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Abstract

Studying the substructure of jets has become a powerful tool for event discrimination and for

studying QCD. Typically, jet substructure studies rely on Monte Carlo simulation for vetting their

usefulness; however, when possible, it is also important to compute observables with analytic meth-

ods. Here, we present a global next-to-leading-log resummation of the angular correlation function

which measures the contribution to the mass of a jet from constituents that are within an angle R

with respect to one another. For a scale-invariant jet, the angular correlation function should scale

as a power of R. Deviations from this behavior can be traced to the breaking of scale invariance

in QCD. To do the resummation, we use soft-collinear effective theory relying on the recent proof

of factorization of jet observables at e+e− colliders. Non-trivial requirements of factorization of

the angular correlation function are discussed. The calculation is compared to Monte Carlo parton

shower and next-to-leading order results. The different calculations are important in distinct phase

space regions and exhibit that jets in QCD are, to very good approximation, scale invariant over

a wide dynamical range.
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I. INTRODUCTION

The current success of the Large Hadron Collider (LHC), its high center of mass energies,

its significant delivered integrated luminosity and its high-precision experiments has ushered

in a new era of particle physics. Particles and jets with significant transverse boosts are now

being copiously produced. An entire field of studying the substructure of highly boosted

jets has grown up out of the study of these objects and many methods have been proposed

to study QCD. In addition, procedures for discriminating QCD jets from jets initiated by

heavy particle decays have been introduced and new measurements of these methods are

being completed [1, 2]. To understand these methods in detail, most analyses have relied

on Monte Carlo simulation as the basis of study. However, Monte Carlo simulations have

limitations, and, where possible, it is vital to also compute the observables to higher orders

in QCD so as to have another handle on their behavior.

An important contribution to this effort of computing jet observables is resummation

of large logarithms that arise in fixed-order perturbation theory. Jets are objects that

are typically dominated by soft or collinear emissions and so it is necessary to resum the

logarithms that exist for an accurate prediction of an observable. Very recently, groups

have computed resummed contributions to light jet masses at hadron colliders [3] and N-

subjettiness [4, 5] in color-singlet jets at the LHC [6]. Ref. [6] in particular relied on the

factorization of color singlet processes at hadron colliders to reinterpret results from e+e−

colliders. Computing the resummed contribution to generic observables at hadron colliders is

made more difficult by the color flow throughout the collision which can destroy factorization.

To avoid discussion of these issues, here we will only consider jet observables at e+e− colliders.

In this paper, we will discuss the resummation of the angular correlation function introduced

in [7] using soft collinear effective theory (SCET) [8–11].

The angular correlation function G(R) was defined in [7] as

G(R) =
∑

i 6=j
p⊥ip⊥j∆R

2
ijΘ(R−∆Rij) , (1)

for studying the substructure of jets at the LHC. ∆Rij is the boost-invariant angle between

particles i and j, the sum runs over all constituents of a jet and Θ is the Heaviside theta

function. The angular correlation function has distinct properties for scaleless jets versus jets

with at least one heavy mass scale. In particular, any structure in the angular correlation
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function should be distributed roughly as RD, where D is a constant, for a scaleless jet.

It was shown that by exploiting the different behavior of the angular distribution of hard

structure in QCD jets versus jets initiated by heavy particle decay, an efficient tagging

algorithm could be defined.

Ref. [12] continued studying the properties of the angular correlation function, focusing

on average properties of QCD jets. It was shown through simple calculations that, for QCD

jets, the angular correlation function averaged over an ensemble of jets should approximately

scale as

〈G(R)〉 ' R2 , (2)

where the angle brackets are defined by

〈G(R)〉 =
1

Njets

Njets∑

i=1

G(R)i . (3)

Deviations from R2 are due to the running coupling and higher order effects. The introduc-

tion of an ensemble averaged angular correlation function allows for a rigorous definition of

the dimension of a QCD jet which is also infrared and collinear (IRC) safe. This dimension

is defined to be the average angular structure function 〈∆G〉 and is the power to which the

average angular correlation function scales with R:

〈∆G(R)〉 ≡ d log〈G(R)〉
d logR

. (4)

For QCD jets, 〈∆G〉 ∼ 2. In [12], it was also shown that the scaling of non-perturbative

physics in R is distinctly different, and this was used to determine the average energy density

of the underlying event.

Here, we will continue the work of [12] and compute the average angular structure function

by resummation within the context of SCET. Our analysis is only truly appropriate at e+e−

colliders, but we expect that the largest effect in going to hadron colliders is the contribution

of the underlying event. For this calculation, we introduce generalized correlation functions

Ga(R) parametrized by an index a:

Ga(R) =
1

2E2
J

∑

i 6=j
EiEj sin θij tana−1

θij
2

Θ(R− θij) (5)

The form of the angular correlation function is similar to jet angularity [13, 14]. However,

for our purposes here, we choose to index the parameter a such that the angular correlation
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function is IRC safe for all a > 0. In the small angle limit, this reduces to Eq. 1 with a = 2

(up to normalization). The parameter a allows for a study of the behavior of the angular

correlation function with angular scales weighted differently. Analogously to the angular

structure function, we define a generalized average angular structure function

〈∆Ga〉 ≡
d log〈Ga〉
d logR

. (6)

The calculation and interpretation of average angular structure function will be the focus of

this paper.

In Sec. II, we discuss the factorization of jet observables in SCET and the computation

of the angular correlation function including global next-to-leading-log (NLL) contributions

for jets defined by a kT -type algorithm [15, 16]. The existence of a factorization theorem for

the angular correlation function is non-trivial. We will discuss the consistency conditions

that the angular correlation function satisfies for factorization. We will also briefly discuss

how the results obtained here can be used in a calculation of the angular correlation function

at the LHC. In Sec. III we compare the SCET calculation to a next-to-leading-order (NLO)

calculation of the angular correlation function. Resummation and fixed-order corrections

affect different parts of distributions and so the differences between the resummed calculation

and the fixed-order result give some sense as to the importance of these effects. This analysis

leads to Sec. IV, were we present a comparison between the SCET calculation and the output

of parton shower Monte Carlo. We observe significant differences between SCET and Monte

Carlo, but higher fixed order effects are substantial. We discuss some of the uncertainties in

the parton shower studying the effect of the evolution variable on the value of the angular

structure function. Finally, we present our conclusions in Sec. V.

II. SCET CALCULATION

SCET is an effective theory of QCD in which all modes of QCD are integrated out except

those corresponding to soft or collinear modes. Collinear and soft modes are defined by their

scaling with power counting parameter λ:

collinear ∼ (λ2, 1, λ) ,

soft ∼ (λ2, λ2, λ2) ,
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which is the scaling of the +, − and transverse components of the momenta, respectively.

λ is a parameter that is defined for a particular process or observable; for example, for

computing the distribution of jet masses, λ ∼ mJ/p⊥J � 1. The fact that λ� 1 allows for

a systematic expansion in powers of λ. Higher order terms in λ are power suppressed (much

like the subleading terms in the twist expansion).

For an event shape observable O that factorizes, the cross section can be written in the

schematic form:

dσ

dO = H(µ)

[∏

ni

Jni
(O;µ)

]
⊗ S(O;µ) , (7)

where H(µ) is the hard function, which matches the full QCD result at a scale µ, J(µ;ni,O)

is the jet function for the contribution to the observable O from ni-collinear modes and

S(µ;O) is the soft function for the contribution to the observable O from the soft modes.

⊗ represents a convolution between the jet and soft functions. All functions depend on the

factorization scale µ.

Factorization of jet observables in SCET was first exhibited in [17, 18]. Ref. [18] computed

individual jet angularities to NLL in e+e− collisions. It was shown that factorization of the

cross section for jet observables in e+e− → N jets has the form

dσ

dO1 · · · dOM
= H(n1, . . . , nN ;µ)

[
M∏

i=1

Jni
(Oi;µ)

]
⊗ Sn1···nN

(O1, . . . ,OM ;µ)
N∏

j=M+1

J(µ) ,(8)

where M ≤ N of the jet observables Oi have been measured. Jet directions are denoted by

ni and J(Oi;µ) is the jet function for a jet in which the observable Oi has been measured

and J(µ) is a jet function for a jet which has not been measured. We will refer to these as

the measured and unmeasured jet functions, respectively. A similar nomenclature will be

used for the soft functions. Jet algorithm dependence and jet energies have been suppressed.

An important point from [18] is that factorization requires that the jets be well-separated;

namely, that

tij =
tan

ψij

2

tan R0

2

� 1 , (9)

where ψij the is angle between any pair of jets i, j and R0 is the jet algorithm radius. We will

assume that this condition is met in the following and leave any discussion of subtleties to

[18]. A non-trivial requirement of the factorization is the independence of the cross section

on the factorization scale µ. This requirement leads to a constraint that the sum of the
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anomalous dimensions of the hard, jet and soft functions is zero. We will show that this

holds for the angular correlation function.

We will use the results of the factorization theorem proven in [17, 18] to compute the

distribution of the angular correlation function from Eq. 5. In particular, we are interested

in the ensemble average of the angular structure function as defined in Eq. 6. Note that this

observable is independent of any normalization factor of the angular correlation function;

thus, with the goal of computing the average angular structure function, it is consistent to

ignore factors that are independent of Ga and the angular resolution parameter R. Thus,

for the purposes of this paper, we can ignore the overall factors in the factorized form of

the cross section of the hard function and the unmeasured jet functions. In this case, the

factorized form of the cross section becomes

dσ

dGa1 · · · dGaM
= C(µ)

[
M∏

i=1

Jni
(Gai;µ)

]
⊗ Sn1···nN

(Ga1, . . . ,GaM ;µ) , (10)

where C(µ) is independent of Ga and the resolution parameter R.

In this section, we present a calculation of the jet and soft functions for the angular

correlation function for jets defined by a kT algorithm. We first argue that the angular

correlation function is computable in SCET and relate its form at NLO to the form of jet

angularity at NLO. This comparison will allow us to relate the calculation of the angular

correlation function to the work in [18]. We then present a calculation of the measured jet

and soft functions of the angular correlation function. From these results, we can determine

the anomalous dimensions of the jet and soft functions and will show the consistency of the

factorization relies on a non-trivial cancellation of dependence on the angular resolution R

between the jet and soft functions. We can then resum up to the next-to-leading logs of

the jet and soft functions by the renormalization group. Note that we do not attempt to

resum non-global logs [19] that arise due to the non-trivial phase space constraints of the

jet algorithm or the angular correlation function. From the resummed expression of the

angular correlation function, we find the ensemble average and compute the average angular

structure function numerically.

It should be stressed that non-global logarithms are ignored in this study. The angular

correlation function for a jet requires several phase space constraints; the jet algorithm, soft

jet vetoes, the resolution parameter R, etc. These provide numerous sources for non-global

logarithms which cannot be resummed analytically. The study of non-global logarithms in
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QCD cross sections is a subtle and evolving story. For recent work in this direction, especially

in the context of non-global logarithms from jet clustering see, for example, [20–25]. It is

outside the scope of this paper to discuss non-global logarithms further.

A. Factorization of the Angular Correlation Function

Factorization of jet observables requires that soft modes only resolve the entire jet and

not individual collinear modes contributing to the jet. Angularity τa is a one-parameter

family of observables defined as [13, 14]

τa =
1

2EJ

∑

i∈J
e−ηi(1−a)p⊥i , (11)

where J is the jet, p⊥i is the momentum of particle i transverse to the jet axis and ηi is the

rapidity of particle i with respect to the jet axis:

ηi = − log tan
θi
2
. (12)

Angularity is IRC safe for a < 2. The separation of soft and collinear modes in angularity

is simple to show. To leading power in λ,

τa =
1

2EJ

∑

C∈J
e−ηC(1−a)p⊥C +

1

2EJ

∑

S∈J
e−ηS(1−a)p⊥S

= τCa + τSa , (13)

where C and S represent the collinear and soft modes, respectively. Note that the soft

modes do not affect the location of the jet center to leading power in λ. Factorization of

angularities exists only for a < 1 due to the presence of logarithms of rapidity; however,

recently it was shown that these logarithms can be controlled [26, 27]. We will show that

angularity and the angular correlation function have similarities which will allow us to use

many of the results from [18] here.

To justify the use of SCET for computing the angular correlation function, we must first

show that the angular correlation function does not mix soft and collinear modes. This

argument was presented in [12] (based on arguments from [28]), but we present it here for

completeness. In terms of soft and collinear modes, the angular correlation function can be

7



expressed as

Ga(R) =
1

2E2
J

∑

i 6=j
EiEj sin θij tana−1

θij
2

Θ(R− θij)

=
1

2E2
J

∑

i,j∈C
EiEj sin θij tana−1

θij
2

Θ(R− θij)

+
1

2E2
J

∑

i,j∈S
EiEj sin θij tana−1

θij
2

Θ(R− θij)

+
1

2E2
J

∑

C,S

ECES sin θCS tana−1
θCS
2

Θ(R− θCS) . (14)

Note that, to NLO, there is no soft-soft correlation contribution to the angular correlation

function because such a term would require the radiation of two soft gluons which first occurs

at NNLO. To accuracy of the leading power in λ, we can exchange the collinear modes with

the jet itself in the collinear-soft term. Explicitly,

θCS = θJS +O(λ) , (15)

as the angle of the soft modes with respect to the jet center scales as θJS ∼ 1. Appropriate

for NLO or NLL, the angular correlation function can be written as

Ga(R) =
1

2E2
J

∑

i,j∈C
EiEj sin θij tana−1

θij
2

Θ(R− θij)

+
1

2EJ

∑

S

ES sin θJS tana−1
θJS
2

Θ(R− θJS) . (16)

Thus, the collinear and soft modes are decoupled to leading power and so the angular

correlation function is factorizable, and hence computable, in SCET.

To NLO, a jet is composed of at most two particles, so the form of many observables

simplifies substantially at this order. The form of the angular correlation function from Eq. 5

was chosen so as to be similar in form to angularity. The contribution to the angularity and

the angular correlation function from collinear modes is distinct. The measured jet functions

will need to be recomputed for the angular correlation function. However, the contributions

to the angularity and the angular correlation function from soft modes are simply related:

GSa (R) =
ES
2EJ

sin θJS tana−1
θJS
2

Θ(R− θJS) = τS2−aΘ(R− θJS) . (17)

This observation will allow us to recycle the soft function calculation for angularity for the

angular correlation function.
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An important point to note here is that the scaling of the angle between collinear modes

i and j goes like θij ∼ λ. Thus, to leading power, the angular correlation function for the

collinear-collinear contribution can be written as

GCCa =
1

2E2
J

∑

i,j∈C
EiEj sin θij tana−1

θij
2

Θ(R− θij)

=
1

E2
J

∑

i,j∈C
EiEj tana

θij
2

Θ(R− θij) . (18)

We will use this form of the collinear-collinear contribution to the angular correlation func-

tion for computing the measured jet functions.

B. Measured Jet Functions

The leading power contribution to the measured jet functions at NLO comes from two

collinear particles which are clustered in the jet and can be computed from cutting one-

loop SCET diagrams. The phase space integrals can be extended over the entire range of

momentum for the collinear particles in the jet as long as the contribution from the zero

momentum bin is subtracted [29]. In particular, we consider a jet with light cone momentum

l = (l+, ω, 0) which splits to two collinear particles with light cone momenta q = (q+, q−,q⊥)

and l− q = (l+ − q+, ω − q−,−q⊥). The zero-bin subtraction term can be determined from

the measured jet function by taking the scaling q ∼ λ2. We will refer to contribution to the

jet function that does not include the zero-bin subtraction as the näıve contribution.

To compute the measured jet function, we will need to enforce phase space cuts from

the jet algorithm and the observable. We will compute the jet function for a kT -type jet

algorithm as defined by a jet radius R0. At NLO, all kT algorithms are the same and two

particles are clustered in the jet if their angular separation is less than R0. This leads to

the phase space constraint

ΘkT = Θ

(
cosR0 −

q · (l− q)

|q|
√

(l− q)2

)
= Θ

(
tan2 R0

2
− q+ω2

q−(ω − q−)2

)
, (19)

where on the right, the leading scaling behavior was kept. The jet algorithm constraint for

the zero-bin subtraction term is then

Θ
(0)
kT

= Θ

(
tan2 R0

2
− q+

q−

)
. (20)

9



The phase space constraints for the angular correlation function are more subtle. The

δ-function which constrains a jet to have angular correlation function Ga, δR = δ(Ga − Ĝa),
is

δR = δ

(
Ga − ωa−2(ω − q−)1−a(q−)1−a/2(q+)a/2Θ

(
tan2 R

2
− q+ω2

q−(ω − q−)2

))
, (21)

where R is the resolution parameter of the angular correlation function. For a kT -type jet at

NLO, the angular correlation function vanishes if R > R0; thus, we will assume that R < R0

in the following. This δ-function can be decomposed depending on the value of Θ-function

as

δR = δ

(
Ga − ωa−2(ω − q−)1−a(q−)1−a/2(q+)a/2Θ

(
tan2 R

2
− q+ω2

q−(ω − q−)2

))

= δ
(
Ga − ωa−2(ω − q−)1−a(q−)1−a/2(q+)a/2

)
Θ

(
tan2 R

2
− q+ω2

q−(ω − q−)2

)

+ δ (Ga) Θ

(
q+ω2

q−(ω − q−)2
− tan2 R

2

)
. (22)

The δ-function for the zero-bin subtraction term is found by taking q ∼ λ2:

δ
(0)
R = δ

(
Ga − ω−1(q−)1−a/2(q+)a/2

)
Θ

(
tan2 R

2
− q+

q−

)
+ δ (Ga) Θ

(
q+

q−
− tan2 R

2

)
. (23)

1. Measured Quark Jet Function

The näıve contribution to the measured quark jet function can be computed in dimen-

sional regularization from the diagrams shown in Fig. 1:

J̃qω(Ga) = g2µ2εCF

∫
dl+

2π

1

(l+)2

∫
ddq

(2π)d

(
4
l+

q−
+ (d− 2)

l+ − q+
ω − q−

)

×2πδ
(
q+q− − q2⊥

)
Θ(q−)Θ(q+)2πδ

(
l+ − q+ − q2⊥

ω − q−
)

×Θ(ω − q−)Θ(l+ − q+)Θ

(
tan2 R0

2
− q+ω2

q−(ω − q−)2

)

×
[
δ
(
Ga − ωa−2(ω − q−)1−a(q−)1−a/2(q+)a/2

)
Θ

(
tan2 R

2
− q+ω2

q−(ω − q−)2

)

+ δ (Ga) Θ

(
q+ω2

q−(ω − q−)2
− tan2 R

2

)]
. (24)

We take d = 4− 2ε. The coefficient to the δ(Ga) term can be found by integrating over Ga.
The terms that remain are +-distributions, which integrate to zero. The zero-bin subtraction
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(B)(A) (D)(C)(A) (A)

Figure 4: Diagrams contributing to the quark jet function. (A) and (B) Wilson line emission

diagrams; (C) and (D) QCD-like diagrams. The momentum assignments are the same as in Fig. 3.

The zero bin of particle 2 is given by the replacement q ! l � q.

For all the jet algorithms we consider, the zero-bin subtractions of the unmeasured jet

functions are scaleless integrals.12 However, for the measured jet functions, the zero-bin

subtractions give nonzero contributions that are needed for the consistency of the e↵ective

theory.

In the case of a measured jet, in addition to the phase space restrictions we also demand

that the jet contributes to the angularity by an amount ⌧a with the use of the delta function

�R = �(⌧a � ⌧̂a), which is given in terms of q and l by

�R ⌘ �R(q, l+) = �

✓
⌧a �

1

!
(! � q�)a/2(l+ � q+)1�a/2 � 1

!
(q�)a/2(q+)1�a/2

◆
. (4.4)

In the zero-bin subtraction of particle 1, the on-shell conditions can be used to write the

corresponding zero-bin �-function as

�
(0)
R = �

✓
⌧a �

1

!
(q�)a/2(q+)1�a/2

◆
, (4.5)

(and for particle 2 with q ! l � q).

4.2 Quark Jet Function

The diagrams corresponding to the quark jet function are shown in Fig. 4. The fully

inclusive quark jet function is defined as

Z
d4x eil·x h0|�a↵

n,!(x)�̄b�
n,!(0) |0i ⌘ �ab

✓
n/

2

◆↵�
Jq
!(l+) , (4.6)

and has been computed to NLO (see, e.g., [75, 76]) and to NNLO [77]. Below we compute

the quark jet function at NLO with phase space cuts for the jet algorithm for both the

measured jet, Jq
!(⌧a), and the unmeasured jet, Jq

!. As discussed above, we will find that

the only nonzero contributions come from cuts through the loop when both cut particles

are inside the jet.

12Note that algorithms do exist that give nonzero zero-bin contributions to unmeasured jet functions [32].

– 32 –

FIG. 1. SCET Feynman diagrams contributing to the quark jet function.

term follows from taking the scaling limit q ∼ λ2 of the näıve jet function above:

Jq(0)ω (Ga) = 4g2µ2εCF

∫
dl+

2π

1

l+

∫
ddq

(2π)d
1

q−
2πδ

(
q+q− − q2⊥

)
Θ(q−)Θ(q+)

×2πδ
(
l+ − q+

)
Θ(l+ − q+)Θ

(
tan2 R0

2
− q+

q−

)

×
[
δ
(
Ga − ω−1(q−)1−a/2(q+)a/2

)
Θ

(
tan2 R

2
− q+

q−

)

+ δ (Ga) Θ

(
q+

q−
− tan2 R

2

)]
. (25)

The term proportional to δ(Ga) is scaleless and integrates to zero in pure dimensional regu-

lation.

Employing a MS scheme, we find the measured quark jet function for kT -type jet algo-

rithms of Ga to be

Jqω(Ga) = J̃qω(Ga)− Jq(0)ω (Ga) =
αsCF

2π

[(
a

a− 1

1

ε2
+

3

2

1

ε
+

a

a− 1

log µ2

ω2

ε
+

1

ε
log

tan2 R
2

tan2 R0

2

)
δ(Ga)

− 2

a− 1

1

ε

(
Θ(Ga)
Ga

)

+

]
+ Jqω(Ga, ε0) , (26)

where Jqω(Ga, ε0) consists of terms that are finite as ε → 0. These terms are presented in

Appendix A. The definition of the +-distribution is also given in Appendix A. Note that

the 1/ε terms for the angular correlation function are the same as those for angularity from

[18] with a → 2 − a plus an additional term of the logarithm of the ratio of scales; the

resolution scale R and the jet radius R0. This term contributes to the anomalous dimension

of the jet function. In principle, these logarithms could be attempted to be resummed.

However, note that the resolution scale R can never practically be parametrically smaller

than the jet radius R0, so these logarithms never become large. Thus, we will not worry

about resumming these logarithms.
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Figure 5: Diagrams contributing to the gluon jet function. (A) sunset and (B) tadpole gluon

loops; (C) ghost loop; (D) sunset and (E) tadpole collinear quark loops; (F) and (G) Wilson line

emission loops. Diagrams (F) and (G) each have mirror diagrams (not shown). The momentum

assignments are the same as in Fig. 3.

Without inserting any additional constraints, this integral is scaleless and zero in dimen-

sional regularization. Therefore, in the absence of phase-space restrictions, the näıve inte-

gral Eq. (4.19) gives the standard (inclusive) gluon jet function

Jg
!(l+)

2⇡!
=
↵s

4⇡
µ2✏(!l+)�1�✏


TRNf

✓
4

3
+

20

9
✏

◆
� CA

✓
4

✏
+

11

3
+

✓
67

9
� ⇡2

◆
✏

◆�
, (4.21)

in the MS scheme. The measured and unmeasured jet functions are obtained by inserting

⇥alg�R and ⇥alg, respectively, into Eqs. (4.19) and (4.20).

4.3.1 Measured Gluon Jet

The naive contribution to the measured gluon jet can be written as

J̃g
!(⌧a) =

↵s

2⇡

1

�(1 � ✏)

✓
4⇡µ2

!2

◆✏
1

1 � a
2

✓
1

⌧a

◆1+ 2✏
2�a
Z 1

0
dx (xa�1 + (1 � x)a�1)

2✏
2�a (4.22)

⇥
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◆
� CA

✓
2 � 1

x(1 � x)
� x(1 � x)

◆�
⇥alg(x) ,

where x ⌘ q�/!. This gives

J̃g
!(⌧a) =

↵s

2⇡

1

�(1 � ✏)

 
4⇡µ2

!2 tan2 R
2

!✏
�(⌧a)

"
CA

✓
1

✏2
+

11

6

1

✏

◆
� 2

3✏
TRNf

#
+
↵s

2⇡
J̃g

alg(⌧a) ,

(4.23)

where, as for the quark jet function, the finite distributions J̃g
alg(⌧a) di↵er among the

algorithms we consider. They are given in Appendix A.

The zero-bin result is

Jg(0)
! (⌧a) =

↵sCA

⇡

1

�(1 � ✏)

 
4⇡µ2 tan2(1�a) R

2

!2

!✏✓
1

⌧a

◆1+2✏ 1

(1 � a)✏
. (4.24)
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FIG. 2. SCET Feynman diagrams contributing to the gluon jet function. Diagrams (F) and (G)

have mirrored counterparts which are not shown.

2. Measured Gluon Jet Function

The näıve contribution to the measured gluon jet function can be computed from the

diagrams shown in Fig. 2:

J̃gω(Ga) = 2g2µ2ε

∫
dl+

2π

1

l+

∫
ddq

(2π)d
1

ω − q−2πδ
(
q+q− − q2⊥

)
2πδ

(
l+ − q+ − q2⊥

ω − q−
)

×
{
nFTR

(
1− 2

1− ε
q+q−

ωl+

)
− CA

(
2− ω

q−
− ω

ω − q− −
q+q−

ωl+

)}

×Θ(q−)Θ(q+)Θ(ω − q−)Θ(l+ − q+)Θ

(
tan2 R0

2
− q+ω2

q−(ω − q−)2

)

×
[
δ
(
Ga − ωa−2(ω − q−)1−a(q−)1−a/2(q+)a/2

)
Θ

(
tan2 R

2
− q+ω2

q−(ω − q−)2

)

+ δ (Ga) Θ

(
q+ω2

q−(ω − q−)2
− tan2 R

2

)]
. (27)

The coefficient of the δ(Ga) term can be found by integrating over Ga. The terms that

remain are +-distributions, which integrate to zero. The zero-bin subtraction term follows

from taking the scaling limit l − q ∼ q ∼ λ2 of the näıve jet function above:

Jg(0)ω (Ga) = 4g2µ2εCA

∫
dl+

2π

1

l+

∫
ddq

(2π)d
1

q−
2πδ

(
q+q− − q2⊥

)
Θ(q−)Θ(q+)

×2πδ
(
l+ − q+

)
Θ(l+ − q+)Θ

(
tan2 R0

2
− q+

q−

)

×
[
δ
(
Ga − ω−1(q−)1−a/2(q+)a/2

)
Θ

(
tan2 R

2
− q+

q−

)

+ δ (Ga) Θ

(
q+

q−
− tan2 R

2

)]
. (28)

The term proportional to δ(Ga) integrates to zero in pure dimensional regulation. This

zero-bin subtraction term is exactly the same up to color factors as the quark jet function
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zero-bin subtraction.

Employing a MS scheme, we find the measured gluon jet function for the kT -type jet

algorithms of Ga to be

Jgω(Ga) = J̃gω(Ga)− Jg(0)ω (Ga) =
αs
2π

[(
CA

a

a− 1

1

ε2
+
β0
2ε

+ CA
a

a− 1

log µ2

ω2

ε

+
CA
ε

log
tan2 R

2

tan2 R0

2

)
δ(Ga)−

2CA
ε(a− 1)

(
Θ(Ga)
Ga

)

+

]

+ Jgω(Ga, ε0) , (29)

where Jgω(Ga, ε0) consists of terms that are finite as ε → 0. These terms are presented in

Appendix A. β0 is the coefficient of the one-loop β-function:

β0 =
11

3
CA −

2

3
NF , (30)

with TR = 1
2
. As with the quark jet function, the 1/ε terms are the same as those for

angularity from [18] with a→ 2− a plus an additional term of the logarithm of the ratio of

the resolution parameter R to the jet radius R0.

C. Measured Soft Function

As shown above, there is a simple relationship between the form of angularity for soft

modes and the angular correlation for soft modes. This relationship will allow us to use

the results from [18] in computing the measured soft function for the angular correlation

function. First, we consider the phase space constraints from the jet algorithm and the

angular correlation function. For the kT jet algorithm, soft radiation must be within the jet

radius R0 of the jet axis to be included:

ΘkT = Θ

(
tan2 R0

2
− k+

k−

)
. (31)

The δ-function that constrains the soft modes to contribute an amount Ga to the angular

correlation function is

δR = δ

(
Ga − ω−1(k−)1−a/2(k+)a/2Θ

(
tan2 R

2
− k+

k−

))

= δ
(
Ga − ω−1(k−)1−a/2(k+)a/2

)
Θ

(
tan2 R

2
− k+

k−

)
+ δ (Ga) Θ

(
k+

k−
− tan2 R

2

)
. (32)
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The measured soft function of a gluon emitted from lines i and j into a jet is

Smeas
ij (Ga) = −g2µ2εTi ·Tj

∫
ddk

(2π)d
ni · nj

(ni · k)(nj · k)
2πδ(k2)Θ(k0)ΘkT δR

= −g2µ2εTi ·Tj

∫
ddk

(2π)d
ni · nj

(ni · k)(nj · k)
2πδ(k2)Θ(k0)Θ

(
tan2 R0

2
− k+

k−

)

×
[
δ
(
Ga − ω−1(k−)1−a/2(k+)a/2

)
Θ

(
tan2 R

2
− k+

k−

)

+ δ (Ga) Θ

(
k+

k−
− tan2 R

2

)]
. (33)

Note that the integral proportional to δ(Ga) is scaleless and so vanishes in pure dimensional

regularization. Also, the integral is only non-zero if R < R0 and so the Θ-function from the

jet algorithm is redundant. Thus, we can write the soft function as

Smeas
ij (Ga) = −g2µ2εTi ·Tj

∫
ddk

(2π)d
ni · nj

(ni · k)(nj · k)
2πδ(k2)Θ(k0)Θ

(
tan2 R

2
− k+

k−

)

× δ
(
Ga − ω−1(k−)1−a/2(k+)a/2

)
. (34)

This is the same form of the measured soft function as for angularity with a jet radius equal

to R which was computed in [18]. Up to terms that are suppressed by 1/t2 from Eq. 9, the

measured soft function for jet i is

Smeas(Gia) = −αs
2π

T2
i

1

a− 1

{[
1

ε2
+

1

ε
log

µ2 tan2(a−1) R
2

ω2
− π2

12
+

1

2
log2 µ

2 tan2(a−1) R
2

ω2

]
δ(Gia)

−2

[(
1

ε
+ log

µ2 tan2(a−1) R
2

G2iaω2

)
Θ(Gia)
Gia

]

+

}
, (35)

where T2
i is the square of the color in the jet.

D. Anomalous Dimensions and Consistency Conditions

A non-trivial requirement of the factorization is that the physical cross section should

be independent of the factorization scale µ. A consequence of this is that the anomalous

dimensions of the hard, jet and soft functions must sum to 0. The requirement is

0 =

(
γH(µ) + γunmeas

S (µ) +
∑

i/∈meas

γJi(µ)

)
δ(Ga) +

∑

i∈meas

(
γJi(Gia;µ) + γmeas

S (Gia;µ)
)
, (36)

where γH , γS and γJ are the anomalous dimensions of the hard, soft and jet functions. The

µ dependence must be summed over the measured and unmeasured jet and soft functions.
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The sum of the hard, unmeasured soft and unmeasured jet anomalous dimensions to NLO

is

γH(µ) + γunmeas
S (µ) +

∑

i/∈meas

γJi(µ) = −αs
π

∑

i∈meas

T2
i log

µ2

ω2
i tan2 R0

2

−
∑

i∈meas

γi , (37)

where γi depends on the flavor of the jet:

γq =
3αs
2π

CF , γg =
αs
π

11CA − 2NF

6
=
αs
2π
β0 , (38)

for quark and gluon jets respectively. We will show that the measured jet and soft function

anomalous dimensions for the angular correlation function are exactly what is required to

satisfy Eq. 36.

The anomalous dimensions of the measured jet or soft functions are given by the coefficient

of the 1/ε terms from Eqs. 26, 29 and 35. The anomalous dimensions of the quark and gluon

jet functions can be written collectively as

γJi(Gia) =

[
αs
π
T2
i

(
a

a− 1
log

µ2

ω2
i

+ log
tan2 R

2

tan2 R0

2

)
+ γi

]
δ(Ga)− 2

αs
π
T2
i

1

a− 1

[
Θ(Ga)
Ga

]

+

,

(39)

where γi is defined in Eq. 38. Note the non-trivial dependence of the anomalous dimension

on both the jet radius and the resolution parameter of the angular correlation function. The

anomalous dimension of the measured soft function for a quark or gluon jet is

γmeas
S (Gia) = −αs

π
T2
i

1

a− 1

[
δ(Ga) log

µ2 tan2(a−1) R
2

ω2
i

− 2

(
Θ(Ga)
Ga

)

+

]
. (40)

As mentioned earlier, jet angularity is not factorizable for a = 1 and here we see that the

anomalous dimensions of the angular correlation jet and soft functions become meaningless

for a = 1, signaling a breakdown of factorization. For the angular correlation function, we

are most interested in a = 2, so we will not consider this issue further here.

Summing over the measured jet and soft function anomalous dimensions, we find

∑

i∈meas

(
γJi(Gia;µ) + γmeas

S (Gia;µ)
)

=

(
αs
π

∑

i∈meas

T2
i log

µ2

ω2
i tan2 R0

2

+
∑

i∈meas

γi

)
δ(Ga) (41)

Note that there is a non-trivial cancellation of the angular correlation function resolution

parameter R between the jet and soft functions. This contribution exactly cancels that from

the hard and unmeasured jet and soft functions in Eq. 37, consistent with the factorization

requirement.
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E. Resummation and Averaging

To proceed with the resummation to NLL of the jet and soft functions, we will make a

few observations. First, as mentioned earlier, because we are ultimately interested in the

average angular structure function, we can ignore factors in the resummed cross section that

are independent of Ga or the resolution parameter R. Thus, we will not discuss nor resum the

hard function nor the unmeasured jet and soft functions. Also, we will only consider a single

measured jet in an event. This prevents a study of inter-jet correlations of the angular

correlation function, but for this paper we are most interested in the intra-jet dynamics.

Anyway, the existence of factorization of jet observables essentially trivializes correlations

between jets since it implies that correlations can only come from the soft function. From

these observations, we only need to resum the measured jet and soft functions of a single

jet.

With these considerations, we will need to compute the convolution between the measured

jet and soft functions:

dσ

dGa
∝
∫
dG ′a J(Ga − G ′a;µJ , µ)S(G ′a;µS, µ) , (42)

where µJ and µS are the jet and soft scales respectively. We refer the reader to [18] for

the details of generic NLL-level resummation. Here, we will use the results collected there

appropriate for the angular correlation function. The resummed differential cross section for

the angular correlation function of a single measured jet at NLL is

dσ

dGa
∝
(µJ
ω

)aωJ

(
µS tana−1 R

2

ω

)ωS

[1 + fJ(Ga) + fS(Ga)]
eKJ+KS+γE(ωJ+ωS)

Γ(−ωJ − ωS)

[
1

G1+ωS+ωJ
a

]

+

.

(43)

ω is the − component of the jet’s momentum and γE is the Euler-Mascheroni constant. The

functions ωJ , ωS, KJ , KS, fJ and fS are written in detail in Appendix B. They depend on

the jet and soft scales and the factorization scale µ. The jet and soft scales will be in general

sensitive to the value of Ga and the resolution parameter R. At very small values of Ga, the

resummed distribution can become negative and in general will need to be matched onto

a non-perturbative shape function in that region. We do not attempt to correct the shape

at very small Ga and instead just set the cross section to zero where it would otherwise be

negative.
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The average angular correlation function can then be computed from the cross section in

Eq. 43 by integrating over Ga:

〈Ga(R)〉 =

∫ Gmax
a

0

dGa
dσ

dGa
Ga

∝
∫ Gmax

a

0

dGa
(µJ
ω

)aωJ

(
µS tana−1 R

2

ω

)ωS

eKJ+KS+γE(ωJ+ωS)

Γ(−ωJ − ωS)

[1 + fJ + fS]

GωS+ωJ
a

, (44)

where Gmax
a =

tana R
2

4
is the maximum value of the angular correlation function for a jet with

two constituents. We choose the scales µJ and µS so as to eliminate the logarithms that

remain in the resummed distribution. The choice of these scales can be seen from the form

of the fJ and fS terms as given in the appendix. We find

µJ = ωG1/aa , µS =
ωGa

tana−1 R
2

. (45)

With this choice of scales, the average angular correlation function simplifies:

〈Ga(R)〉 ∝
∫ Gmax

a

0

dGa
eKJ+KS+γE(ωJ+ωS)

Γ(−ωJ − ωS)
[1 + fJ + fS] . (46)

Note, however, that there is non-trivial dependence on Ga in the functions ωJ , ωS, KJ and

KS. Finally, to determine 〈∆Ga〉, we compute

〈∆Ga〉 =
d log〈Ga〉
d logR

. (47)

Plots of the average angular structure function as computed in SCET and compared to

Monte Carlo and NLO corrections will be presented in the following sections.

1. Lowest-Order Expansion

Before continuing, it is illuminating to expand the angular correlation function to lowest

order in the coupling αs. To do this, we will need to expand Eq. 43 to O(αs). The form of all

of the functions in Eq. 43 are given in Appendix B and, in particular, the expansions of the

Gamma, harmonic number and polygamma functions are needed. The necessary expansions

are given in the appendix. To leading order in αs, we find

dσ

dGa
∝ αs(µ)

2π
T2
i

[
4 log tan

R

2
− 4

a
log Ga −

1

a

(
ci + log

tan2 R
2

tan2 R0

2

)]
1

Ga
+O(α2

s) , (48)
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where the factor ci depends on the flavor of the jet:

cq =
3

2
, cg =

β0
2CA

. (49)

To compute this, we have set the jet and soft scales so as to minimize the logarithms that

appear in the cross section as defined in Eq. 45. In this expression, note that the non-cusp

piece of the anomalous dimension of the measured jet functions appears in the term in

parentheses.

From this expression for the cross section differential in the angular correlation function,

we integrate over Ga to compute the average angular correlation function. To O(αs) we find

〈Ga〉 ≡
∫ tana R

2
4

0

dGa
dσ

dGa
Ga

∝
∫ tana R

2
4

0

dGa
αs(µ)

2π
T2
i

[
4 log tan

R

2
− 4

a
log Ga −

1

a

(
ci + log

tan2 R
2

tan2 R0

2

)]
1

Ga
Ga

=
αs(µ)

2π
T2
i

tana R
2

a

(
1 + log 4− ci

4
− 1

4
log

tan2 R
2

tan2 R0

2

)
+O(α2

s) . (50)

Any overall factor independent of R does not affect the average angular structure function

because

〈∆Ga(R)〉 ≡ d log〈Ga〉
d logR

=
R

〈Ga〉
d〈Ga〉
dR

. (51)

To lowest order, the average angular structure function is independent of αs and only de-

pendent on the color of the jet through the ci term. Eq. 50 results in the average angular

structure function of

〈∆Ga(R)〉 =
R

sinR


a−

2

4 + 4 log 4−
(
ci + log

tan2 R
2

tan2
R0
2

)


+O (αs(µ)) . (52)

Eq. 52 contains much of the physics that we expect affects the form of the angular

structure function. The näıve expectation for 〈∆Ga〉 is 〈∆Ga〉 ' a. Eq. 52 contains an

O(1) correction to this result that is negative. This was interpreted in [12] as an effect

due to the running coupling. However, here, this is probably not the source of this effect

because even for fixed coupling the negative term exists. This is instead probably due to

SCET itself because only collinear and soft emissions are included with respect to full QCD.

Including all terms in the resummed result should decrease the average angular structure
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function further due to both the running coupling and because an arbitrary number of soft

and collinear emissions are considered.

Also, note that the term ci is larger for quarks than for gluons with sufficiently many

flavors of quarks:

cq =
3

2
≥ 11

6
− Nf

9
= cg , (53)

for Nf ≥ 3. This implies that, for sufficiently many flavors, 〈∆Ga〉g > 〈∆Ga〉q, an observation

that was also made in [12]. There, this was attributed to the fact that gluons have more

color than quarks and so radiate more at larger angles, effectively decreasing the strength of

the collinear singularity with respect to quarks. We expect that the resummation magnifies

the distinction between quarks and gluons.

Another interesting observation to be made about the form of the angular structure

function is that, to this order, it is Lorentz invariant. We then expect that all jets, regardless

of energy (so long as it is above the hadronization scale of QCD), have an angular structure

function that deviates only slightly from the form in Eq. 52. In particular, note that Eq. 52

is the infinite jet energy limit of the (all-orders) angular structure function. The contribution

of higher orders to the angular structure function would contain prefactors of αs(µ) which

would vanish as µ → ∞. If we ignore the finite R terms from the expansion of sine and

tangent, 〈∆Ga(R)〉 is very flat, signifying very near scale invariance over a large dynamical

range R. Flatness is only broken by a term that goes like 1/ log R
R0

which is only important

at very small R/R0.

It is accurate, then, to represent the angular structure function in the form (again, ig-

noring the finite R terms from sine and tangent)

〈∆Ga(R)〉 ' a− γASF , (54)

where γASF might be called the anomalous dimension of a QCD jet and is independent of

a. This anomalous dimension is a robust quantity that is intrinsic to the flavor of the jet

and properties of QCD. Measuring this property of the angular structure function in data

would be very interesting. It is important to note, however, for all of the above comments,

O(αs) contributions to the average angular structure function have been ignored. These are

expected to be comparable in size to the second term in Eq. 52. Note in particular that

NNLO contributions can be just as, or even more, important than the contributions from
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resummation. Indeed, for jets with three constituents, it was computed in [12] that the

effect at this order is to increase the average angular structure function.

F. Non-Perturbative Physics Effects

In addition to the perturbative physics contribution to the angular structure function, we

would also like to understand the effects from non-perturbative physics. For jets produced

in an e+e− collider, the dominant non-perturbative effect is from hadronization. A simple

physical argument can be used to determine how hadronization affects the angular structure

function. The partons created from the parton shower will be connected to one another

by color strings which stretch across the event. After the termination of the parton shower

at an energy scale of about 1 GeV, these color strings are allowed to break to create a

quark-antiquark pair if it is energetically favorable. This string breaking continues until all

particles are connected by strings with sufficiently low tension and are then associated into

hadrons. In the process of breaking the strings and creating quark pairs, the number of

particles that are created at small angles with respect to one another increases from that

which was created in the perturbative parton shower. Thus, hadronization increases particle

production at small angles, effectively increasing the strength of the collinear singularity and

decreasing the value of the average angular structure function.

The effect of hadronization decreasing the average angular structure function can also be

quantitatively studied. Note that the angular correlation function is just the (squared) mass

of a jet from constituents that are separated by angular scale R or less. Dasgupta, Magnea

and Salam [30] studied the effect of non-perturbative physics on the transverse momentum

and mass distributions of jets at hadron colliders. For the mass, they found that the leading

correction due to hadronization is

〈δM2〉 ∼ CR0 +O(R3
0) , (55)

where C is independent of R0, the jet radius. For the angular correlation function, we

expect that the effect of hadronization would also result in a correction proportional to R,

the resolution parameter of the angular correlation function. We can write

〈Ga(R)〉 ' CpertR
a + Cnon-pertR , (56)
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where Cpert is the perturbative contribution to the angular correlation function and Cnon-pert

is the non-perturbative contribution. The average angular structure function that follows

from this is

〈∆Ga(R)〉 =
aCpertR

a + Cnon-pertR

CpertRa + Cnon-pertR
< a , (57)

where the inequality follows when a > 1. Note that the perturbative angular structure

function is approximately a and so, indeed, hadronization effects decrease the value of the

angular structure function.

The argument presented here and in [30] relies on the one-gluon approximation to de-

termine the effect of hadronization. Universality of the hadronization and power correction

effects was argued with the one-gluon approximation in refs. [31, 32] and demonstrated for

event shapes in SCET in refs. [33, 34]. The arguments in refs. [33, 34] relied on the boost

invariance of the soft function for back-to-back jets. How the argument might extend to an

arbitrary number of jets in arbitrary directions is unclear as the boost invariance is, at least

näıvely, broken. We will not discuss how this might be extended, but we note that, because

of the qualitative and quantitive arguments from the one-gluon approximation, we expect

that the universality holds in SCET.

G. The Angular Correlation Function at the LHC

Finally, we will discuss how the results obtained here for the SCET resummation might

be extended to the LHC, to processes initiated by pp collisions. For an observable O that

factorizes at hadron colliders, the cross section can be written in the schematic form [35–37]

dσ

dO = H(µ)× CabBa(µ)Bb(µ)⊗
[∏

ni

Jni
(O;µ)

]
⊗ S(O;µ) (58)

The beam functions Bi encode the properties of the initial parton i and the matrix Cab

weights the colliding partons by the appropriate cross section. Indices a and b are implicitly

summed over. In this case, the flavor of the jet functions depends on the flavor of the initial

colliding partons which affects the admixture of quark and gluon jets that contribute to

O. Note also that the soft function includes contributions from radiation from initial state

partons. Therefore, while not necessarily manifest in Eq. 58, the beam functions implicitly

affect the jet and soft functions.
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Nevertheless, we expect that the angular correlation function has nice factorization prop-

erties at hadron colliders. With the goal of computing the average angular structure function,

we can again ignore anything in the factorization of the angular correlation function that is

independent of Ga or the resolution parameter R:

dσ

dGai
∝ CabBa(µ)Bb(µ)⊗ Jni

(Gai;µ)⊗ Sna,nb;n1···nN
(Gai;µ) , (59)

where we have chosen to measure Ga in jet i in an event with N jets. Dependence on the

beam functions has been retained, however. This is because, for a given set of jets 1, . . . , N ,

different initial states contribute to the cross section with different weights. Thus, the beam

function contribution to the factorization, CabBa(µ)Bb(µ), is actually not an overall constant

factor and so must be included. Note also that the color of the colliding partons affects the

radiation included in the soft function. The beam functions are universal and so can be

computed once and for all. While this is not a rigorous proof of factorization of the angular

correlation function, many of the results obtained in the e+e− collider context should be

able to be recycled for the hadron collider case. This deserves significant future study.

III. COMPARISON TO FIXED-ORDER CALCULATION

In this and the following section, we will focus most of our attention on the (proper)

angular correlation function with a = 2:

G2(R) ≡ G(R) =
1

2E2
J

∑

i 6=j
EiEj sin θij tan

θij
2

Θ(R− θij) . (60)

To evaluate this jet observable in SCET, we must choose the hard, jet and soft scales. For

many of the comparison plots we choose the following scales:

µH = ω , µJ = ωG1/2 , µS =
ωG

tan R
2

. (61)

These choices of scales minimize logarithms that appear in the resummed distribution. How-

ever, it is important to understand the dependence of the result on the choice of these scales

and so we will also present plots in which the scales are varied by the standard factors of

2 and 1/2. The evaluation of the average angular structure function from the SCET cross

section is done numerically. Note that for consistency of the factorization the jet scale µJ

must be larger than the soft scale µS which is the requirement that

tan
R

2
� G1/2 . (62)
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(a) SCET vs Pythia8
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(b) Hard scale variation
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(c) Jet scale variation
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(d) Soft scale variation

FIG. 3. Plots of the average angular structure function for quark (red) and gluon (blue) jets.

Fig. 3(a) compares the curves from SCET resummation (solid) to anti-kT jets from Pythia8

(dashed). The Pythia8 curves were computed from 3 jet final states in which all jets had equal

energy. Figs. 3(b), 3(c) and 3(d) compare the Pythia8 curves to SCET bands in which the hard,

jet and soft scales have been varied by a factor of 2. To make these curves, the jet radius has been

set to be R0 = 1.0 and the energy of the jets is 300 GeV.

To maintain this separation, the resolution parameter cannot be too small; we will only

consider R & 0.1. For smaller values of R, logarithms of R become large and must be

resummed, which is beyond the scope of this paper.

The average angular structure function as computed in SCET is plotted in Fig. 3 where

the curves for quark and gluon jets are compared to the output of Pythia8. The Pythia8

curves will be discussed in the next section. Fig. 3(a) compares the quark and gluon curves

with the hard, jet and soft scales set to their values in Eq. 61. The observations from

the previous section are apparent with the quark average angular structure function less
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than the gluon average angular structure function and both slightly less than 2. The scale

variations of these curves are shown in Figs. 3(b), 3(c) and 3(d). Note that in particular

there is relatively wide range over which the angular structure function varies when the jet

and soft scales are changed by a factor of 2.

Because the average angular correlation function is defined by integrating over the entire

range of Ga, its value and shape is sensitive to radiation in all regions of phase space.

Resummation is necessary for an accurate description of the physics in the singular regions

of phase space while higher fixed-order contributions are necessary for a good description

in the non-singular regions of phase space. A proper treatment of resummation and fixed-

order involves consistently matching the two contributions so that the resulting distribution

is accurate order by order in αs over the entire phase space. This matching is a non-trivial

procedure and, instead, we will just focus on the contribution from higher fixed-order matrix

elements. This will give us a sense, at least, for how fixed order and resummation affect the

average angular structure function.

To do this, we use NLOJet++ v. 4.1.3 [38, 39], based on the dipole subtraction method

of [40], to compute the average angular structure function to NLO in e+e− collisions. NLO-

Jet++ can compute matrix elements to NLO for up to 4 final state partons (and, at tree

level, up to 5 final state partons) and so, by demanding jet requirements, produces jets with

very few constituents in them. This results in very inefficient calculation of cross sections.

Also, the public version of NLOJet++ does not record flavor information of partons so the

identity of quark and gluon jets cannot be easily determined. Further, it is not enough

that the cross section differential in the angular correlation function at fixed R is smooth

for the average angular structure function to be smooth. The distributions must also be

smooth over R so that the derivative that defines the average angular structure function is

well-behaved. To assuage these issues, in this section, we will define an event-wide angular

correlation function, where the sum in Eq. 5 runs over all particles in the event.

The event-wide angular correlation function is defined over all particles in the event with

no jet algorithm cut. In the limit that there are three final state particles this reduces

precisely to the angular correlation function of the hardest jet, extending up to an R of

about the radius of the hardest jet. The angular correlation function will only include the

contribution from the two closest partons because the third parton must be very far away

in angle. This argument doesn’t hold at higher orders, but for those cases we expect that
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FIG. 4. Comparison of NLOJet++ calculation of the event-wide average angular structure function

in 3 jet final states to NLO (dotted) to SCET NLL resummation of the average angular structure

function for quark jets (solid). Two curves from Pythia8 are shown: the dashed curve is the

average angular structure function for quark jets from e+e− → 3 jets and the dot-dashed curve is

the average angular structure function from e+e− → 2 jets.

the event-wide definition will be an average over the angular correlation functions of quark

and gluon jets.

We present the calculation of the average angular structure function from NLOJet++

for three final state partons to NLO in Fig. 4. The center of mass energy is taken to be 600

GeV in e+e− collisions. At a e+e− collider, most of the time, the hardest jet will contain a

quark and a radiated gluon so we compare the output of NLOJet++ to NLL resummation

results for quark jets. Fig. 4 also contains two curves of quark jets from Pythia8 which will

be discussed in the next section. The NLO calculation of the angular structure function is

approximately flat and greater than 2 which we interpret as an effective weakening of the

collinear singularity due to the presence of wide-angle radiation. The fact that the NLO

result is slightly larger that 2 was anticipated in [12] where it was shown that a jet with

three constituents should have an average angular structure function larger than 2 by a term

proportinal to αs. Matching the calculations from NLL and NLO would produce a curve

that interpolates between the NLL result at small R and the NLO result at large R.

To generate the NLOJet++ curve, about one trillion events were processed over about

1 CPU year. Even with this many events, the average angular structure function from

NLOJet++ is still quite noisy. However, the noise can be reduced by averaging the angular

structure function over a small range in R at each point. This was done for the curve in
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Fig. 4. Computing the average angular structure function in 4 jet final states to NLO was

attempted in the same CPU time as the 3 jet results. However, the resulting curves were

much too noisy to be used. To produce curves at higher orders using NLOJet++ probably

requires centuries of CPU time for distributions to converge. However, other programs such

as BlackHat [41] might be better-suited to higher multiplicity final states at NLO. Work in

this direction is ongoing.

IV. PARTON SHOWER MONTE CARLO COMPARISON

In this section, we compare our calculation of the average angular structure function

from SCET to the output of Monte Carlo event generator and parton shower. Through the

Sudakov factor which dictates the probability that no branchings occur between two scales

of an evolution variable, the parton shower resums logarithms of the evolution variable

that arise from soft and collinear emissions. Monte Carlo generators create fully exclusive

events and so the process of resummation of the logarithms is distinct from that in SCET,

for example, and examining the differences is interesting. The parameter that defines the

evolution in the parton shower is also (relatively) arbitrary and different choices of the

evolution variable lead to different emphases on soft or collinear splittings. In addition,

hadronization and other non-perturbative physics is described by phenomenological models

which can be used to understand the size and effect of power-suppressed contributions to

observables. All of these points and their effects will explored in this section.

For most of the Monte Carlo comparison, we first generated tree-level events for the

process e+e− → qq̄g using MadGraph5 v. 1.4.5 [42] at center-of-mass energy of 900 GeV.

These partons are required to each have equal energy E = 300 GeV so that they are well-

separated and factorization-breaking terms in the soft function are minimized. These events

were then showered using the pT -ordered shower of Pythia8 v. 8.162 [43]. All default settings

of Pythia8 were used except for turning hadronization on and off to study the difference.

In most plots hadronization in Pythia8 has been turned off. To study the effect of using

different evolution variables in the parton shower we shower the MadGraph events with

VINCIA v. 1.0.28 [44]. From the showered events, jets were found with the FastJet v. 3.0.2

[45] implementation of the anti-kT algorithm [46]. We choose the jet radius to be R0 = 1.0.

The three hardest jets are required to have energy between 250 and 350 GeV and we identify
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jets as coming from a quark or gluon by demanding that the cosine of the angle between

the jet axis and the direction of a parton from MadGraph be greater than 0.9.

In Fig. 3, we plot the average angular structure function for quark and gluon jets identified

in Pythia8 (with no hadronization) and the angular structure function as computed in SCET.

Note that the average angular structure function as computed in SCET is significantly

smaller than that from Pythia8, especially at larger R. This difference can be attributed to

higher order effects which were shown in the previous section to increase the value of the

average angular structure function. Fig. 3 also illustrates the distinction between quark and

gluon jets. For most of the range of 0 < R < 1, the average angular structure function for

gluon jets is greater than that for quark jets, reflecting the fact that gluons have more color

and radiate more at wider angles than do quarks. This effect is present in both the Pythia8

curves and the resummed calculation. Because the SCET calculation only included effects

from jets with at most two constituents, the curves terminate precisely at the jet radius of

R0 = 1.0. For these anti-kT jets in Pythia8, the edge effects from the jet algorithm are small,

extending only over a range of at most R = 0.8 to R = 1.2. Also, we have not plotted the

SCET curves below R = 0.1, where they begin to deviate substantially from their value at

larger R.

Fig. 4 compares the average angular structure function from NLOJet++ to quark jets

in SCET and two different curves from Pythia8. The different Pythia8 curves exhibit the

affect of wide angle radiation captured by the jet on the average angular structure function.

In that figure, the dashed curve is the quark jet average angular structure function from the

Pythia8 sample described above. The dot-dashed curve is the the average angular structure

function from quark jets from e+e− → qq̄ samples generated and showered in (otherwise

default) Pythia8. The center of mass energy was set to be 600 GeV and the jets were

required to have energy within 50 GeV of 300 GeV. Higher order effects are obvious. The

Pythia8 curves agree well with one another at small R up to R ∼ 0.6 and then diverge at

larger R. The jets in the 3 jet sample collect wide-angle radiation from the neighboring jets

which increases the average angular structure function at large R. To fully understand the

rise within an analytic calculation requires matching fixed-order to resummed result. Fixed-

order contributions are responsible for the wide-angle emissions that increase the average

angular structure function because SCET factorization effectively decouples the jets.

As discussed in Sec. II F, we expect the effect from non-perturbative physics on the
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(a) Identified gluon jets
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(b) Identified quark jets

FIG. 5. Comparison of the average angular structure function as computed in Pythia8 with (dotted)

and without (dashed) hadronization.

angular structure function to be small and relatively well-understood. In particular, relying

on arguments from the one-gluon approximation, we expect that hadronization increases the

strength of the collinear singularity and that this effect is most prominent at small values of

R. In Fig. 5, we have plotted the average angular structure function for quarks and gluons

comparing the curves with hadronization turned on or off. Indeed, the effect is small but

unambiguous: hadronization effectively increases the strength of the collinear singularity.

As discussed earlier, extending the arguments from [33, 34] on the effect of non-perturbative

physics would be greatly desired to fully describe (at least) average behavior of hadronization

for events with multiple jets.

A. Monte Carlo Error Estimates

Finally in this section, we would like to get a handle on the error or uncertainty in

the Monte Carlo parton shower in Pythia. Typically, this is done by studying the output

of different tunes of the same Monte Carlo program or comparing different Monte Carlo

programs altogether. In particular, as is relevant for the parton shower, the evolution

variable of the parton shower dictates when and how emissions should occur. Ref. [47]

observed differences in event shape variables as computed in Pythia 6.4 [48] between two

tunes; one pT -ordered and the other virtuality ordered. However, these two tunes had

other distinctions as well and so purely the effect of the evolution variable is obscured. Also,

28



0.2 0.4 0.6 0.8 1.0 1.2 1.4
R

0.5

1.0

1.5

2.0

2.5

3.0
XDGHRL\

(a) Identified gluon jets
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(b) Identified quark jets

FIG. 6. Comparison of SCET computation (solid) and Pythia8 (dashed) of average angular struc-

ture function to the output of VINCIA Monte Carlo parton shower with two different evolution

variables: pT and virtuality. The shaded region lies between the curves from VINCIA.

comparing two different Monte Carlos is subtle because the number of differences is typically

huge and so isolating effects of single parameters or choices is very difficult.

Here, we would like to study the effect of different evolution variables in the parton

shower. The choice of the evolution variable is only a change of variables in the Sudakov

form factor and so must produce the exact same leading-log resummation for any (consistent)

choice of evolution variable. However, the choice of evolution variable can lead to higher

log-order effects through the scale at which αs is evaluated or by emphasizing soft over

collinear splittings, for example. To study the differences, we use the VINCIA [44] parton

shower plug-in for Pythia8 which is based on 2-to-3 splittings as opposed to the standard

1-to-2 splittings as in Pythia and Herwig [49]. VINCIA includes a flag which allows the user

to change only the evolution variable. For concreteness, we will consider pT -ordering and

virtuality ordering.

In Fig. 6 we have plotted the SCET resummation and Pythia8 output for the average

angular structure function as well as a band which extends over the range between the

output of the pT -ordered and the virtuality ordered shower in VINCIA. The exact same

requirements on the jets were made in the VINCIA sample as in the Pythia8 sample as

described earlier. Over most of the range in R, the lower edge of the VINCIA band is set

by the pT -ordered shower and upper edge by the virtuality ordered shower. This is expected

as the pT -ordered shower emphasizes collinear emissions more than the virtuality-ordered
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shower. Note also that the band is slightly above the output of the pT ordered shower in

Pythia8. Part of this effect could be due to the default matrix element matching in VINCIA:

final states with up to 5 partons are matched to tree-level matrix elements. Regardless of

the details, the effect of changing the evolution variable is large. Understanding if and how

parton showers resum higher order logarithms with different evolution variables, matching

schemes, etc., is necessary to understand the source of the differences.

V. CONCLUSIONS

The average angular correlation and structure functions capture the average scaling prop-

erties of QCD jets. We have presented a calculation of the angular correlation function to

NLL accuracy in SCET and compared this result to the Pythia8 Monte Carlo parton shower

and to fixed-order results from NLOJet++. Comparing the resummed SCET result to the

fixed-order NLOJet++ result provides a good understanding as to the behavior of the parton

shower result. However, for a full understanding, matching of the resummed and fixed-order

distributions is required. Much like the jet shape [15], the average angular structure function

could be used for tuning of the Monte Carlo. Because it is a two-point correlation function,

the angular correlation function captures distinct information from the jet shape and so this

tuning would be non-trivial.

There are several directions for extending the study presented here. First, it would be

desirable to compute the angular correlation function in collisions at the LHC. It remains an

outstanding problem to use SCET to resum logarithms for arbitrary observables in hadron

colliders because factorization of the (colored) initial and final states is highly non-trivial.

However, using the observations from Sec. II G, the computation of the average angular

structure function at hadron colliders might only require a reinterpretation of the results

presented here. Recently, NLO results were obtained for pp → 4j events [50] from which

any IRC-safe observable could be computed. In particular, for four final state partons,

the hardest jet can contain up to three constituents which would be beyond the resummed

order in the SCET calculation. Also, at a hadron collider, underlying event or pile-up

produce significant background radiation that can be collected into a jet. A procedure

to determine the contribution to a jet from these non-perturbative sources is necessary to

properly determine jet energy scales and to study substructure. The results presented here
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could be used to determine the average contribution to a jet using the procedure introduced

in [12].

For a more accurate prediction of the angular correlation function, matching of NLL and

NLO results must be done to have good control of the distribution over the entire phase

space. Factorization of jet observables allows for a process-independent computation of

the NLL resummed result; however, the fixed-order calculation is process dependent and

must be couched in a particular study. We showed that the average angular structure

function is sensitive to wide-angle radiation so matching is vital for accurate predictions.

NLOJet++ or results like those from [50] are promising in their applicability to generic

processes. It is unlikely that QCD jet observables can be reliably computed to NNLL or

beyond analytically because non-global logarithms become important. Nevertheless, by

studying limiting behavior such as in [6] the effect of these non-global logarithms might be

reduced.

Finally, as there exist few jet substructure observables that have been (or even can be)

computed with analytic methods, it is important to compute those that are possible. The

calculation of the angular correlation function provides powerful insight into the behavior

of QCD and the dynamic properties of jets. Though scale-invariance is broken in QCD by a

running coupling, jets maintain a fractal, conformal structure to very good approximation

over a wide dynamical range.

Appendix A: Measured Jet Functions

Here, we present the finite pieces of the measured jet functions for quark and gluon jets

as defined by a kT -type algorithm for the angular correlation function. These functions are

composed of contributions from δ-functions and +-distributions. For a function g(x), we

define the +-distribution as [51]

[g(x)Θ(x)]+ = g(x)Θ(x)− δ(x)

∫ 1

0

dx′ g(x′) , (A1)

so that ∫ 1

0

dx [g(x)Θ(x)]+ = 0 . (A2)

From this definition, it is straightforward to compute the measured jet functions. The terms

that are infinite in four dimensions were presented in Sec. II B. The terms that are finite in
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four dimensions are, for a quark jet:

Jqω(Ga, ε0) =
αsCF

2π

{(
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For a gluon jet, the finite terms are:

Jgω(Ga, ε0) =
αs
2π
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Gmax
a is the largest value that Ga can take for a jet with two constituents:

Gmax
a =

tana R
2

4
, (A5)

where we have taken the leading λ dependence for the collinear modes.

Appendix B: Resummed Distribution for Angular Correlation Function

The expression for the resummed cross section is

dσ

dGa
∝
(µJ
ω

)aωJ

(
µS tana−1 R

2

ω

)ωS

[1 + fJ(Ga) + fS(Ga)]
eKJ+KS+γE(ωJ+ωS)

Γ(−ωJ − ωS)

[
1

G1+ωS+ωJ
a

]

+

.

(B1)
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ωJ , ωS, KJ and KS result from the resummation of the individual jet and soft functions

[52–56]. The functions ωJ and ωK are defined by ωJ ≡ ωF (µ, µJ) and ωS ≡ −ωF (µ, µS)

where

ωF (µ, µ0) = − 4T2
i

(a− 1)β0

[
log r +

(
Γ1
cusp

Γ0
cusp

− β1
β0

)
α(µ0)

4π
(r − 1)

]
. (B2)

β0 is the coefficient of the one-loop β-function as defined in Eq. 30 and β1 is the two-loop

coeffcient:

β1 =
34

3
C2
A −

10

3
CANf − 2CFNf . (B3)

r is the ratio of the strong coupling at two scales:

r =
αs(µ)

αs(µ0)
, (B4)

and the energy dependence of the strong coupling is given by the two-loop expression

1

αs(µ)
=

1

αs(Q)
+
β0
2π

log

(
µ

Q

)
+

β1
4πβ0

log

[
1 +

β0
2π
αs(Q) log

(
µ

Q

)]
, (B5)

for αs evaluated at the two scales µ and Q. The terms Γ0
cusp and Γ1

cusp are the one- and

two-loop coefficients of the cusp anomalous dimension. Their ratio is given by [57]

Γ1
cusp

Γ0
cusp

=

(
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9
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3

)
CA −

10

9
Nf . (B6)

The function KJ is given by

KJ(µ, µJ) = − γ0i
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with γ0i defined as

γ0i = 4T2
i

(
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)
, (B8)

where ci is defined in Eq. 49. KS is defined similarly
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The functions fJ and fS are generated by the convolution of the jet and soft functions.

Accurate to NLL, they are

fJ(Ga;µ, µJ) =
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and

fS(Ga;µ, µS) = −αs(µS)
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H(x) is the harmonic number function defined by

H(x) =

∫ 1

0

1− tx
1− t dt , (B12)

and ψ(1)(x) is the trigamma function

ψ(1)(x) =

∫ ∞

0

te−xt

1− e−t dt . (B13)

Note that the logarithms in these functions can be minimized by choosing

µJ = ωG1/aa , µS =
ωGa

tana−1 R
2

. (B14)

For expansion of the resummed distribution, the following relations are needed:

H(−1− ε)2 − ψ(1)(−ε) = −π
2

2
+O(ε) , (B15)

H(−1− ε)
Γ(−ε) = −1 + γEε+O(ε2) . (B16)
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