number
of orphan galaxies may be able to correct the correlation func-
tion without significantly increasing the number of satellites.
Alternatively, it is possible that some form of assembly bias
becomes important at low stellar masses, or that the µcut pa-
rameter varies with stellar mass. A model similar to the last
suggestion was considered by Watson et al. (2012) and found
to provide a good match. However, these possibilities are de-
generate and we postpone a full consideration of these degen-
eracies to future work. We note that for the Bolshoi simulation
considered here, there is no indication that orphans, assem-
bly bias, or non-constant parameters are required for galaxies
with log(M∗)> 10.

We find that the v0,peak model is not able to provide an ac-
ceptable fit to the data for any region in parameter space. With
respect to the correlation function alone, v0,peak is capable of
matching or exceeding the correlation function in all bins,
as shown in Fig. 4 and with the wp(rp) constraint shown in
Fig. 10. In fact, only the v0,peak model can produce a good
fit to all three stellar mass thresholds simultaneously. How-
ever, it is not able to match either the central or satellite por-
tions of the CSMF. The central portion of the CSMF is offset
somewhat low in stellar mass, due to the increased number of
bright satellites. The high scatter and µcut needed to match the
width of the central CSMF and the high-stellar mass wp also
reduces the number of satellites too much for both the central
and satellite parts of the CSMF to be fit simultaneously. Al-
though this model is ruled out by the data, the values with the
best fit for the v0,peak matching parameter are µcut = ∼ 0.14
and scatter of ∼ 0.24 dex.

6.2. Halo properties for Satellite and Central Galaxies in
the Best-Fit Model

The results shown in the previous section were all in ob-
served space. We now consider the properties of the under-
lying model in our best-fit case. For the best-fit case, we use
scatter of 0.20 dex, and µcut=0.03, both well inside the con-
straints. This is the best-fit model in the absence of the local
averaging procedure described above for estimating the con-
straints.

A series of general relationships between halo (or subhalo)
properties and galaxy stellar mass for our best-fit model are
shown in Fig. 11. This shows the median values of various
halo properties in bins of stellar mass, split between satellite
and central galaxies. The relationship between vpeak and stel-
lar mass is nearly the same for both satellites and centrals.
This is as expected, since when abundance matching stellar
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FIG. 11.— M∗ relationship with vpeak (top left), vmax (top right), host halo mass (bottom left) and peak (sub)halo mass (bottom right) for the best-fit model,
with matching based on vpeak, with 0.20 dex scatter and µcut=0.03. Blue indicates centrals, green, satellites. Solid black lines are the median of the total (satellites
plus centrals). Solid lines are the median values of vmax or vpeak for bins in M∗. Dashed and dotted lines contain given the 68% and 95% bounds on galaxies
in each bin, centered at the median. Although the central and satellite distributions are similar in vpeak due to how the catalog is constructed, satellites typically
have lower vmax and larger dispersion due to stripping after accretion. (All units are given with h = 1.)

mass to halos sorted by vpeak we make no distinction between
satellites and centrals.

On the other hand, the satellite galaxies have significantly
lower vmax at the present time. This is sensible, as (sub)halos
with the same vpeak host galaxies with comparable stellar
mass, but satellite galaxies at that same stellar mass are in
subhalos with lower vmax due to stripping following accre-
tion. As a result, central galaxies with log(M∗) < 10.5 are
in halos with roughly 25% higher vmax than subhalos hosting
satellite galaxies with the same stellar mass. This difference
increases to as much as ∼ 35% at higher stellar mass. This
result may be in tension with a recent study of the variation of
the Tully-Fisher relation on environment using SDSS galaxies
(Mocz et al. 2012), which finds no dependence on environ-
ment. However, a direct comparison is complicated by differ-
ences in the environment definition from our designation of
central and satellite galaxies, as well as differences in sample
selection, so we leave a precise comparison to future work.

It is also noteworthy that for (sub)halos hosting lower stel-
lar mass galaxies, the subhalos have a much larger variation
in vmax than do the distinct halos. This is due to the wide
variety in vmax that may be associated with the same past
vpeak, depending on how much the individual subhalo has been
stripped since it was accreted.

The distribution of galaxies in host halo mass at a fixed stel-
lar mass is an interesting complement to the CSMF. As one

might expect, satellite galaxies (and their subhalos) tend to be
hosted by significantly more massive distinct halos than cen-
tral galaxies of the same stellar mass. The variation in satel-
lites’ host masses is also much larger at lower stellar mass,
since a relatively small subhalo may reside in a low mass halo,
as well as a very massive dark matter halo. At higher stellar
mass, this relationship narrows, since only sufficiently mas-
sive dark matter halos can host massive subhalos, and, hence,
very massive satellite galaxies. We refer to this host mass, of
the distinct halo containing a central or both a satellite and its
subhalo, as Mhost.

The variation in vpeak, vmax or Mhost at fixed central stellar
mass is reduced as stellar mass decreases. This is most likely
due to the fact that at high stellar mass, the stellar mass func-
tion, as well as the halo mass function and the circular velocity
function, is much steeper. Thus, at high stellar masses, a bin
of fixed width yields a wider range of values in the circular
velocities or host halo mass.

6.3. Best-Fit Conditional Stellar Mass Function
Following Yang et al. (2009) and Cacciato et al. (2009), we

fit the central galaxies with a log-normal function. We find
that a Schechter function is sufficient for the satellite galax-
ies. When we perform fits to the CSMF, we adopt the follow-
ing parameterization of these quantities, using in all cases the
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TABLE 2
INTRINSIC CSMF FIT PARAMETERS FOR BEST-FIT MODEL

Mhost log(M∗,c) σc φ∗ α log(M∗,Sch) No. of hosts
[log(M�/h)] [log(M�/h2)] [log(M�/h2)] [log(M�/h2)−1] [log(M�/h2)]
12.0-12.3 10.232±0.001 0.218±0.001 0.652±0.059 −0.98±0.16 9.92±0.04 27948
12.3-12.6 10.383±0.002 0.212±0.001 1.56±0.08 −0.76±0.10 10.01±0.02 14983
12.6-12.9 10.500±0.002 0.205±0.001 3.40±0.09 −0.41±0.08 10.04±0.02 7814
12.9-13.2 10.591±0.003 0.209±0.002 6.07±0.22 −0.62±0.06 10.17±0.02 4000
13.2-13.8 10.656±0.004 0.206±0.002 13.5±0.5 −0.74±0.04 10.27±0.01 2896
13.8-14.5 10.748±0.009 0.213±0.004 42.5±2.3 −0.95±0.05 10.38±0.02 595

TABLE 3
INTRINSIC HOD FIT PARAMETERS FOR BEST-FIT MODEL

M∗ threshold (Mr − 5 log(h)) log(Mmin) σm log(M1) log(Mcut) αHOD No. of galaxies
log(M�/h) [log(M�/h)] [ln(M�/h)] [log(M�/h)] [log(M�/h])
10.76 -21.5 13.71±0.03 2.30±0.06 14.31±0.13 13.1±0.5 0.97±0.30 4437
10.54 -21.0 12.924±0.006 1.75±0.01 13.74±0.15 12.8±0.3 0.94±0.21 18062
10.31 -20.5 12.318±0.002 1.161±0.002 13.30±0.17 12.6±0.2 0.93±0.17 49715
10.07 -20.0 11.950±0.001 0.9000±0.0007 12.98±0.18 12.4±0.2 0.94±0.15 103904
9.82 -19.5 11.6336±0.0001 0.6248±0.0001 12.76±0.17 12.2±0.2 0.95±0.13 174932
9.54 -19.0 11.4588±0.0002 0.6047±0.0001 12.59±0.16 12.0±0.2 0.96±0.11 261915

differential d log(M∗):

Φc(M∗|Mhost) =
1√

2πσ2
c

exp
(

−
(logM∗ − logM∗,c)2

2σ2
c

)
(3)

Φs(M∗|Mhost) = φ∗

(
M∗
M∗,s

)α+1

exp
(

−
M∗
M∗,s

)
(4)

Thus, the central galaxies are characterized by two param-
eters: M∗,c, which is the geometric mean of the central stellar
mass, and σc, which is the width of the log-normal distribution
in dex. Both are closely related to the scatter in the model, as
described below. The satellite galaxies are described by the
usual three parameters of a Schechter function. Here, M∗,s is
the cutoff luminosity, α the faint-end slope, and φ∗ the overall
normalization. Unlike in Yang et al. (2008, 2009), we choose
not to fix the relationship between M∗,c and M∗,s explicitly.

The results of fitting to the intrinsic CSMF can be seen in
Fig. 12. This is the CSMF in the Bolshoi simulation, using
our best-fit model, and without observational complications
(e.g., group-finding). Here, a galaxy is a satellite if its halo
is a subhalo. This is the same model as shown in Fig. 8; the
main difference between the two is that the intrinsic CSMF
does not require that the central galaxy is the has the most
stellar mass, a necessary assumption of the group-finding al-
gorithm. The impact is strongest for the least massive halos,
or groups with the least total stellar mass. In particular, if a
"group" has only one or two galaxies, the stellar mass is dom-
inated by the most massive one. That most massive galaxy is
assumed to be the central galaxy. Because our earlier analysis
used the group stellar mass to assign host halo mass, at low
host halo masses, we obtain a nearly zero-scatter correspon-
dence between central stellar mass and host halo mass. This
produces the sharp central peak that can be seen in Fig. 8 and
the other comparison figures. However, as can be seen in Fig.
12, the underlying distribution is much broader. This is pri-
marily due to the 0.20 dex scatter in this model, with a small
contribution from the finite size of the mass bin.

A few additional intrinsic measurements are shown in
Figs. 13 and 14. For all of these plots, we extrapolate our
stellar mass function down to stellar masses of 108 M�/h2.

Fig. 13 shows the intrinsic satellite fraction and scatter, which
may be contrasted with the mock observed values in Fig. 8.
Notably, in the intrinsic case, the satellite fraction flattens
below the cutoff stellar mass of log(M∗h2/M�) = 9.8 in our
volume-limited sample. The scatter in central stellar mass at
fixed group total stellar mass shows the same trend as in the
observed case, with low scatter at low stellar masses due to the
fact that the central contributes nearly all of the stellar mass.
However, because no group finding is involved to artificially
reduce the scatter for groups with many galaxies, it reaches
∼ 0.2 dex at the massive end.

We also show the more finely binned trends in characteris-
tic group stellar mass, central galaxy stellar mass, and satellite
galaxy stellar mass in Fig 14. At low host masses, there are
few satellite galaxies with even 108 M�/h2 solar masses, and
so the measured M∗,s is not reliable below logMhost ∼ 11.5.
The central stellar mass and satellite stellar mass M∗,s are only
slowly changing for host halo masses above ∼ 1013M�/h,
and then fall off at lower host halo masses. Note that the
ratio between central galaxy stellar mass and satellite stel-
lar mass M∗,s is roughly constant over a broad range in host
halo mass, which is in general agreement with results from
Yang et al. (2009). This figure includes some of the results of
a fit parameterized to host halo mass, which works well for
Mhost > 1012M�/h and is discussed in the next section.

6.4. Conditional Stellar Mass as a Function of Halo Mass
To more generally describe the CSMF, we take the parame-

ters from equations 3 and 4 to be functions of host halo mass.
For the central CSMF, the mean stellar mass is defined by:

log(M∗,c) = log(M0)+g1 log
(

Mhost

M1

)
+(g2 −g1) log

(
1 +

Mhost

M1

)
(5)

where M0 is a characteristic stellar mass, M1 is a character-
istic host halo mass, and g1 and g2 are power-law slopes. Mh
is the host halo mass. The width σc of the log-normal function
is assumed to be constant as a function of host halo mass.

The satellite CSMF is determined by the three Schechter
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FIG. 12.— CSMF fits for the best model. Black is the overall CSMF; blue, central galaxies only; green, satellite galaxies only. Solid lines are the respective
fits. Labels give the host mass range in log(M�/h). Eq. 3 and 4 describe the fit, while Table 2 lists the parameters. Error bars include estimated systematic errors.

function parameters, φ∗, α, and M∗,s.

φ∗ =
(

Mhost

Mφ

)a

(6)

log(M∗,s) = log(M∗,0) + b log
(

Mhost

M∗,1

)
− b log

(
1 +

Mhost

M∗,1

)
(7)

The slope α is assumed to be constant as a function of halo
mass. Based on Fig. 12 and the individual fit results in Table 2,
it is evident that α varies significantly from one fit to another
without a commensurate variation in the shape of the satellite
CSMF. This is due to the fact that when limiting the fit to
stellar masses log(M∗) > 9.8 we lose constraining power on
the low-mass slope, and it becomes degenerate with the other
satellite parameters. When we consider the extrapolation to
lower stellar mass, we find that the slope at all host masses
converges to α∼ −1. There, we hold α = −1 fixed.

We then fit this functional form to the binned CSMF data.
The parameters for the resulting fit are in Tables 4 and 5 for
the DR7 input stellar mass function. The overall result of this
fit is shown in Fig. 15, which clearly reproduces the data
well. Some comparisons of the parameters as a function of
halo mass are shown in Fig. 14 as discussed in the previous
section.

6.5. Best-Fit Halo Occupancy Distribution

The halo occupancy distribution (HOD) may be used, for
instance, to predict or fit to galaxy clustering (Zheng et al.
2007; Watson et al. 2011; Zehavi et al. 2011). The HOD is de-
fined in part by P(N|Mh), the probability of finding N galaxies
of some type in a halo of mass Mh. The common procedure
takes galaxies brighter than some fixed stellar mass M∗,min as
the type of interest. In this case, the expectation of the HOD
may be obtained directly from the CSMF:

〈N(Mhost)〉 =
∫ ∞

M∗,min

Φ(M∗|Mhost) dM∗ (8)

Similar to the CSMF, the HOD may also be split into central
and satellite contributions, with<N(M)>=<Nc > +<Ns >.
The central portion may be described by a step function, with
a cutoff of some width. Thus, there is some minimum host
mass, Mmin, below which the halo is too small to host a central
galaxy brighter than M∗,min. Above Mmin, each halo typically
hosts one central galaxy; below Mmin, each typically hosts
none. The satellite galaxies are a different matter, generally
well-described by a power law, with some cutoff at or above
Mmin. Below this cutoff there are very few satellite galaxies.

While the usual approach to determining the HOD is to
perform a fit to the clustering and number density data, we
instead use the information on group association available in
the simulations to measure the HOD directly. This is done by
counting all galaxies above some stellar mass for each (host)
halo of a given mass, then averaging over all halos.

We fit the following functional form to the HODs drawn
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FIG. 13.— Additional measures of the intrinsic distribution of galaxies in
our best-fit model. Top: Intrinsic satellite fraction as a function of stellar
mass. Because the input SMF only extends down to log(M∗) = 9.8, stellar
masses below this cutoff are drawn from a power-law extrapolation to the
input SMF. Bottom: Scatter in central galaxy stellar mass as a function of
total group mass. Note the difference between the intrinsic scatter shown
here and the smaller “observed” scatter after group finding shown in Fig. 8.
In both cases, this scatter becomes poorly defined for groups with no galaxies
above the stellar mass cutoff.

from these catalogs:

〈Nc〉 =
1
2

(
1 + erf

(
lnMhost − lnMmin

σm

))
(9)

〈Ns〉 =
(

Mhost

M1

)αHOD

exp
(

−
Mcut

Mhost

)
(10)

Mmin is, as described above, the cutoff in the central galax-
ies. The error function provides a smoothed step function that
reproduces the form of the central galaxies, whose width is
characterized by the parameter σm. The satellites are charac-
terized by Mcut, the cutoff below which galaxies of the given
type are not expected to have satellites, the scale M1 at which
the galaxies typically have one satellite, and αHOD, the power-
law slope. All mass scales increase as the stellar mass of the
selected sample increases. These fits are presented in Fig. 16.

Our model may be compared against the Zehavi et al.
(2011) HODs fitted from clustering. An exact comparison
requires the use of luminosity rather than stellar mass (see

FIG. 14.— Measures of the intrinsic distribution of galaxies in our best-fit
model. Top: Median central mass (M∗,c), median total group stellar mass
(M∗,tot ) for two different stellar mass thresholds, and the fitted M∗,s to a
Schechter function in narrow mass bins (triangular points). Solid lines are the
fitted values of M∗,c and M∗,s as discussed in § 6.4. The x’s with error bars
indicate the M∗,c and M∗,s fitted values in the individual mass bins used for
observational comparisons. Center: Ratio of the median central stellar mass
to the median total group stellar mass, as a function of host halo mass. This
becomes less meaningful as the central comes to dominate the group’s stellar
mass. Bottom: Ratio of characteristic satellite stellar mass M∗,s to the me-
dian central stellar mass. Note that this is fairly constant at log( M∗,c

M∗,s
) ∼ 0.28.

Solid line indicates the difference in the host mass dependent fits for M∗,c
and M∗,s.

Appendices C and D for the results using r-band luminosity).
Our stellar mass results show the same general trends, that is,
a satellite slope of αHOD consistent with one for all thresh-
olds, decreases in all three mass scales with decreasing stellar
mass, and decreasing σm with decreasing stellar mass. How-
ever, there are differences in detail. We find that σm is signif-
icantly larger, and necessarily nonzero, for all thresholds we
consider. We also find a higher value of Mmin at each thresh-
old. This is likely due in part to the degeneracy between Mmin
and σm when estimating the HOD from clustering. However,
it remains possible that these differences are attributable to the
use of stellar mass rather than luminosity.

7. COMPARISONS WITH OTHER MEASUREMENTS
7.1. Stellar Mass Function

The precise stellar mass function we use has a significant
impact on the results and implications of our model. For com-
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FIG. 15.— Comparison of the best-fit model with the DR7 SMF (points) against the full fit using host halo-mass dependent parameters (lines). Error bars
include estimated systematic errors.

FIG. 16.— HOD fits for the best model. Black is the overall HOD; blue, central galaxies only; green, satellite galaxies only. Solid lines are the respective fits.
Error bars have been omitted from the centrals and satellites for clarity. The HOD fit is presented in Eq. 9 and 10, with parameters listed in Table 3.
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FIG. 17.— Four stellar mass functions from the SDSS local data. The
NYU-VAGC (black) was used to fit our model parameters and tests its valid-
ity; we repeat our calculations using the others to understand the sensitivity
to this global measurement. The Yang et al. (2009) stellar mass function
(green) is drawn from a sample used in a previous study of the CSMF. For
Baldry et al. (2012), we show both the data (square points) and their fit (line),
the latter of which we use in later model tests. Finally, we also show Mous-
takas et al. (2012), a recent result based on SDSS combined with additional
multi-wavelength data and a full Bayesian analysis of SEDS to derive stellar
masses.

parison, we consider several different stellar mass functions
from the literature. The set of stellar mass functions we now
consider is shown in Fig. 17.

We give significant attention to the previous study of groups
from Yang et al. (2009), of which further related details are
available in Yang et al. (2005, 2007, 2008). While they use
the mass-to-light ratios and g − r colors based on Bell et al.
(2003), the SMF from DR7 in our volume-limited catalog
uses KCORRECT stellar masses from the template method of
Blanton & Roweis (2007). This difference in approach intro-
duces in effect an offset and scatter between the two defini-
tions of stellar mass, preventing a straightforward galaxy-by-
galaxy comparison. Additionally, the Bell et al. (2003) stellar
masses effectively assume a Kroupa (2001) initial mass func-
tion (IMF), while we assume Chabrier (2003). The change in
IMF produces an offset in stellar mass (see Figs. 17, 18).

There is an additional observational systematic which we
have not previously considered in detail. Because some frac-
tion of the galaxies are fiber collided (as discussed in §2 and
§3.3), their true redshift is unknown. The correction for fiber
collisions assumes that the fiber-collided galaxy is at the same
redshift as the galaxy with which it is collided. This can put
a galaxy at the wrong distance, resulting in an incorrect infer-
ence of its luminosity and stellar mass. Appropriately taking
this effect into account for our stellar mass mocks would re-
quire knowledge of the colors in addition to the stellar mass.
This generally has only a small effect, since only 5% of galax-
ies are fiber collided in our mocks, and many of those are col-
lided near their true redshifts. However, in general, the Yang
et al. (2009) group catalog results we consider in the next sec-
tion exclude fiber-collided galaxies for which redshifts from
other surveys are not available.

In addition to the group catalog and associated stellar mass
function of Yang et al. (2009), we consider two additional
recent measurements of the stellar mass function. The first
is that of Baldry et al. (2012), which applies a color-based

method of estimating stellar mass which is similar in form to
that of Bell et al. (2003). The data they use are drawn from
the Galaxy and Mass Assembly (GAMA) survey at z < 0.06.
The second is Moustakas et al. (2012), which combines SDSS
data with additional UV and IR photometry. From this data,
they obtain accurate stellar masses using spectral energy dis-
tribution (SED) modeling. Their stellar population synthesis
assumes a Chabrier (2003) IMF.

7.2. Intrinsic Conditional Stellar Mass Function
Two different intrinsic CSMFs can be seen directly com-

pared in Fig. 18, where the difference is the SMF input. Here,
abundance matching was performed using both our VAGC de-
rived SMF and that of Yang et al. (2009). We use the best-fit
parameters found in §5 in both cases. It is clear that the Yang
et al. (2009) CSMF generally has higher stellar mass, as ex-
pected from the change in input SMF seen in Fig. 17. To more
precisely quantify this difference, we fit to the intrinsic CSMF
found in each of the mock catalogs produced for all four input
SMFs. The fit is done as a function of host halo mass, using
the parameters from equations 3 and 4 as described in §6.4.

Using this overall parameterization allows a comparison be-
tween the two different stellar mass function cases, as shown
in Tables 4 and 5, by comparing just these eleven parame-
ters for the two cases. Fits were done using the midpoint
host mass value in each bin. The VAGC fit is demonstrated
if Fig. 15, and the fits to all four intrinsic CSMFs are shown
in Fig. 19. The parameters in Tables 4 and 5 demonstrate
primarily the shift in stellar mass that is also visible in the fig-
ure. Note the increase in the central mass scale M0 from our
VAGC SMF to the Yang et al. (2009) result. The host halo
mass scale, where the central stellar mass turns over from in-
creasing significantly with host halo mass to a more shallow
increase, is also higher in the Yang et al. (2009) case. This
is most likely indicative of the change in the SMF relative to
the host halo mass function, particularly since only the high
host mass slope changes significantly. The scatter in the cen-
trals remains about the same, as expected from the fixed input
model. The other two stellar mass functions generally pro-
duce intermediate mean central stellar masses, in agreement
with the different SMFs presented in Fig. 17.

The VAGC version does have lower M∗,s in general, as
suggested by the slightly lower intercept value. The slightly
steeper change in M∗,s with host halo mass, as indicated by the
b parameter, also pushes the characteristic stellar mass higher
in the Yang et al. (2009) case. Changes in φ∗ are somewhat
more difficult to interpret, though the individual values remain
similar in normalization. This is likely due to the presence
of the same subhalos determining how many satellites are in
each group. Most of the variation in the satellite parameters
among the different SMFs stems from changes in the M∗,s
value and how it changes with Mhost. On the other hand, φ∗
has similar variation with group host halo mass, regardless of
the SMF used.

7.3. Observed Conditional Stellar Mass Function
Direct comparisons made of the fitted CSMF results drawn

from Yang et al. (2009) to our model CSMF using their stellar
mass function are shown in Fig. 20. Both versions, with and
without observational systematics, were done using our best-
fit model (vpeak, scatter=0.20 dex, µcut=0.03) applied with the
stellar mass function of Yang et al. (2009).

It is important to note the systematic differences imposed
by the slightly different group finding done in these two
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FIG. 18.— Comparison of the results of our best-fit abundance matching model using the SMF drawn from our volume-limited samples (centrals in blue,
satellites in green) and using the SMF reported in Yang et al. (2009) (centrals in red, satellites in magenta). The primary difference between the two cases is the
stellar mass definition: while we use the stellar masses from KCORRECT as described in Blanton & Roweis (2007), Yang et al. (2009) use stellar masses from
Bell et al. (2003), resulting in an offset.

TABLE 4
CSMF MASS DEPENDENT FIT PARAMETERS – CENTRALS

SMF log(M0) log(M1) g1 g2 σc
[log(M�/h2)] [log(M�/h)] [log(M�/h2)]

VAGC 10.64±0.03 12.59±0.10 0.726±0.055 0.065±0.021 0.212±0.001
Y09 10.96±0.05 12.94±0.12 0.644±0.028 0.155±0.031 0.215±0.001
B12 10.77±0.01 12.40±0.05 0.947±0.061 −0.003±0.003 0.213±0.001
M12 10.56±0.07 12.21±0.20 1.19±0.26 0.224±0.017 0.218±0.002

TABLE 5
CSMF MASS DEPENDENT FIT PARAMETERS – SATELLITES

SMF log(M∗,0) log(M∗,1) b log(Mφ) a
[log(M�/h2)] [log(M�/h)] [log(M�/h)]

VAGC 10.401±0.008 12.71±0.08 0.753±0.063 12.30±0.01 0.866±0.010
Y09 10.664±0.008 12.60±0.07 0.948±0.083 12.42±0.01 0.881±0.006
B12 10.538±0.006 12.35±0.09 1.26±0.16 12.43±0.01 0.951±0.007
M12 10.553±0.009 12.65±0.08 0.986±0.092 12.41±0.01 0.875±0.007
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FIG. 19.— Comparison of fits to the intrinsic CSMF for our model using four different stellar mass functions, using the prescription discussed in §6.4. Blue
lines indicate the central part of the CSMF, and green, the satellites. Solid lines show our main results, using the VAGC CSMF, the same as shown in Fig. 15.
Dotted lines show the Yang et al. (2009) SMF. Dashed lines indicate the fit to our model using Baldry et al. (2012). Dot-dashed lines show Moustakas et al.
(2012). Note how the cutoff of the satellite stellar mass and the mean central stellar mass vary with the massive end of the SMFs shown in Fig. 17.
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FIG. 20.— Results of our best-fit model using the SMF of Yang et al. (2009) before (diamonds, centrals in blue, satellites in green) and after (squares, centrals
in red, satellites in magenta) the application of observational effects (group finding and fiber collisions), compared to the measurements of Yang et al. (2009)
(solid lines, blue for centrals and green for satellites). The main difference in these two cases lies in the details of the group finding procedure.

cases. The Yang et al. (2009) results use both r-band lumi-
nosity and stellar mass information. They define their groups
by requiring that at least one galaxy in each group to have
0.1Mr < −19.5. They then use either the group total luminos-
ity or stellar mass of all galaxies that pass that luminosity limit
to assign host halo masses. They find limited differences be-
tween these using total luminosity or stellar mass. They also
use the same assumption we do that the galaxy with the most
stellar mass is the central galaxy.

However, the fact that their limit is a cut in luminosity rather
than stellar mass significantly alters the shape of the CSMF
at low host halos masses (poor groups). This effect is most
clearly seen in the 12 < log(Mhost) < 12.3 bin of Fig. 20,
which compares their results with our model, including the ef-
fects of group finding. In our model, there are effectively two
types of groups in this bin. Those consisting of only a single
galaxy (which then provides all the stellar mass) form the high
part of the peak, and are most common. The rest are groups
with two galaxies just above the stellar mass threshold. In this
case, the more massive of the pair makes up the lower part of
the central peak while the other provides all the satellites seen
in this host mass range. Therefore, the stellar mass of cen-
trals, as well as the location of the few satellites, is directly
determined by the range in total group stellar mass associated
with the inferred host halo mass bin. On the other hand, in
the Yang et al. (2009) result, their overall cut on galaxies to
include is in luminosity, rather than stellar mass. This means

that stellar mass of the central galaxy is not directly determin-
ing the host halo mass, smoothing out the distribution. Aside
from this difference in the low host mass bins, there is gen-
erally good agreement between our "observed" model results
and these measurements.

A comparison of the intrinsic model results with these mea-
surements is also shown in Fig. 20. This demonstrates directly
some of the effects of the group finding. Most obvious is the
fact that the group finding reduces the width of the central dis-
tribution, as well as introducing the extra feature in low-mass
host halos described above. There is also some offset in the
centrals between these two cases, most likely due to the fact
that the group finding assumes that the most massive galaxy
in a group must be the central, pushing the observed centrals
to being more massive in general. Additional, the cutoff in
the satellite distribution is much sharper after group finding.
This is also due to the assignment of the most massive galaxy
in the group as the central, since more massive satellites are
more likely to be reassigned as the central. This imposes an
extra cut on the satellite distribution. Therefore, it is likely
that the sharp cutoff imposed on the satellite galaxies in the
CSMF fits of Yang et al. (2009) is not purely physical, but
convolved with the group finding.

7.4. Comparisons to Previous Work
There has been significant work in the literature regarding

the question of the galaxy-halo connection. We consider a few
recent examples in relation to our study.
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The work of Wetzel & White (2010), using an abundance
matching model based on Macc, considered in detail the ef-
fect of satellite disruption in a form similar to our µcut on the
clustering and satellite fraction of galaxies. They examine
the disruption of satellites when the fraction fin f = Macc/M0
of the subhalo falls below some threshold, up to fin f = 0.1.
They find that values of fin f = 0.1 − 0.3 at z = 0.1 best re-
produces observables, which is reassuringly similar to our
preferred values for µcut. Another study was done in Wat-
son et al. (2012) using a similar abundance matching method.
They specifically addressed the stellar mass loss of satellite
galaxies and the transfer of stellar mass into the intra-halo
light. They considered two separate models for stellar mass
loss after a subhalo was accreted. The main property of the
model was gradual stellar mass loss at a rate related to the loss
of dark matter after the subhalo was accreted. This is related
to our consideration of the µcut parameter, though our sim-
pler implementation assumes that the galaxy in the subhalo is
rapidly destroyed after the subhalo mass falls below a thresh-
old. They succeed in reproducing the clustering measured in
Zehavi et al. (2011), including the low-luminosity thresholds.
This difference may be accounted for by several differences in
implementation. They use a slightly lower scatter (0.15 dex)
which increases the overall clustering. They also use an ana-
lytic model for substructure (Zentner et al. 2005) rather than
an N-body simulation, which permits them to track subhalos
at far lower circular velocities. Nonetheless, their successful
implementation is supportive of the general principle of abun-
dance matching. Because their work shows that the satellite
galaxies with the least stellar mass should also be those that
are most stripped of stellar mass relative to their dark matter
stripping, we suspect that the low clustering in our low stel-
lar mass bin may be due to the loss of a few subhalos in the
simulated clusters.

Another related study was done by Moster et al. (2010).
They assign stellar masses using the peak subhalo mass and
the present halo mass. Their work also relies on the inclu-
sion of orphan galaxies, which may be more necessary in their
work as they use a dark matter simulation with poorer resolu-
tion than Bolshoi. Further, rather than performing strict abun-
dance matching using an input SMF, they assume an analytic
form for the relationship between galaxy stellar mass and halo
(or subhalo) mass. They then require that the SMF they pro-
duce adequate fit the SMF of the SDSS. They do successfully
reproduce the two-point clustering and the CSMF. However,
they also note that when they use abundance matching instead
of their stellar mass-halo mass relation, that the low halo mass
end (Mhost < 1012 M�) of the relationship is significantly dif-
ferent from the power law that they assume, and add another
parameter to fit this result. The general Moster et al. (2010)
form may be too restrictive at low stellar masses (see discus-
sion in Behroozi et al. 2012), but this halo mass is generally
below what we consider.

These simple assumptions may be modified by allowing the
scatter to vary with galaxy stellar mass, halo mass, or some
other halo property such as vmax. While the analytical model
of Yang et al. (2012) incorporates these effects, it is likely that
not all are necessary modifications. Another related approach
was used by Neistein et al. (2011b), who use a shuffle test to
determine that abundance matching may require a dependence
on the host halo mass, in addition to Macc, which is explored
further in Neistein et al. (2011a). However, they consider only
the stellar mass function and the correlation function of galax-
ies in their sample, and they use only the infall mass (and host

halo mass) for their abundance matching. Our analysis con-
siders only a model with no dependence on the host halo mass.
However, a more direct comparison to the results of Neistein
et al. (2011a) is not immediately possible due to the differ-
ence in matching statistics (Macc as opposed to our preferred
vpeak). Regardless, degeneracies between their different mod-
els would be broken by including a comparison to the CSMF
or similar group statistics.

An alternative abundance matching approach involves di-
viding subhalos and isolated host halos prior to abundance
matching, and applying different matching functions to each.
Rodriguez-Puebla et al. (2012) investigate this, decomposing
the overall stellar mass function into central and satellite com-
ponents, and matching these separately to the halos and sub-
halos, respectively. They find that when matching against the
mass of subhalos at accretion or at the present time, the satel-
lites must have more stellar mass than would be inferred from
applying the stellar mass-halo mass relation derived for the
central galaxies. This is in general agreement with our find-
ings as well, since the M0 and Macc direct abundance models
have a deficit of satellites. Further, the preferred matching
to vpeak naturally gives the subhalos of satellites higher vpeak
than the halos of central galaxies, and thus, more stellar mass
at fixed Mpeak, as shown in Fig. 2.

In contrast with our comparisons to observations, Simha
et al. (2012) make a comparison between abundance match-
ing in a purely dark matter simulation and in a dark matter
simulation with the addition of gas hydrodynamics and pre-
scriptions for star formation and feedback. The two simula-
tions use the same initial conditions. They generally find good
agreement between these cases, but there are indications of
incompleteness or premature galaxy disruption at low stellar
masses. However, the resolution of their dark matter simu-
lations is not as good as that of the Bolshoi simulation that
we use. Based on the results of a resolution test presented
in App. B, we find that these discrepancies are all below the
mass at which the simulation used there is able to track the
full population. We thus expect that these discrepancies are
primarily due to limited resolution, and not to failures of the
abundance matching approach. Higher resolution hydrody-
namical simulations will be required to verify this.

One set of measurements complementary to our own are
presented in More et al. (2009). Rather than using the to-
tal group stellar mass or luminosity to determine the mass of
a halo, they instead use satellite kinematics to determine the
mass of a halo around a central galaxy. They obtain a relation-
ship between central galaxy luminosity and host halo mass,
with a scatter of of 0.16± 0.04 dex at fixed host halo mass.
This is somewhat low relative to our constraints for the lumi-
nosity model (σ = 0.22+0.01

−0.02, see Appendix C for details), but
our result is still within two standard deviations of theirs.

8. SUMMARY
We have used an analysis of the Bolshoi cosmological sim-

ulation to examine the correlation functions and CSMFs of
several different models for the connection between galaxies
and halos which are variants of the subhalo abundance match-
ing approach. We have compared these models against data
drawn from SDSS, using new measurements of the two-point
correlation function as a function of stellar mass and the con-
ditional stellar mass function in groups. All CSMF compar-
isons between models and data are done in “observed space”,
after applying group finding and fiber collisions to our mod-
els. Our study is the first to combine this set of measurements
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in a fully self-consistent way to test a model which assigns
all galaxies to resolved subhalos in a simulation. From these
results, we have reached the following conclusions:

1. An examination of the correlation function shows that
most of the halo mass properties used as proxies for
stellar mass that we considered cannot reproduce the
data regardless of the parameters used. This includes
abundance matching models where the halo property
used is M0, Macc, Mpeak, M0,peak, vmax and vacc. Each
of these models is insufficiently clustered even in cases
with no scatter and µcut=0. Because non-zero scat-
ter and µcut only reduce galaxy clustering, we exclude
those models. The only exceptions are vpeak and v0,peak.

2. Our best-fit model uses vpeak, with µcut=0.03 and scat-
ter of 0.20 dex. This model provides a good fit to the
combined constraints of the clustering for galaxies with
log(M∗) > 10.2, the mean and dispersion of the cen-
tral galaxies in bins of host mass (in the CSMF), and
the satellite distribution in the CSMF, both for galaxies
brighter than log(M∗)> 9.8.

3. The v0,peak model provides significantly poorer fits to
the data overall that vpeak. It can marginally fit the
clustering data alone, but cannot fit the satellite CSMF
and is strongly ruled out by the combined data. The
increased stellar mass of satellites relative to central
galaxies forces the mean stellar mass of the central
CSMF slightly low. The high µcut needed to match the
clustering also reduces the satellite fraction at low stel-
lar masses too much to reproduce the satellite distribu-
tion.

4. The scatter is most strongly constrained by the width
and mean of the distribution of galaxies in groups, both
centrals and satellites. Thus, the central CSMF pro-
vides the sharpest limit. This strongly excludes zero (or
very low) scatter, and scatter above 0.25 dex. We es-
timate scatter of σ = 0.20± 0.03 dex in stellar mass at
fixed vpeak.

5. We explicitly test the mass dependence of the scatter
value, using the conditional stellar mass function in
bins of total stellar mass, and find that it is consistent
with being constant for the galaxies living in halos from
1012–1014. Changes by more than 0.1 dex over this
range are ruled out.

6. The value of µcut is only weakly constrained for the
vpeak model. A value of zero is weakly disfavored by the
CSMF; the correlation function disfavors values above
0.08. Marginalizing over scatter results in a one-sigma
upper limit of µcut < 0.07.

7. The projected correlation function using this vpeak
model is low for the log(M∗) > 9.8 threshold at small
scales. This may be due to loss of a few low-stellar
mass satellites, suggesting that even the Bolshoi simu-
lation may be inadequate at tracking subhalos at these
masses, and that properly reproducing the galaxy dis-
tribution may require the inclusion of orphan galaxies.
Another possibility is that our model is too simple; loss
of substructures is degenerate with a mass-dependence
in the µcut parameter, which could have similar impact

on the satellite fraction. Alternatively, the discrepancy
may be due to inadequately modeling the observational
effects on galaxies at these stellar masses when calcu-
lating the correlation function.

8. The fact that only the vpeak model is capable of repro-
ducing the data indicates that satellites typically have
more stellar mass than central galaxies for a given
(sub)halo mass such as Mpeak. This is in general agree-
ment with other recent models, such as those of Guo
et al. (2011); Neistein et al. (2011a); Rodriguez-Puebla
et al. (2012).

The subhalo abundance matching model presented here is
capable of reproducing all the trends expected from the mea-
surements we consider, particularly the projected correlation
function and the CSMF, when specific assumptions are made
about the parameter on which to abundance match, the value
of the scatter, and the halo stripping required to remove a
galaxy from the sample. This is true even for the simple as-
sumptions used – fixed scatter in stellar mass, and no depen-
dence on when vmax is assigned to satellites.

Using this model, the data are only reproduced within the
very small statistical errors for log(M∗) >∼ 10.0. Below this
stellar mass there appears to be slightly fewer satellites in the
model. Possible explanations include observational system-
atics, required variation in the mass threshold for destroying
satellites, or the need for inclusion of subhalos below the res-
olution limit of the simulation. In the context of the current
approach, we cannot distinguish between these. We intend
to revisit this issue in the future using a combination of data
that is complete to lower stellar masses and higher-resolution
simulations.

In this work, we have only tested a single cosmology. The
fact that the CSMF and correlation function can be well re-
produced suggests that our chosen cosmology is very close to
the correct model. This is further supported by the fact that
we well-reproduce other measures not directly used to con-
strain the model parameters, in particular, the group total stel-
lar mass function, which depends on the halo mass function
(and thus on σ8) for a given clustering strength.

This same analysis may be applied to samples based on lu-
minosity, rather than stellar mass. While the framework re-
mains unchanged, the results may be slightly different, as a
galaxy remaining at fixed stellar mass after being accreted
will dim in luminosity as its stars age. This will reduce the
luminosity of satellites compared to centrals, unlike stellar
mass. At a given number density of objects, this will mean
that the satellite fraction at the specified luminosity should be
slightly lower than the satellite fraction at the equivalent stel-
lar mass. A demonstration of this difference may be seen in
Appendix C. While the scatter estimated by this method is
similar (∼ 0.20 dex), it produces a significantly higher value
of µcut = 0.13 (vs. 0.03 for stellar mass), and a resulting lower
satellite fraction.

In the local universe, further improvements may be possi-
ble by including additional measurements in a self-consistent
approach, including the velocity dispersion of galaxies in
groups, galaxy-galaxy lensing, the Tully-Fisher relation (as
was done by Trujillo-Gomez et al. 2011) and the properties
of bright galaxies (e.g. Hearin et al. 2012). Additional con-
straints on the bright sample are also possible using larger
volume. Future work may determine how well this model
performs at higher redshift. At present, the study is only pos-
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sible at this level of detail in the local Universe, but larger
spectroscopic samples are becoming available at higher red-
shift. An extension of our modeling approach to photometric
data will be important to take account of the large amount of
information from upcoming imaging surveys.

The detailed understanding of the galaxy–halo connection
we have presented here has implications for a wide range of
areas in galaxy formation and cosmology. We expect the con-
straints provided on the intrinsic conditional luminosity func-
tion will be very helpful in constraining semi-analytic galaxy
formation models and hydrodynamical simulations. These
constraints can also be used to implement CLF or CSMF-
based modeling on larger, lower-resolution simulations. This
will be important for accurately modeling the distribution of
dimmer galaxies and forecasting how well future imaging sur-
veys, such as DES and LSST, can constrain cosmological pa-
rameters. Uncertainty in the connection between galaxies and
halos is an important systematic in several methods to con-
strain cosmological parameters. Examples include the precise
determination of galaxy bias required for clustering and lens-
ing constraints, understanding the galaxy content of clusters
for cluster cosmology (Rozo et al. 2010; Tinker et al. 2012),
and modeling the mass along the line of sight to strong lens-
ing time delays (Suyu et al. 2010). The precise constraints we
now provide in the nearby Universe are a step towards mini-
mizing these systematics and achieving the precision required
for next generation cosmological measurements.
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FIG. 21.— Left: Effect of group finding on the satellite fraction. The intrinsic satellite fraction in the model (black) is significantly higher than when reassigning
the brightest cluster galaxy as the central (blue) in galaxies with high stellar masses. This is because the nonzero scatter allows a significant number of true
satellites to be scattered up in stellar mass, increasing the satellite fraction of massive galaxies. This effect increases with scatter; in a zero-scatter model, the
change is negligible. This is also the primary difference between the intrinsic satellite fraction and that obtained via the group finder (green). All lines are for the
vpeak, µcut=0, scatter=0.20 dex model. Right: Fraction of central galaxies where at least one satellite in the same halo has higher stellar mass. The result is shown
on the mocks for two different simulation, the Bolshoi simulation (black) and the Consuelo simulation (red) which is lower resolution. These both use a model
with stellar mass, vpeak, µcut = 0.03, and scatter of 0.20 dex. Error bars show statistical jackknife errors. The gray band gives the resulting range in the fBNC
fraction given the 1σ range in scatter for the fitted Bolshoi model. This probability is also shown for two other values of scatter (0.30 dex and zero) in Bolshoi,
which are ruled out by the data.

A. EFFECTS OF THE GROUP FINDER
The group finder itself has a significant impact on our various measurements. As discussed in the main text, the two primary

systematic effects of the group finder are the artificial reduction of scatter in central galaxy stellar mass for low halo masses, and
the assumption that the most massive galaxy in a group must be the central. A clear demonstration of this may be seen in Fig. 21.
Here, we show the difference in the model satellite fraction between using the intrinsic central galaxies, and assuming that the
most massive galaxy is the central, both using the intrinsic group assignment. As expected, this significantly reduces the satellite
fraction of massive galaxies, since in large clusters it is not unlikely for at least one satellite to be more assigned a higher stellar
mass than the central. (This can be seen in the intrinsic CSMF in Fig. 12.) This is the primary reason for the difference in satellite
fraction between the intrinsic satellite fraction and that obtained from the group finder. Furthermore, this effect becomes stronger
in models with increased scatter, because non-central galaxies are more likely to be scattered up in stellar mass than the intrinsic
central, and is almost negligible in models with zero scatter.

The fraction of central galaxies that do not have the most stellar mass (or are not the brightest) increases with host halo mass, as
can be seen in the right-hand plot of Fig. 21. It also increases with intrinsic scatter, but is not strongly dependent on the resolution
of the dark matter simulation. The values we find for moderate scatter are in general agreement with the study of Skibba et al.
(2011). The recent weak lensing study of George et al. (2012) tests multiple different center definitions for groups with a range in
Mhost of 1013 − 1014 M�. They find that ∼ 20 − 30% of these groups have "ambiguous" centers, where multiple center definitions
are in significant disagreement. This is also in good agreement with the fractions we measure in Fig. 21.

This effect of group finding can also be seen in a comparison between the intrinsic CSMF (Fig. 12) and that obtained after
the use of the group finder (Fig. 8). Note that although the distribution of galaxies in massive halos is not strongly changed,
the central distribution in the low-mass halos sharpens considerably after group finding, lowering the inferred scatter due to
correlations between central properties and group properties.

B. RESOLUTION REQUIREMENTS
The use of a high-resolution simulation such as Bolshoi is essential to this work. A simulation with more massive particles or

a larger softening length would not be able to resolve as many subhalos, particularly those near the center of massive clusters
(see Behroozi et al. 2011a and Onions et al. 2012 for related subhalo information, and Wu et al. 2012 for a more detailed
discussion) which tend to be victims of "overmerging" or otherwise become prematurely disrupted. Fig. 22 shows the difference
between using Bolshoi, and the Consuelo and Esmeralda simulations from the LasDamas suite (McBride in prep). Consuelo
(see also Behroozi et al. 2011a; Leauthaud et al. 2011) uses 14003 particles in a volume of (420 h−1Mpc)3 (with a particle mass
of 1.9×109, while Esmeralda has 12503 particles in (640 h−1Mpc)3 (with a particle mass of 9.3×109). Bolshoi, Consuelo and
Esmeralda have (physical) force resolution of 1, 8 and 15 kpc/h, respectively.

The same abundance matching model was applied to all three simulations. As can be seen in the figure, the model applied to
Consuelo (with the same parameters) has a significant deficit of satellites with M∗ > 10.5, while the loss of satellites in Esmeralda
is even more severe. Because smaller subhalos are more easily disrupted, there are fewer of them. Thus, for a selection at a
fixed stellar mass to have the appropriate number density from abundance matching, a mixture of smaller halos (and sometimes
subhalos) will be given a greater stellar mass than they would be assigned if the prematurely disrupted subhalos had not been
lost. Most of these halos will be isolated halos, reducing the satellite fraction. This also reduces the clustering, particularly at the
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TABLE 6
INTRINSIC CLF LUMINOSITY FIT PARAMETERS FOR BEST-FIT MODEL

Mhost log(Lc) σc φ∗ α log(L∗) No. of hosts
[log(Mvir] [log(L�/h2)] [log(L�/h2)] [log(L�/h2)−1] [log(L�/h2)]
12.0-12.3 10.024±0.001 0.2338±0.0008 1.16±0.06 −0.93±0.08 9.77±0.02 27948
12.3-12.6 10.150±0.002 0.227±0.001 2.34±0.08 −0.684±0.060 9.842±0.018 14983
12.6-12.9 10.238±0.003 0.224±0.001 4.36±0.16 −0.738±0.050 9.923±0.016 7814
12.9-13.2 10.284±0.004 0.228±0.002 7.54±0.31 −0.820±0.046 10.008±0.017 4000
13.2-13.8 10.332±0.004 0.230±0.002 18.0±0.6 −0.893±0.033 10.054±0.013 2896
13.8-14.5 10.381±0.009 0.217±0.004 66.2±3.1 −0.995±0.042 10.091±0.015 595

TABLE 7
INTRINSIC HOD LUMINOSITY FIT PARAMETERS FOR BEST-FIT MODEL

Mr threshold Mmin σm Ccen M1 Mcut αHOD No. of galaxies
[log(M�/h)] [log(M�/h)] [M�/h] [M�/h]

-21.5 12.83±0.03 1.53±0.07 0.239±0.011 14.33±0.02 12.2±0.6 1.06±0.07 4437
-21.0 12.49±0.01 1.26±0.02 0.497±0.007 13.72±0.01 12.51±0.08 0.948±0.023 16062
-20.5 12.217±0.003 1.108±0.008 0.784±0.003 13.27±0.01 12.37±0.04 0.948±0.013 49718
-20.0 11.936±0.002 0.959±0.005 0.936±0.002 12.954±0.007 12.16±0.02 0.949±0.008 103906
-19.5 11.701±0.001 0.812±0.003 0.9854±0.0005 12.736±0.005 11.97±0.02 0.960±0.005 174937
-19.0 11.503±0.001 0.723±0.002 0.9975±0.0002 12.567±0.004 11.81±0.01 0.966±0.004 261921

small scales where satellites contribute strongly.
Furthermore, this effect is worsened when using a property other than vmax or M0 for abundance matching. In particular, when

using vpeak as the abundance matching parameter as shown in the figure, there will be numerous relatively smaller subhalos at the
present time which had a much higher vmax in the past, but are now lost to the simulation. The additional force resolution of the
Bolshoi simulation does a better job of capturing these satellites that have experienced significant stripping of their dark matter
mass, allowing them to be tracked substantially longer than they can be tracked in the lower resolution Consuelo or Esmeralda
simulations.

C. USING LUMINOSITY
We have repeated the entire study using luminosity in the SDSS r-band. The global luminosity function from the SDSS

(Blanton et al. 2003b), while having more information on dimmer galaxies, is not precisely the same as the luminosity function
in our sample. Therefore, for consistency with the group catalog, we use the luminosity function of galaxies in the corresponding
volume-limited sample to perform the abundance matching, as was done when using stellar mass. For comparisons of the two-
point correlation function, we use the measurements of Zehavi et al. (2011) defined with luminosity thresholds.

The same general trends apply for luminosity as for stellar mass, with a few complications. First, while we use the same
volume-limited sample as for the stellar mass-based comparison, the luminosity completeness limit is at Mr < −19. We therefore
have more galaxies present in a sample of the same volume in the luminosity sample. Additionally, here we correct for changes
in inferred absolute magnitude due to changes in inferred redshift due to fiber collisions, using the k-corrections to the r-band
from Blanton & Roweis (2007).

Constraints are calculated including all correlations functions shown, and the central and satellite parts of the CLF. The best-fit
results are again for vpeak, but this time with µcut=0.12 and scatter of 0.21 dex. (When not using the local averaging procedure,
the best fit lies at µcut=0.13 and scatter of 0.22 dex.) Marginalizing over µcut, we obtain limits of σ = 0.210+0.01

−0.02 dex (68%) and
σ = 0.21+0.02

−0.03 dex (95%). Marginalizing over scatter, the µcut limits are µcut=0.12+0.02
−0.01 (68%) and µcut>0.09 (95% limit).

While the scatter agrees with our results for stellar mass, the µcut value is significantly higher. This is favored by the parts of
the CLF, which contribute most of the χ2, but not by the clustering alone, as can been seen with the low clustering in the brightest
sample. The vpeak model fits the satellite CLF somewhat well, but the group LF is low for small groups, and there is some offset
in the central part of the CLF.

It remains true that v0,peak fits badly on all counts, being overclustered and having too many satellite galaxies. (See Fig. 23 for
the comparison of different matching parameters with luminosity.) Neither vpeak or v0,peak provides a good fit to the central part of
the CLF, due primarily to an offset in the mean. Even the best fit vpeak produces centrals that are too dim in low halo masses. and
v0,peak centrals are too dim at low masses and somewhat too bright at higher halo masses. The constraints are shown in Figs. 24,
25, with the best-fit results in Fig. 26. The CLF fit parameters are given in Table 6, and the HOD fit is given in Table 7. Note that
the Ccen value is an additional multiplicative factor applied to the central HOD, to account for the number of centrals not reaching
unity for some luminosity thresholds.

D. LUMINOSITY HOD COMPARISON TO SDSS
To perform a more exact comparison with the HOD of Zehavi et al. (2011), we use the best-fit luminosity-based abundance

matching model. This model has parameters µcut=0.13 and scatter of 0.22 dex, and well-reproduces the SDSS clustering of
Zehavi et al. (2011), as shown in Appendix C. We measure the HOD directly from the model, then perform a fit to the total HOD
using the fitting function of Zehavi et al. (2011):
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FIG. 22.— Impact of simulation resolution on statistics of resolved subhalos. Figure shows the vpeak model with µcut=0 and σ = 0.2, applied to the Bolshoi
(blue), Consuelo (green), and Esmeralda (red) simulations, with the measured values from the SDSS DR7 VAGC (black) shown for comparison. The inability
of lower resolution simulations to resolve all satellite halos results in a deficit of satellites and a drop in the small-scale clustering. Top: Correlation functions.
Center: Conditional stellar mass functions. Bottom left: Satellite fraction for the luminosity model with these parameters. Bottom center: Satellite fraction in
the stellar mass model. Bottom right: Group total stellar mass function. Based on the results from the satellite fraction, the Bolshoi, Consuelo, and Esmeralda
simulations are roughly complete for satellite galaxies at stellar masses of log(M∗) = 10.0, 10.5, and 10.8, respectively, or at luminosities of Mr <-19.5, -20.5,
and -21.5.
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FIG. 23.— Abundance matching results matching galaxy luminosity to different halo properties. All shown here have zero scatter and µcut=0. Top: Projected
two-point correlation function. Labels denote the luminosity thresholds. Changes in model here are generally most noticeable in the one-halo term. Because
increases in scatter or µcut can only decrease the clustering, it follows that any model which falls significantly below the measured clustering (black) must
be excluded. Center: Conditional luminosity function (CLF). Labels indicate the range in log(Mvir) for each plot. Non-zero scatter broadens this part of the
distribution. Bottom left: Satellite fraction as a function of luminosity. As should be expected, models with higher satellite fraction correlate with stronger
one-halo clustering and more satellites in the CLF. Bottom center: Group luminosity function. Bottom right: Standard deviation (scatter) in stellar mass of central
as a function of total group stellar mass. Error bars on the models are suppressed for clarity.
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FIG. 24.— Constraint on the scatter and µcut when using vpeak. Levels give P(> χ2), corresponding to 1, 2, 3, and 5-σ contours. Top left: Constraint from
clustering only. Top right: Constraint from central part of CLF only. Lower left: Constraint from satellite part of CLF only. Lower right: Constraint from all
measures combined.

FIG. 25.— Same as Fig. 24, but using v0,peak. Constraints on the scatter and µcut. Levels give P(> χ2), corresponding to 1, 2, 3, and 5-σ contours, though
here only the upper right corner with the 5-sigma contour appears. The central and satellite CLF, and overall fit are everywhere more than 5-σ deviations, and
therefore omitted.
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FIG. 26.— Best-fit model when using vpeak, with µcut=0.13, scatter=0.22 dex. Plots are the same as described in Fig. 23. The low clustering of the Mr<-21.5
threshold is likely due to the high µcut value, but this does not have a large impact on the fit due to the large errors and correlations between data points.
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TABLE 8
LUMINOSITY HOD PARAMETERS FOR ZEHAVI FIT

Mr threshold logMmin σlog M logM0 logM′1 αHOD No. of galaxies
[log(M�/h)] [log(M�/h)] [logM�/h] [logM�/h]

-21.5 13.75±0.03 1.13±0.03 13.75±0.38 14.35±0.12 1.33±0.47 4437
-21.0 12.83±0.01 0.731±0.009 13.26±0.07 13.80±0.03 1.06±0.06 18062
-20.5 12.293±0.003 0.514±0.004 12.73±0.02 13.29±0.01 0.965±0.014 49715
-20.0 11.919±0.002 0.392±0.003 12.31±0.01 12.947±0.005 0.945±0.007 103904
-19.5 11.682±0.001 0.321±0.002 11.682±0.007 12.729±0.004 0.953±0.004 174932
-19.0 11.491±0.001 0.295±0.001 11.491±0.008 12.580±0.003 0.977±0.003 261915

FIG. 27.— Comparison of the best-fit model (abundance matched to luminosity) with Zehavi et al. (2011) HOD derived from a fit to SDSS clustering mea-
surements. Solid black lines show the Zehavi et al. (2011) HOD, with dashed lines showing the 1σ bounds based on the parameters they provide for their fit,
assuming no correlation among parameters. Blue error bars are the model results. The green line is the fit to the model results using the Zehavi et al. (2011)
parameterization from Eq. 11, while the red line shows our parameterization from Eq. 9 and 10, and modified as described in Appendix C. The primary difference
between the two lies in the location and width of the central host mass cutoff, which are somewhat degenerate when fitting to clustering measurements. While
this form provides a good fit to the overall HOD, it does not well describe the central and satellite parts of the HOD separately.

< N >=
1
2

[
1 + erf

(
logMh − logMmin

σlog M

)]
·
[

1 +

(
Mh − M0

M′1

)αHOD
]

(11)

The final term gives the central and satellite parts, with the power law-like satellite part being set to zero when Mh <M0.
The results of this fit, along with comparison to the results of Zehavi et al. (2011) and our parameterization of the HOD are

shown in Fig. 27. The parameters for the luminosity model using this fitting function are given in Table 8. Both this figure and
a comparison of the parameters indicate nearly the same behavior as described for the HODs in the stellar mass model. Our
model implies a higher and broader central mass cutoff then seen in Zehavi et al. (2011). The fit for the satellite part is generally
consistent between the two cases. However, due to the high µcut and scatter, the central part of the HOD never reaches unity
for the brightest luminosity thresholds. While the overall HOD can be well-fit with Eq. 11, the centrals and satellites separately
are not, particularly at the brighter thresholds. This serves as additional motivation for our explicit separation of the central
and satellite parts of the HOD. For the luminosity case, we multiply Eq. 9 by an additional overall normalization parameter to
account for the reduced maximum number of central galaxies. The closeness of the fits in general makes it difficult to claim a
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FIG. 28.— Projected radial profiles of galaxies in halos, for different cuts in stellar mass or luminosity. Top: Radial profiles for stellar masses with log(M∗)> 9.8.
Center: Stellar masses with log(M∗)> 10.2. Bottom: Luminosity cut at Mr < −19. In all plots, black is SDSS; blue is the best-fit model as it would be observed,
which is vpeak, µcut=0.03, scatter=0.20 dex for stellar mass, and µcut = 0.13 and scatter=0.22 dex for luminosity. Green is the intrinsic projected radial profile
(without group finding). χ2 values indicate the quality of the fit at r/Rvir > 0.1 (nine data points). While the fit in that range is quite good, it tends to fail at
smaller radii, particularly for the more massive groups.

significant difference between the Zehavi et al. (2011) results and our fits. Further, in the highest luminosity thresholds where
the differences are largest, the clustering produced by our model is also somewhat low. This is in agreement with the shift of the
brightest luminosity HOD to somewhat lower host halo masses, and thus, lower bias, which also obscures the comparison.

E. RADIAL PROFILES
Projected radial profiles are presented, as a further test of the input catalog and the group finding algorithm. These show the

satellites assigned to groups for each host halo mass, and give their projected number density at distances from the group center.
The group center is determined by the location of the central, and distances are given as a fraction of the virial radius. Fig. 28
shows the profiles in the stellar mass best-fit case for two different cuts in stellar mass, and the same result for one cut in the
best-fit luminosity model.

The larger differences in the profiles in the luminosity case may help explain why the luminosity model fits more poorly overall.
The higher µcut preferentially removes satellites near the centers of clusters which have already been significantly stripped. This
impacts the CSMF, but the change in radial profile shape also impacts the one-halo term in the clustering. Further discussion of
satellite incompleteness and its dependence on galaxy luminosity and simulation specifications will be given in Wu et al. (2012).


