
Self-Consistency Requirements of the Renormalization Group for Setting the

Renormalization Scale

Stanley J. Brodsky∗

SLAC National Accelerator Laboratory, Stanford University, Stanford, California 94039, USA

Xing-Gang Wu†

Department of Physics, Chongqing University, Chongqing 401331, P.R. China and

SLAC National Accelerator Laboratory, Stanford University, Stanford, California 94039, USA

(Dated: August 6, 2012)

It is often argued that the principal ambiguity in fixed-order perturbative QCD calculations
lies in the choice of the renormalization scale. In this paper we present a general discussion of
the constraints of the renormalization group (RG) invariance on the choice of the renormalization
scale. We adopt the extended RG equations for a general exposition of RG invariance, since
they simultaneously express the invariance of physical observables under both the variation of
the renormalization scale and the renormalization scheme parameters. We then discuss the
self-consistency requirements of the RG, such as reflexivity, symmetry, and transitivity, which
must be satisfied by the scale-setting method. In particular, we show that the Principle of
Minimal Sensitivity (PMS) does not satisfy these requirements. The PMS requires the slope of
the approximant of an observable to vanish at the renormalization point. This criterion provides
a scheme-independent estimation, but it violates the symmetry and transitivity properties of
the RG and does not reproduce the Gell-Mann-Low scale for QED observables. In contrast, the
Principle of Maximum Conformality (PMC) satisfies all of the deductions of the RG invariance -
reflectivity, symmetry, and transitivity. Using the PMC, all non-conformal {βR

i }-terms (R stands
for an arbitrary renormalization scheme) in the perturbative expansion series are summed into
the running coupling, and one obtains a unique, scale-fixed, scheme-independent prediction at any
finite order. The PMC scales and the resulting finite-order PMC predictions are both to high
accuracy independent of the choice of initial renormalization scale, consistent with RG invariance.
The PMC thus eliminates a serious systematic scale error in pQCD predictions, greatly improving
the precision of tests of the Standard Model and the sensitivity to new physics at collider and other
experiments.

PACS numbers 12.38.Aw, 12.38.Bx, 11.10.Gh, 11.10.Hi

I. INTRODUCTION

Given the perturbative series for a physical quantity

ρn = C0 αp
s(µ) +

n
∑

i=1

Ci(µ) α
p+i
s (µ) (1)

expanded to n-th order in the QCD strong coupling con-
stant αs(µ), the renormalization scale µ must be speci-
fied in order to obtain a definite prediction. The com-
mon practice adopted in the literature is to simply guess
a renormalization scale µ = Q, keep it fixed during the
calculation (Q is usually assumed to be a typical momen-
tum transfer of the process), and then vary it over an
arbitrary range, e.g. [Q/2, 2Q], in order to ascertain the
scale-uncertainty. However there are many weak points
of this conventional scale-setting method :

1. Although the infinite perturbative series ρn→∞

summed to all orders is renormalization-scale in-
dependent, the scale dependence from αs(µ) and
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Ci(µ) do not exactly cancel at finite order, leading
to a renormalization scale ambiguity.

2. The fixed-order estimate in the conventional proce-
dure is also scheme dependent; i.e., different choice
of renormalization scheme R will lead to different
theoretical estimates. This is the well-known renor-
malization scheme ambiguity [1–11].

3. The conventional scale choice can give unphysical
results: For example, for the case of W -boson plus
three-jet production at the hadronic colliders, tak-
ing µ to be theW -boson transverse energy, the con-
ventional scale-setting method even predicts nega-
tive QCD cross-section at the next-to-leading-order
(NLO) [13, 14].

4. As has been shown in Ref. [15], taking an incorrect
renormalization scale underestimates the top quark
forward-backward asymmetry at the Tevatron.

5. The conventional scale-setting procedure gives
wrong results when applied to QED processes. It
should be recalled that there is no ambiguity in set-
ting the renormalization scale in QED. In the stan-
dard Gell-Mann-Low (GM-L) scheme, the renor-
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malization scale is simply the virtuality of the ex-
changed photon [16]. For example, the renormal-
ization scale for the electron-muon elastic scatter-
ing based on one-photon exchange is the virtuality
of the exchanged photon, i.e. µ2

GM−L = t = q2.
One can of course choose any initial renormaliza-
tion scale t0 for calculating the QED amplitude;
however, the final result will not depend on the
choice of t0, since

α(t) =
α(t0)

[1 −Π(t, t0)]
, (2)

where

Π(t, t0) =
[Π(t)−Π(t0)]

[1−Π(t0)]

naturally sums all vacuum polarization contribu-
tions, both proper and improper, to the dressed
photon propagator. (Here Π(t) = Π(t, 0) is the
sum of proper vacuum polarization insertions, sub-
tracted at t = 0.) The invariance of the result on
the initial scale t0 is the property used to derive
the Callan-Symanzik equations [17, 18]. There is,
therefore, no reason to vary µGM−L by a factor of
1/2 or 2, since the photon virtuality t is the unique,
optimized scale in the GM-L scheme.

6. There are uncancelled large logarithms, as well
as “renormalon” terms in higher orders which di-
verge as (n!(βR

i )nαn
s ) [12]. The convergence of

the perturbative series is thus problematic using
conventional scale-setting. For certain processes
such as the top-quark pair production, it is found
that the total cross-section for the (qq̄)-channel,
qq̄ → t + t̄, at the next-to-next-to-leading order
(NNLO) is about 50% of the NLO cross-section us-
ing conventional scale-setting [19–21]. Thus, to de-
rive a dependable perturbative estimate, one evi-
dently needs to do even higher order calculations.

7. The conventional estimate shows a strong depen-
dence on the choice of the renormalization scale
µ. It is clearly artificial to guess a renormaliza-
tion scale µ = Q and to study its uncertainty by
simply varying µ ∈ [Q/2, 2Q]. Why is the scale
uncertainty estimated only by varying a factor of
1/2 or 2, and not, say, 10 times Q ? Sometimes,
there are several choices for the typical momentum
transfer of the process, all of which can be taken as
the renormalization scale, such as the heavy-quark
mass, the collision energy of the subprocess, etc.
Which invariant provides the correct theoretical es-
timate ? Using conventional scale-setting, there is
no definite answer to these questions. One may ar-
gue that the correct renormalization scale for the
fixed-order prediction can be decided by comparing
with the experimental data, but this surely is pro-
cess dependent and greatly depresses the predictive
power of the pQCD theory.

Thus, in summary, the conventional scale-setting as-
signs an arbitrary range and an arbitrary systematic error
to fixed-order pQCD predictions. In fact, as we discuss
in this article, this ad hoc assignment of the range and
associated systematic error is unnecessary and, in fact,
can be eliminated.

µ2
opt = t

t0 = Q2
1

t0 = Q2
2

t0 = Q2
3

α(t)

LO NLO NNLO ∞

· · ·

···

FIG. 1: Pictorial representation of the optimized renormal-
ization scale µopt. Taking electron-muon elastic scattering
through one-photon exchange as an example: In the GM-L
scheme, the optimized scale is µ2

opt = t which corresponds to
the scale-invariant value α(t). As a comparison, the values of
α at fixed-orders for different choice of t0 = Q2

i (i = 1, 2, 3, · · ·)
are shown by thin-and-solid curves.

One may ask: For a general fixed-order calculation,
what is the correct “physical” scale or optimized scale ?
To our understanding, it should provide a prediction in-
dependent of the renormalization scheme and the choice
of initial scale. A pictorial representation of what is
the optimized renormalization scale is shown in Fig.(1),
where the electron-muon elastic scattering through one-
photon exchange is taken as an illustration. In the GM-L
scheme, the optimized scale µ2

opt = t which corresponds
to the scale-invariant value α(t). Moreover, by using the
proper scale-setting method, such as the newly suggested
Principle of Maximum conformality (PMC) [19, 22–24],
the prediction is also scheme independent and the argu-
ment of the coupling in different schemes have the correct
displacement. For example, by using the PMC procedure
for QED one obtains the correct displacement between
the argument of the coupling in the MS scheme relative
to the GM-L scheme at one loop [25]

αGM−L(t) = αMS(e
−5/3t) . (3)

As a comparison, the values of α at fixed-orders for
different choice of t0 = Q2

i (i = 1, 2, 3, · · ·) are shown by
thin-and-solid curves in Fig.(1). A particular choice of t0
using conventional scale-setting may lead to a value of α
close to α(t), but this would only be a lucky guess and not
the correct answer. As one includes higher-and-higher
orders, the guessed scale will lead to a better estimate.
In fact, when doing the perturbative calculation up to
infinite order, any choice of t0 will lead to the correct
value α(t) as required by the RG invariance. However,
if one chooses t0 = t, the complete all-orders result is
obtained from the onset.
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Does there exist such an optimized renormalization
scale for a general process in non-Abelian QCD ? If it
does exist, how can one set it at finite order in a system-
atic and process-independent way? This is not an easy
task. Various scale-setting procedures have been pro-
posed since the 1980’s for deriving an optimized scale,
such as Fastest Apparent Convergence (FAC) [4–6] 1,
the Principle of Minimum Sensitivity (PMS) [7–10], the
Brodsky-Lepage-Mackenzie (BLM) [11] procedure and its
extended versions such as the dressed skeleton expan-
sion [26, 27], the sequential se-BLM and x-BLM meth-
ods [28–30], etc., and the PMC. In principle, the cor-
rectness of a scale-setting method can be judged by the
experimental data. However, as we shall discuss, there
are self-consistency theoretical requirements which shed
light on the reliability of the scale-setting method [31].

Clearly, the prediction for any physical observable
must be independent of the choice of renormalization
scheme; this is the central property of the renormaliza-
tion group (RG) invariance [17, 18, 32–34]. As we shall
discuss, extended RG equations [7–10] which incorporate
the scheme parameters provide a convenient way for es-
timating both the scale- and scheme- dependence of the
QCD predictions for a physical process [7–10, 23, 35].
In this paper, we will utilize the extended RG equations
for a general discussion of the RG-invariance. We will
discuss in detail the self-consistency requirements of the
RG [31], such as reflexivity, symmetry and transitivity,
which must be satisfied by a scale-setting method. We
will then show whether the scale-setting methods, FAC,
BLM/PMC and PMS, satisfy these requirements.

The remaining parts of this paper are organized as
follows: in Sec. II, we give a general demonstration of
the RG-invariance with the help of the extended RG-
equation. In Sec. III, we discuss the self-consistency re-
quirements for a scale-setting method, where a graphical
explanation of these requirements is also given. In Sec. IV
and Sec. V, we present a detailed discussion on PMC and
PMS scale-setting methods, respectively. Sec. VI pro-
vides a summary.

II. EXTENDED RENORMALIZATION GROUP

EQUATION AND THE RENORMALIZATION

GROUP INVARIANCE

The scale dependence of the running coupling in gauge
theory is controlled by the RG equation

∂

∂ lnµ2

(

αR
s (µ)

4π

)

= −

∞
∑

i=0

βR
i

(

αR
s (µ)

4π

)i+2

, (4)

1 As argued by Grunberg [6], it is better to be called as the RG-
improved effective coupling method. For simplicity, we retain
the name as FAC as suggested by Stevenson [8].

where the superscriptR stands for an arbitrary renormal-
ization scheme, such asMS scheme [36], MS scheme [25],
MOM scheme [37], etc.. Various terms in βR

0 , βR
1 , · · ·,

correspond to one-loop and two-loop · · · contributions
respectively. In general, the {βR

i } are scheme-dependent
and depend on the quark mass mf . According to the de-
coupling theorem, a quark with mass mf ≫ µ can be ig-
nored, and we can often neglect mf -terms when mf ≪ µ.
Then, for every renormalization scale µ, one can divide
the quarks into active ones with mf = 0 and inactive
ones that can be ignored. Within this framework, it is
well-known that the first two coefficients βR

0,1 are univer-

sal; i.e., βR
0 ≡ 11 − 2nf/3 and βR

1 ≡ 102 − 38nf/3 for
nf -active flavors. Hereafter, we simply write them as β0

and β1. It is noted that an analytic extension of αMS
s

which incorporates the finite-mass quark threshold ef-
fects into the running of the coupling has been suggested
in Ref. [38]. However, numerically, it is found that taking
finite quark mass effects into account analytically in the
running, rather than using a fixed nf between thresh-
olds, leads to effects of the order of one percent for the
one-loop running coupling [38]. Here we will work with
the conventional {βR

i }-functions.
It will be convenient to use the first two universal co-

efficients β0 and β1 to rescale the coupling constant and
the scale-parameter in Eq.(4). By rescaling the coupling
constant and the scale parameters as [35]

aR =
β1

4πβ0
αR
s and τR =

β2
0

β1
lnµ2,

one can express the RG equation (4) into a simpler canon-
ical form

daR

dτR
= −(aR)2

[

1 + aR + cR2 (aR)2 + cR3 (aR)3 + · · ·
]

,

(5)
where cRi = βR

i βi−1
0 /βi

1 for i = 2, 3, · · ·.
As an extension of the ordinary coupling constant, one

can define a universal coupling constant a(τ, {ci}) to in-
clude the dependence on the scheme parameters {ci},
which satisfies the following extended RG equations [35]

β(a, {ci}) =
∂a

∂τ
= −a2

[

1 + a+ c2a
2 + c3a

3 + · · ·
]

(6)

βn(a, {ci}) =
∂a

∂cn
= −β(a, {ci})

∫ a

0

xn+2dx

β2(x, {ci})
. (7)

The scale-equation (6) can be used to evolve the universal
coupling function from one scale to another. The scheme-
equation (7) can be used to relate the coupling functions
under different schemes by changing {ci}. A solution of
the scale-equation up to four-loop level has been given
in Ref. [23], which agrees with that of the conventional
RG-equation obtained in the literature, cf. Ref. [39]. By
comparing Eq.(5) with Eq.(6), there exists a value of τ =
τR for which

aR(τR) = a(τR, {cRi }). (8)



4

This shows that any coupling constant aR(τR) can be
expressed by the universal coupling constant a(τ, {ci})
under proper correspondence; i.e. the coupling constant
aR(τR) can be treated as a special case of the universal
coupling constant a(τ, {ci}).
Grunberg has pointed out that [4–6] any perturbatively

calculable physical quantity can be used to define an ef-
fective coupling constant by incorporating the entire ra-
diative corrections into its definition. This idea has later
been discussed in detail by Refs. [40, 41]. Such an effec-
tive coupling constant can be used as a reference to de-
fine the renormalization procedure. The RG-invariance
states that a physical quantity should be independent
of the renormalization scale and renormalization scheme
[17, 18, 32–34]. This shows that if the effective coupling
constant a(τR, {cRi }) corresponds to a physical observ-

able, it should be independent of any other scale τS and
any other scheme parameters {cSj }; i.e.

∂a(τR, {cRi })

∂τS
≡ 0 [scale invariance] , (9)

∂a(τR, {cRi })

∂cSj
≡ 0 [scheme invariance] . (10)

Demonstration: We provide an intuitive demonstration
for the RG invariance from the extended RG equations.
Given two effective coupling constants a(τR, {cRi }) and
a(τS , {c

S
i }) defined under two different schemes R and

S, one can expand a(τR, {cRi }) in a power series of
a(τS , {c

S
i }) through a Taylor expansion:

a(τR, {cRi }) = a(τS + τ̄ , {cSi + c̄i})

= a(τS , {c
S
i }) +

(

∂a

∂τ

)

S

τ̄ +
∑

i

(

∂a

∂ci

)

S

c̄i

+
1

2!





(

∂2a

∂τ2

)

S

τ̄2 + 2

(

∂2a

∂τ∂ci

)

S

τ̄ c̄i +
∑

i,j

(

∂2a

∂ci∂cj

)

S

c̄ic̄j



+
1

3!

[(

∂3a

∂τ3

)

S

τ̄3 + · · ·

]

+ · · · , (11)

where τ̄ = τR − τS , c̄i = cRi − cSi and the subscript S
next to the partial derivatives means they are evaluated
at the point (τS , {c

S
i }).

The right-hand side of Eq.(11) can be regrouped ac-

cording to the different orders of scheme-parameters {c̄i}.
After differentiating both side of Eq.(11) over τS , we ob-
tain

∂a(τR, {cRi })

∂τS
=

∂(n+1)a(τS , {c
S
i })

∂τ
(n+1)
S

τ̄n

n!
+
∑

i

∂(n+1)a(τS , {c
S
i })

∂cSi ∂τ
(n)
S

τ̄n−1c̄i
(n− 1)!

+ · · · , (12)

where n stands for the highest perturbative order for a
fixed-order calculation. It is noted that Eq.(12) can be
further simplified with the help of RG equations (6,7).
If we set n → ∞, the right-hand-side of Eq.(12) tends
to zero, and we obtain the scale-invariance equation (9).
This shows that if a(τR, {cRi }) corresponds to a physi-
cal observable (corresponding to the case of n → ∞),
it will be independent of any other scale τS . Similarly,
doing the first derivative of a(τR, {cRi }) with respect to
the scheme-parameter cSj , one can obtain the scheme-
invariance equation (10).

In another words, if one uses a coupling constant
a(τS , {c

S
i }) under the renormalization scheme S and with

an initial renormalization scale {τS} to predict the value
of a(τR, {cRi }), the RG-invariance (9,10) tell us that

• if we have summed all types of cSi -terms (or equiv-
alently the {βS

i }-terms) into the coupling con-
stant, as is the case of an infinite-order calcula-
tion, then our final prediction of a(τR, {cRi }) will
be independent of any choice of initial scale τS and
renormalization-scheme S.

• According to Eq.(12), for a fixed-order estimation
(i.e. n 6= ∞), there is some residual initial-scale de-
pendence. This is reasonable: as shown by Eq.(11),
for a fixed-order calculation, the unknown {βS

i }-
terms in the higher orders are necessary to cancel
the scale dependence from the lower-order terms.

If we can find a proper way to sum up all the
known-type of {βS

i }-terms into the coupling con-
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stant, and at the same time suppressing the contri-
butions from those unknown-type of {βS

i }-terms ef-
fectively, such residual initial scale dependence can
be greatly suppressed. The PMC has been designed
for such purpose [22–24], whose properties will be
discussed in more detail in the following sections.

• If setting all the differences of the renormalization
scheme parameters, c̄i ≡ 0 (i = 1, 2, · · ·), Eq.(11)
returns to a scale-expansion series for the coupling
constant expanding over itself but specified at an-
other scale; i.e.

a(τR, {cRi }) = a(τS , {c
R
i }) +

(

∂a(τS , {c
R
i })

∂τS

)

τ̄ +
1

2!

(

∂2a(τS , {c
R
i })

∂τ2S

)

τ̄2 +
1

3!

(

∂3a(τS , {c
R
i })

∂τ3S

)

τ̄3 + · · · . (13)

Using the RG scale-equation (6), the right-hand-
side of the above equation can be rewritten as per-
turbative series of a(τS , {c

R
i }), whose coefficient at

each order is a {βR
i }-series.

If one considers Nc to be an analytic variable, then the
scale-setting known from the non-Abelian theory SU(Nc)
must agree with the Abelian QED theory at Nc → 0.
This shows that above discussions are also suitable for
QED; i.e. by taking the limit Nc → 0 at fixed α = CFαs

with CF = (N2
c − 1)/2Nc, we effectively return to the

QED case [42, 43].

III. SELF-CONSISTENCY REQUIREMENTS

FOR A SCALE-SETTING METHOD

In principle, the correctness of a scale-setting method
can be judged by experimental data. However, it has
been suggested that some self-consistency requirements
can shed light on the reliability of the scale-setting
method [31], in which some initial discussions have been
presented. These requirements together with their expla-
nations are listed in the following:

1. Existence and Uniqueness of the renormaliza-
tion scale µ. Any scale-setting method must satisfy
these two requirements.

2. Reflexivity. Given a αs(µ) specified at a renor-
malization scale µ, we can express it in terms of
itself but specified at another renormalization scale
µ′,

αs(µ) = αs(µ
′) + f1(µ, µ

′)α2
s(µ

′) + · · · , (14)

where f1(µ, µ
′) ∝ ln(µ2/µ

′2). When the scale µ′

is chosen to be µ, the above equation reduces to a
trivial identity.

From the scale-invariance (9), up to infinite orders,
we have

∂αs(µ)

∂ lnµ′2
≡ 0. (15)

This, inversely, means that if αs(µ) is known (say,
a experimentally measured effective coupling), and
we try to use the above perturbative equation to
“predict” αs(µ) from itself, then any deviation of
µ′ from µ would lead to an inaccurate result due to
the truncation of expansion series.

More explicitly, for a fixed-order expansion with
the highest perturbative-order n, from Eq.(12), we
obtain

∂αs(µ)

∂ lnµ′2
∝

(

lnµ2/µ
′2
)n

n!

∂(n+1)αs(µ
′)

∂(lnµ′2)(n+1)
.

This shows, generally, the right-hand-side of
Eq.(14) depends on µ′ at any fixed-order.

Thus, to get a correct fixed-order estimate for
αs(µ), a self-consistency scale-setting must take
the unique value µ′ = µ on the right-hand-side of
Eq.(14). If a scale-setting satisfies such property,
we say it is reflexive.

It is found that the Reflexivity is a basic require-
ment for a self-consistency scale-setting method
and for the physical coupling constant αs(µ), which
provides the necessary condition for the following
two properties Symmetry and Transitivity; i.e.
if a scale-setting does not satisfy the Reflexivity,
it cannot satisfy the following two properties Sym-

metry and Transitivity either.

3. Symmetry. Given two different coupling con-
stants αs1(µ1) and αs2(µ2) under two different
renormalization schemes, we can expand any one
of them in terms of the other:

αs1(µ1) = αs2(µ2) + r12(µ1, µ2)α
2
s2(µ2) + · · · ,

αs2(µ2) = αs1(µ1) + r21(µ2, µ1)α
2
s1(µ1) + · · · .

After a general scale-setting, we have

αs1(µ1) = αs2(µ
∗
2) + r̃12(µ1, µ

∗
2)α

2
s2(µ

∗
2) + · · · ,

αs2(µ2) = αs1(µ
∗
1) + r̃21(µ2, µ

∗
1)α

2
s1(µ

∗
1) + · · · .

Note that,
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• The new effective scales µ∗
1,2 may or may not

be equal to µ1,2, depending on the choice of
the scale-setting method. The coefficients r̃12
and r̃21 are changed accordingly in order to
obtain a consistent result.

• We have implicitly set the effective scales at
NLO-level to be equal to the LO ones. We will
adopt this choice throughout the paper. The
effective scales for the highest-order terms are
usually taken as the same effective scales at
the one-lower-order, since they are the scales
strictly set by the known-terms [23, 35].

Setting µ∗
2 = λ21µ1 and µ∗

1 = λ12µ2, if

λ12λ21 = 1 , (16)

we say that the scale-setting is symmetric.

Explanation:

If µ∗
2 = λ21µ1 and µ∗

1 = λ12µ2, we obtain

αs1(µ1)

= αs2(λ21µ1) + r̃12(µ1, λ21µ1)α
2
s2(λ21µ1) + · · ·(17)

and

αs2(µ2)

= αs1(λ12µ2) + r̃21(µ2, λ12µ2)α
2
s1(λ12µ2) + · · · .(18)

As a combination of Eqs.(17,18), we obtain

αs1(µ1) = αs1(λ12λ21µ1) + [r̃12(µ1, λ21µ1) + r̃21(λ21µ1, λ12λ21µ1)]α
2
s1(λ12λ21µ1) + · · · . (19)

From the Reflexivity property, if a scale-setting is
symmetric, i.e. satisfying Eq.(16), we will obtain

r̃12(µ1, µ
∗
2) + r̃21(µ2, µ

∗
1) = 0, (20)

and vice versa. This shows that the Symmetry

property (16) and the relation (20) are mutually
necessary and sufficient conditions.

The Symmetry feature is necessary since it fur-
ther gives us a unique relation for the scales before
and after the scale-setting,

µ1µ2 = µ∗
1µ

∗
2 .

4. Transitivity. Given three coupling constants
αs1(µ1), αs2(µ2), and αs3(µ3) under three renor-
malization schemes, we can expand any one of them
in terms of the other; i.e.

αs1(µ1) = αs2(µ2) + r12(µ1, µ2)α
2
s2(µ2) + · · · ,

αs2(µ2) = αs3(µ3) + r23(µ2, µ3)α
2
s3(µ3) + · · · ,

αs3(µ3) = αs1(µ1) + r31(µ3, µ1)α
2
s1(µ1) + · · · .

After a general scale-setting, we obtain

αs1(µ1) = αs2(µ
∗
2) + r̃12(µ1, µ

∗
2)α

2
s2(µ

∗
2) + · · · ,

αs2(µ2) = αs3(µ
∗
3) + r̃23(µ2, µ

∗
3)α

2
s3(µ

∗
3) + · · · ,

αs3(µ3) = αs1(µ
∗
1) + r̃13(µ3, µ

∗
1)α

2
s1(µ

∗
1) + · · · .

Setting µ∗
2 = λ21µ1, µ

∗
3 = λ32µ2 and µ∗

1 = λ13µ3, if

λ13λ32λ21 = 1 . (21)

we say that the scale-setting is transitive.

Explanation:

If µ∗
2 = λ21µ1, µ∗

3 = λ32µ2 and µ∗
1 = λ13µ3, we

obtain

αs1(µ1)

= αs2(λ21µ1) + r̃12(µ1, λ21µ1)α
2
s2(λ21µ1) + · · · ,(22)

αs2(µ2)

= αs3(λ32µ2) + r̃23(µ2, λ32µ2)α
2
s3(λ32µ2) + · · · ,(23)

αs3(µ3)

= αs1(λ13µ3) + r̃31(µ3, λ13µ3)α
2
s1(λ13µ3) + · · · .(24)

As a combination of Eqs.(23,23,24), we obtain

αs1(µ1) = αs1(λ13λ32λ21µ1) + α2
s1(λ13λ32λ21µ1)×

[r̃31(λ32λ21µ1, λ13λ32λ21µ1) + r̃23(λ21µ1, λ32λ21µ1) + r̃12(µ1, λ21µ1)] + · · · . (25)

From the Reflexivity property, if a scale-setting is transitive, i.e. satisfying Eq.(21), we will obtain

r̃12(µ1, µ
∗
2) + r̃23(µ

∗
2, µ

∗
3) + r̃31(µ

∗
3, µ1) = 0, (26)



7

and vice versa. This shows that the Transitivity

property (21) and the relation (26) are mutually
necessary and sufficient conditions.

The Transitivity property shows that under a
proper scale-setting method, we have λ21 ≡ λ23λ31,
which means that the scale ratio λ21 for any two
couplings αs1 and αs2 is independent of the choice
of a intermediate coupling αs3 under any renormal-
ization scheme. Thus the relation between any two
observables is independent of the choice of renor-
malization scheme. In fact, the Transitivity prop-
erty provides the theoretical foundation for the ex-
istence of commensurate scale relations among dif-
ferent physical observables [44].

TheTransitivity feature gives us a unique relation
for all the scales before and after the scale-setting,

µ1µ2µ3 = µ∗
1µ

∗
2µ

∗
3 .

The Transitivity property is very important for
a self-consistency scale-setting, which is a natural
requirement from the RG invariance. It has al-
ready been pointed out that why the renormaliza-
tion group is called a “group” is mainly because of
such Transitivity property [32–34].

The Transitivity property (21) can be extended
to an arbitrary number of coupling constants; i.e.
if we have n coupling constants which are related
with similar manner as above, then their transitiv-
ity relation is

λ1nλn(n−1) · · ·λ32λ21 = 1. (27)

One may observe that the Symmetry is a spe-
cial case of Transitivity, since if setting αs3(µ3) ≡
αs1(µ1), we have λ11 ≡ 1 and r̃11(µ1, µ1) ≡ 0 due
to the Reflexivity, which thus changes the tran-
sitive relation λ13λ32λ21 = 1 into the symmetric
relation λ12λ21 = 1.

As a summary, a scale-setting method that satis-
fies Existence and Uniqueness of the renormalization
scale, Reflexivity, Symmetry, and Transitivity effec-
tively establishes equivalent relations among all the effec-
tive coupling constants, and thus, among all the physical
observables.

A. A graphic explanation of these requirements

In this subsection, we present a more intuitive expla-
nation of these requirements based on the universal cou-
pling a(τ, {ci}) and the extended RG Eqs.(6,7).
In the extended RG equations (6,7), there is no explicit

reference to the QCD parameters, such as the number of
colors or the number of active-flavors. Therefore, aside
from its infinite dimensional character, a(τ, {ci}) is just a

mathematical function like, say, Bessel functions or any
other special functions [35]. In practice, due to the un-
known higher order scheme parameters {ci}, we need to
truncate the beta function β(a, {ci}) and solve the uni-
versal coupling constant a(τ, {ci}) in a finite-dimensional
subspace; i.e. we need to evaluate a(τ, {ci}) in a subspace
where higher order {ci}-terms are zero. In principle, this
function can be computed to arbitrary degree of preci-
sion, limited only by the truncation of the fundamental
beta function.

{ci}

a(τ, {ci})

τ

A

B

C

D

E F

FIG. 2: Pictorial representation of the self-consistency of the
scale-setting method through the universal coupling function
a(τ, {ci}). The point A with a closed path represents the
operation of Reflexivity. The paths BC and CB represent
the operation of Symmetry, and the paths DF ,FE and DE
represent the operation of Transitivity.

In this formalism, any two effective coupling constants
can be related by some evolution path on the hyper-
surface defined by a(τ, {ci}). In Fig.(2) we illustrate
the paths which represent the operations of Reflexiv-

ity, Symmetry and Transitivity. We can pictorially
visualize that the evolution paths satisfy all these three
self-consistency properties. A closed path starting and
ending at the same point A represents the operation of
identity. Since the predicted value does not depend on
the chosen path, if the effective coupling constant at A
is aA, after completing the path we will also end up with
an effective coupling aA. Similarly, if we evolve aB at
B to a value aC at C, we are guaranteed that when we
evolve aC at C back to the point B, the result will be aB.
Hence, the evolution equations also satisfy Symmetry.
Transitivity follows in a similar manner; i.e. going di-
rectly from D to E gives the same result as going from
D to E through a third point F .

In the following two sections, we will make a detailed
discussion on how these self-consistency conditions are
satisfied or broken by the two frequently adopted scale-
setting methods: BLM/PMC and PMS. As for FAC, its
FAC scale is determined by requiring all higher order
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corrections to be zero 2. FAC satisfies all the above men-
tioned self-consistency requirements, whose demonstra-
tion is similar to that of BLM/PMC and is simpler [31],
so we will not repeat it here.

IV. THE PMC SCALE-SETTING

The PMC provides the principle underlying BLM
scale-setting, so if not specially stated, we usually treat
them on equal footing.

A. What is PMC ?

In the original BLM paper [11], the physical observable
is expanded as

ρ = C0αs,MS(µ)

[

1 + (Anf +B)
αs,MS(µ)

π

]

, (28)

where µ is the renormalization scale, the nf term is due
to the quark vacuum polarization. For clarity, we have
taken the familiar MS-scheme. When absorbing all the
NLO terms involving nf into the running coupling, we
obtain [11]

ρ = C0αs,MS(µ
∗)

[

1 + C∗
1

αs,MS(µ
∗)

π

]

, (29)

where

µ∗ = µ exp (3A) and C∗
1 =

33

2
A+B . (30)

The new scale µ∗ and the coefficient C∗
1 are nf indepen-

dent. The term 33A/2 in C∗
1 serves to remove that part

of the constant B which renormalizes the NLO coupling
constant.
Through these procedures, it was suggested that the

pQCD convergence can be greatly improved [11]. How-
ever, after a proper extension of BLM, it can do much
more than that.
In deriving Eq.(29), Brodsky-Lepage-Mackenzie al-

ready observed that to derive the correct scheme-
independent LO QED/QCD scale, one should deal with
the β0-term rather than the nf -term. This point has
lately been emphasized in Ref. [45], where an interesting
feature for the NLO BFKL Pomeron intercept function
ω(Q2, 0) has been found; i.e. after using BLM scale-
setting, the function ω(Q2, 0) has a very weak depen-
dence on the gluon virtuality Q2 in comparison with

2 This method itself is useful to define an effective coupling con-
stant for a physical process [4–6]. However it will give wrong re-
sult when applied to QED processes. The FAC forces all higher
order corrections to vanish and runs the risk of the better ap-
proximation being “dragged down” by the poorer one [8].

that derived from the conventional scale-setting under
the MOM scheme and MS scheme [45]. The BLM has
also been applied with some modifications for determin-
ing the effective scale in lattice perturbative theory by
Lepage and Mackenzie [46], which greatly enhances the
predictive power of lattice perturbative theory. How-
ever, BLM in its original form is difficult to be applied
to higher order calculations because of the emergence of
higher order nf -terms as n2

f -term, n3
f -term, etc..

Some initial ideas to deal with those higher order nf -
terms in the NNLO level can be found in Ref. [44], which
can be regarded as the rudiment of the PMC procedure,
where it is observed that to deal with the n2

f -term at the

NNLO, it is better to arrange it into β2
0 -term and then

absorb it into the coupling constant 3.

The pioneering work for PMC is done in Ref. [22],
which shows that a single global PMC scale, valid at
LO, can be derived from basic properties of the pertur-
bative QCD cross-section. Later on, explicit formulae for
setting PMC scales up to NNLO has been presented in
Ref. [23]. It has also been pointed out that by intro-
ducing the PMC-BLM correspondence principle, we can
improve the previous BLM procedure to deal with the
process up to all orders, whose estimation is the same
as PMC. In this sense, we say that PMC and BLM are
equivalent to each other. Recently, by applying PMC to
the top-quark pair hadroproduction up to NNLO level
at the Tevatron and LHC colliders, the most striking
feature of PMC has been observed, which shows that
the PMC scales and the resulting finite-order PMC pre-
dictions are both to high accuracy independent of the
choice of an initial renormalization scale, consistent with
RG-invariance [15, 19, 24]. This implies that the serious
systematic renormalization scale error introduced by us-
ing conventional scale-setting can be eliminated by PMC
through a self-consistency way.

3 Strictly, together with the nf -term at the same order, it should
be arranged into a proper linear combination of β1-term and β2

0
-

term, and the β2
0
-term will be absorbed into LO PMC scale and

β1-term will be absorbed into NLO PMC scale [23].
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Identify {βR
i } − terms using nf − terms

through the PMC −BLM correspondence principle

Result is independent of µinit and scheme at fixed order

Choose renormalization scheme; e.g. αR
s (µinit)

Choose µinit; arbitrary initial renormalization scale

Shift scale of αR
s to µPMC to eliminate {βR

i } − terms

Conformal Series

FIG. 3: A “flow chart” which illustrates the PMC procedure,
where R stands for an arbitrary renormalization scheme.

A “flow chart” which illustrates the PMC procedure
is presented in Fig.(3), where R stands for an arbitrary
renormalization scheme. The PMC provides a unambigu-
ous and systematic way to set the optimized renormal-
ization scale up to all orders; i.e. we first arrange all the
coefficients, which usually are given as a series in nf , for
each perturbative order into {βR

i }-terms or non-{βR
i }-

terms, and absorb different types of {βR
i }-term into the

running coupling constant, order-by-order 4. Different
types of {βR

i }-term are absorbed into different PMC
scales. Different skeleton graphs can have different PMC
scales. The PMC scales themselves will be a perturba-
tive expansion series in αs. After this procedure, all non-
conformal {βR

i }-terms in the perturbative expansion are
consistently resummed into the running couplings so that
the remaining terms in the perturbative series are identi-
cal to that of a conformal theory; i.e., the corresponding
theory with {βR

i } ≡ {0}.

As a simple explanation of PMC, for the coefficient
C1(µ) at the NLO level, we have

C1(µ) = C10(µ) + C11(µ)nf , (31)

= C̃10(µ) + C̃11(µ)β0 (32)

where µ stands for an arbitrary initial renormaliza-
tion scale, the coefficients C10(µ) and C11(µ) are nf -

independent, C̃10 = C10 +
33
2 C11, and C̃11 = − 3

2C11. The
LO PMC scale µPMC is then set by the condition

C̃11(µPMC) = 0. (33)

4 In practice, we can directly deal with nf -terms of the coefficients

without changing them into {βR
i
}-terms, and eliminate the nf -

terms from the highest power to none also in an order-by-order
manner. The results are the same due to the PMC-BLM corre-
spondence [23].

This prescription ensures that, as in QED, vacuum po-
larization contributions due to the light-fermion pairs are
absorbed into the coupling constant. Note that because
C11 ∝ C̃11, one can practically obtain the PMC scale
by using the equation C11(µPMC) ≡ 0, which is usually
adopted in the literature 5. However one should keep in
mind that Eq.(33) is exact.
It is noted that the {βR

i }-series derived from Eq.(13)
provides the foundation for the PMC - BLM correspon-
dence principle suggested in Ref. [23], since it shows
which {βR

i }-terms should be kept at a specific perturba-
tive order so as to derive a unique one-to-one correspon-
dence with the known nf -series at the same perturbative
order 6.

B. The properties of PMC

It is straightforward to verify that PMC satisfies all
the self-consistency requirements outlined above.

1. The Existence and Uniqueness of the renor-
malization scale µ are guaranteed, since the scale-
setting conditions for PMC are often linear equa-
tions in lnµ2.

As a simpler explanation, if the NLO coefficient
C1(µ) in Eq.(1) has the form

C1(µ) = (a+ b nf ) + (c+ d nf ) lnµ
2, (34)

with a, b, c and d are constants free of nf . The LO
PMC scale can be set as

lnµLO
PMC = −

b

2d
+O(αs), (35)

where the higher order αs-terms will be determined
by nf -terms at the NLO-level or even higher levels.

2. Reflexivity is satisfied. The PMC requires all
ln(µ2/µ′2)-terms in Eq.(14) vanish, thus we obtain

µ′ = µ .

3. Symmetry is trivial, because after PMC scale-
setting, we always have

r̃12(µ1, µ
∗
2) = −r̃21(µ2, µ

∗
1) .

5 This should be used with care, since if C10 is a constant free of
scale, then such practical way will give wrong NLO coefficient
other than the correct one C̃10.

6 This is the consistent way of treating the {βR
i
}-terms in the

perturbative series. However, such a choice of {βR
i
}-series is

different from that of Refs. [28–30], where as an extension of
BLM to all orders, all possible types of {βR

i
}-terms which can

be constructed from all the linear combination of the nf -terms at
the same perturbative order have been introduced to deal with
the Adler D-function.
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That is, the two NLO coefficients only differ by
a sign. Thus, requiring one of them to be {βR

i }-
independent is equivalent to requiring the other one
also to be {βR

i }-independent. This argument en-
sures the symmetric relation, λ12λ21 = 1, is satis-
fied after PMC scale-setting.

4. Transitivity is also satisfied by PMC. After PMC
scale-setting, the two coefficients r̃12(µ1, µ

∗
2) and

r̃23(µ
∗
2, µ

∗
3) in the following two series

αs1(µ1)

= αs2(µ
∗
2) + r̃12(µ1, µ

∗
2)α

2
s2(µ

∗
2) +O(α3

s2) (36)

and

αs2(µ
∗
2)

= αs3(µ
∗
3) + r̃23(µ

∗
2, µ

∗
3)α

2
s3(µ

∗
3) +O(α3

s3) , (37)

should be independent of {βi}. After substituting
Eq.(37) into Eq.(36), we obtain

αs1(µ1)

= αs3(µ
∗
3) + [r̃12(µ1, µ

∗
2) + r̃23(µ

∗
2, µ

∗
3)]α

2
s3(µ3)

+O(α3
s3) . (38)

We see that the new NLO coefficient [r̃12(µ1, µ
∗
2)+

r̃23(µ
∗
2, µ

∗
3)] will also be {βR

i }-independent, since
it is the sum of two {βR

i }-independent quanti-
ties. These arguments ensure the transitive rela-
tion, λ31 = λ32λ21, be satisfied after PMC scale-
setting.

As a combination of all the above mentioned PMC
features, the advantages of PMC are clear 7:

• It keeps the information of the higher order cor-
rections but in a more convergent perturbative se-
ries. After PMC scale-setting, the divergent “renor-
malon” series with n!-growth disappear, so that
a more convergent perturbative series is obtained.
Such better convergence has already been found
in the original BLM paper [11] and the following
BLM-literature even at the NLO level.

• It is renormalization-scheme independent. After
PMC scale-setting:

– The resulting expressions are conformally in-
variant and thus do not depend on the choice
of renormalization scheme.

7 In the PMC, the same procedure is valid for both space-like and
time-like arguments; in particular this leads to well-behaved per-
turbative expansion, since all the large {βR

i }-dependent terms on
the time-like side involving π2-terms are fully absorbed into the
coupling. The PMC does not change the space-like or time-like
nature of the initial renormalization scale Q0, since in general, all
the PMC scales are equal to Q0 times an exponential factor [23].

– One can obtain proper scale-displacements
among the PMC scales which are derived un-
der different schemes or conventions.

– One can obtain commensurate scale relations
(CSRs) between two physical observables such
as the Generalized Crewther Relation con-
necting the Bjorken sum rule to the e+e− an-
nihilation cross section. The CSRs have no
scale ambiguity and are independent of the
choice of renormalization scheme. The rela-
tive scales in the CSRs ensure that two ob-
servables pass through each quark threshold in
synchrony. The coefficients in the commensu-
rate scale relation can be identified with those
obtained in conformally invariant gauge the-
ory [47–49].

• The PMC provides a fundamental and system-
atic way to set the optimized renormalization scale
for the fixed-order calculation. In principle, PMC
needs an initial renormalization scale to initialize
it. However, it is found that the estimates after
PMC scale-setting are independent of any choice of
the initial renormalization scale - even the PMC
scales themselves are independent of any choice
of initial scale and are ‘physical’ at any fixed or-
der. This is because that the PMC scale itself is a
perturbative series and the unknown higher-order
{βR

i }-terms are to be absorbed into the higher-
order term of PMC scale and will be strongly
power suppressed. One example of this behav-
ior is shown in Refs. [15, 19, 24], where the top-
quark pair total cross-section and the top-quark
pair forward-backward asymmetry are almost free
from the choice of initial renormalization scale even
at the NNLO-level.

• Moreover, it is found that the PMC scale-setting
can also be adopted for QED case. The variable
NC can betaken as an analytic variable. In the
Abelian limit NC → 0 at fixed α = CFαs with
CF = (N2

c − 1)/2Nc [42], the PMC method agrees
with the standard Gell Mann-Low procedure for
setting the renormalization scale in QED, a con-
sistency requirement of analyticity of Yang Mills
gauge theories.

• After PMC scale-setting, the number of active fla-
vors nf is correctly determined [38]. Using the
PMC ensures that the expansion is unchanged as
one passes each quark threshold, since all vacuum-
polarization effects due to each new quark are auto-
matically absorbed into the effective coupling con-
stant.

• The argument of the running coupling has timelike
or spacelike values appropriate to the physics of the
PMC scale; for example the scale of the QED cou-
pling which some all vacuum polarization correc-
tions in the lowest order e+e− → µ+µ− amplitude
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is α(t) in the Gell Mann-Low scheme. As in QED,
the running QCD coupling is complex in the time-
like domain, reflecting the contribution of diagrams
with physical unitarity cuts.

V. THE PMS SCALE-SETTING

A. What is PMS ?

The PMS states that [7–10] if an estimate depends on
some “unphysical” parameters 8, then their values should
be chosen so as to minimize the sensitivity of the estimate
to small variations in these parameters; i.e. this method
chooses µPMS at the stationary point of ρN :

∂ρN
∂µ

|µ=µPMS
≡ 0 (39)

or

∂ρN
∂ ln (µ2)

|µ=µPMS
≡ 0 . (40)

Here Eq.(40) can be solved with the help of the usual
renormalization group equation (4).

B. The properties of PMS

Unlike the case of PMC, in general, there are no known
theorems that guarantee the Existence or the Unique-

ness of the PMS solution. Although for practical cases
PMS does provide solutions, and when there are more
than one solution usually only one of them lies in the
physically reasonable region [7–10], these observations
alone do not prove that PMS will be trouble-free for new
processes.
To discuss PMS properties in a renormalization

scheme-independent way, following the suggestion of
Ref. [31], we adopt the ’t Hooft scheme [50] to define
the coupling constant. Under the ’t Hooft scheme, all
the scheme parameters {ci} are set to zero, and Eq.(6)
simplifies to

da

dτ
= −a2(1 + a), (41)

whose solution can be written as

τ =
1

a
+ ln

(

a

1 + a

)

. (42)

In the above solution, for convenience, we have redefined

τ as
β2

0

β1
ln

(

µ2

Λ
′tH2

QCD

)

, where Λ
′tH
QCD is the asymptotic scale

8 Here the “unphysical” parameter means which is known not to
affect the true result.

under the ’t Hooft scheme. The ’t Hooft coupling con-
stant has a formal singularity, a(τ, {ci}) ≡ a(0, {0}) =
∞, which provides a precise definition for the asymp-
totic scale Λ

′tH
QCD [50]; i.e. it is defined to be the pole of

the coupling function.
Given two coupling constants a1 and a2 under the ’t

Hooft scheme, they are related by the perturbative series

a1(τ1) = a2(τ2) + (τ2 − τ1)a
2
2(τ2) + · · · . (43)

PMS proposes the choice of µ2 (or equivalently, τ2) at
the stationary point, i.e.:

da1
dτ2

= 0 =
d

dτ2

[

a2(τ2) + (τ2 − τ1)a
2
2(τ2)

]

. (44)

Then, we obtain the condition:

1 + a2 =
1

2(τ1 − τ2)
. (45)

In order to obtain τ2 in terms of τ1, one must solve the
last equation in conjunction with

1

a2
+ log

(

a2
1 + a2

)

= τ2. (46)

τ2

τ1

τ2 = τ1 −
1
2

FIG. 4: The dependence of the PMS scale parameter τ2 as a
function the external scale parameter τ1.

In Fig.4 we present the graphical solution of the PMS
scale-parameter τ2 as a function of the external scale-
parameter τ1. One may observe two points:

• τ2 ≥ τ1−
1
2 . Since τ2 6= τ1 in any cases, so PMS ex-

plicitly violates the Reflexivity. For a fixed-order
estimation, when one uses an effective coupling con-
stant to predict itself, the application of PMS would
lead to an inaccurate result. If PMS cannot provide
the optimum scale even in this simple situation, its
reliability for other processes is questionable.

• In the large momentum region (τ1 ≫ 1), we obtain
a2(τ2) → 0, and

τ2 ≃ τ1 −
1

2
. (47)
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Under the same renormalization scheme R, we have

the same asymptotic parameter Λ
′tH−R
QCD for both

a1 and a2. Here Λ
′tH−R
QCD is the ’t Hooft scale as-

sociated with the R-scheme, where the word “as-
sociated” means we are choosing the particular ’t
Hooft scheme that shares the same ’t Hooft scale
with the R-scheme. Then the relation (47) in terms
of µ1 and µ2 becomes

µ2 ≃ µ1 exp

(

−
β1

4β2
0

)

. (48)

More generally, it is found that after PMS scale-
setting, the scale displacement between any two scales
µi and µj in the large momentum region is

λij =
µi

µj
≃ exp

(

−
β1

4β2
0

)

. (49)

This would mean that

λ12λ21 ≃ exp

(

−
β1

2β2
0

)

6= 1, (50)

λ13λ32λ21 ≃ exp

(

−
3β1

4β2
0

)

6= 1. (51)

This shows the PMS does not satisfy the Symmetry and
Transitivity requirements. When we successively ex-
press one effective charge in terms of others, PMS would
lead to inconsistent scale choices. We can only conclude
that the PMS method in general does not provide the
optimum scale, since an optimum scale-setting methods
should satisfy all the self-consistency requirements listed
in Sec.III.
Let us point out that adding the scheme-parameter

optimization in PMS does not change any of the above
conclusions. It only make the solution much more com-
plicated [51]. The inability of PMS to meet these self-
consistency requirements resides in that the derivative
operations in general do not commute with the opera-
tions of Reflexivity, Symmetry and Transitivity.
As argued in Sec.III, any truncated perturbative se-

ries will explicitly break RG-invariance (9); i.e. Eq.(9)
can only be approximately satisfied for any fixed-order
estimation. The precision depends on to which pertur-
bative order we have calculated, the convergence of the
perturbative series, and how we set the renormalization
scale. However, the PMS does not respect this, since as
shown by Eq.(40), it requires the truncated series, i.e. the
approximant of a physical observable, to satisfy the RG-
invariance near µ = µPMS. This provides the underlying
reason for why PMS does not satisfy the Reflexivity,
Symmetry and Transitivity properties.
The PMC and PMS scale-setting methods each give

specific predictions for physical observables at finite or-
der; however, their predictions are very different:

• The PMC sums all {βR
i }-terms in an arbitrary

renormalization scheme R in the fixed-order pre-
diction into the running coupling, leaving the con-
formal series. It satisfies all of the RG-properties

Reflexivity, Symmetry, and Transitivity. The
PMC prediction is thus scheme-independent, and
it automatically assigns the correct displacement
of the intrinsic scales between schemes. The vari-
ation of the prediction away from the PMC scale
exposes the non-zero {βR

i }-dependent terms. The
PMC prediction does have small residual depen-
dence on the initial choice of scale due to the trun-
cated unknown higher order {βR

i }-terms, which
will be highly suppressed by proper choice of PMC
scales.

• The PMS chooses the renormalization scale such
that the first derivative of the fixed-order calcula-
tion with respect to the scale vanishes, However,
this criterion of minimal sensitivity gives predic-
tions which are not the same as the conformal pre-
diction, and the PMS prediction depends on the
choice of renormalization scheme 9, and it disagrees
with QED scale-setting in the Abelian limit. For
example, in the case of e+e− → gqq̄, the PMS
scale decreases with increasing gluon jet mass and
increasing flavor number, opposite to the correct
physical behavior [52]. Most important, the PMS
does not satisfy the RG-properties of Symmetry,
Reflexivity, and Transitivity, so that relations
between observables depend on the choice of the
intermediate renormalization scheme.

VI. SUMMARY

The conventional scale-setting procedure assigns an ar-
bitrary range and an arbitrary systematic error to fixed-
order pQCD predictions. As we have discussed in this ar-
ticle, this ad hoc assignment of the range and associated
systematic error is unnecessary and can be eliminated by
a proper scale-setting method.

Renormalization group invariance (9) states that a
physical quantity should be independent of the renor-
malization scale and renormalization scheme. With the
help of the extended RG equations which incorporate the
scheme parameters, we have presented a general demon-
stration for the RG-invariance by setting the perturbative
series up to infinite orders.

We have discussed the necessary self-consistency con-
ditions for a scale-setting method, such as the Existence

and Uniqueness of the renormalization scale, Reflex-

ivity, Symmetry, and Transitivity. There properties
are natural deductions of RG-invariance. We have shown
that PMC satisfies these requirements, whereas the PMS

9 As shown in Ref. [51], by using the PMS together with the
scheme-equations (7) and the scheme-independent equation (10),
such renormalization scheme dependence can be reduced to a cer-
tain degree through an order-by-order procedure.



13

does not. We have also pictorially argued that the for-
malism based on the extended RG equations satisfies all
these requirements for scale and scheme variation.
The principle of minimum sensitivity (PMS) requires

that the slope of the approximant of an observable to
vanish at the renormalization point. With the help of the
extended RG equation, it has been argued that PMS can
provide renormalization-scheme dependent estimates [7–
10]. However, we have shown that the PMS violates the
Symmetry and Transitivity properties of the renor-
malization group, and it does not reproduce the Gell
Mann-Low scale for QED observables. Eq.(51) shows
that the relation between any two physical observables
after PMS scale-setting depends on which renormaliza-
tion scheme chosen for the calculation, which explicitly
breaks the “group properties” of the RG equations. In
addition, the application of PMS to jet production gives
unphysical results [52], since it sums physics into the run-
ning coupling not associated with renormalization.
In contrast, the principle of maximum conformal-

ity (PMC) provides a fundamental and systematic way
to set the optimized renormalization scale at fixed or-
der in pQCD. The PMC has a solid theoretical back-
ground [22, 23], it provides the underlying principle for
BLM, and many PMC features have already been noted
in the BLM literature. Most important, it is found after
standard PMC scale-setting, the theoretical prediction is
essentially independent of the choice of initial renormal-
ization scale and the theorist’s choice of renormalization
scheme, consistent with the RG invariance.
The most important goal for a scale-setting method is

to eliminate the renormalization scheme and initial scale
dependences – more fundamental requirements than im-
proving convergence of the pQCD series. In the liter-
ature, however, some extensions of BLM scale-setting
have concentrated on how to improve the pQCD conver-
gence, such as the large β0-expansion [53], the sequential
BLM (seBLM) and xBLM [28–30], etc.. In fact, once
one sets the scales properly, as PMC does, much better
pQCD convergence than the conventional scale-setting
method is automatic, since the divergent “renormalon”
series with n!-growth disappears. An example of this im-
proved convergence can be found in our analysis for the
top-quark pair production at the NNLO level [15, 19, 24].
Two more subtle points for PMC scale-setting :

• In some specific kinematical regions, such as for

the heavy quark pair production in the threshold
region, Coulomb-type corrections will lead to siz-
able contributions which are enhanced by factors
of π/v and the PMC scale can be relatively soft
for v → 0 (v, the heavy quark velocity). Thus the
terms which are proportional to (π/v) or (π/v)2

should be treated separately in that different PMC
scales are adopted in the estimation [19, 54].

• The factorization scale µf which enters into the pre-
dictions for QCD inclusive reactions is introduced
to match nonperturbative and perturbative aspects
of the parton distributions in hadrons. The fac-
torization scale occurs even for a conformal theory
with {βR

i } = 0 where αs is constant. The factor-
ization scale should be chosen to match the non-
perturbative bound state dynamics with perturba-
tive DGLAP evolution. This can be done explicitly
for electron-atom or atom-atom inelastic scatter-
ing processes in QED using the known bound state
dynamics of atoms. This could also be done in
hadron physics using nonperturbative models such
as AdS/QCD and light-front holography; recent re-
views can be found in Refs. [55, 56]. There is clearly
no reason to equate the factorization scale to the
renormalization scale [57]. We expect that the fac-
torization scale ambiguity will also be reduced by
applying the PMC scale-setting to the kernels of
DGLAP evolution equations.

In summary, the application of the PMC eliminates a
serious systematic scale-error in pQCD predictions, thus
greatly improving the precision of tests of the Standard
Model and the sensitivity to new physics at the colliders.
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