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Abstract

We describe the theory and first experimental work on our concept for searching on earth for the

presence of dark content of the vacuum (DCV) using atom interferometry. Specifically, we have in

mind any DCV that has not yet been detected on a laboratory scale, but might manifest itself as

dark energy on the cosmological scale. The experimental method uses two atom interferometers

to cancel the effect of earth’s gravity and diverse noise sources. It depends upon two assumptions:

first, that the DCV possesses some space inhomogeneity in density, and second that it exerts a

sufficiently strong non-gravitational force on matter. The motion of the apparatus through the

DCV should then lead to an irregular variation in the detected matter-wave phase shift. We

discuss the nature of this signal and note the problem of distinguishing it from instrumental noise.

We also discuss the relation of our experiment to what might be learned by studying the noise in

gravitational wave detectors such as LIGO.The paper concludes with a projection that a future

search of this nature might be carried out using an atom interferometer in an orbiting satellite.

The apparatus is now being constructed.
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I. INTRODUCTION

A. General remarks

The nature of dark energy has been a dominant question in both cosmology and fun-

damental physics for the past decade [1]. Our knowledge of the existence and properties

of dark energy is entirely based on cosmological scale observations. This paper is directed

towards experiments that might be able to measure effects of dark energy or any dark con-

tents of the vacuum (DCV) on the laboratory scale. More precisely, the idea is to detect

on the laboratory scale any hitherto unknown DCV that could give rise to behavior like

that of the dark energy or cosmological constant on the cosmological scale. As our preferred

technique, we describe atom interferometry experiments to detect DCV; we also describe

the assumptions we make about the DCV. We believe this is the first suggestion for such

experiments [2, 3].

Recent work on atomic interferometry [4] has achieved high precision [5]. For example, the

gravitational acceleration g at the earth’s surface has been measured with a precision of about

10−9 [6]; this measurement has also confirmed the gravitational redshift with a precision of

7 × 10−9 [5, 7]. Accuracies of 10−15 are expected in future atom interferometry laboratory

experiments on the weak equivalence principle [8, 9]. This precision is achieved through

the small de Broglie wavelength of slowly moving atoms: the phase difference between the

interferometers in past experiments can be millions of radians, whereas microradian changes

are measurable. Moreover, as the beam splitters in atom interferometers are standing waves

of laser light, the area enclosed by the interferometers’ arms is given with the precision

of a laser wavelength. Moreover, atoms have few and well characterized internal degrees

of freedom, and couple in a well controlled way to their environment. When the great

precision of atomic beam interferometry is combined with improvements that have recently

been demonstrated such as large momentum transfer or common-mode rejection between

conjugate interferometers [10–12], new applications will become possible. Furthermore, the

possibility of future operation in the nearly gravity-free environment of a spacecraft promises

truly impressive possibilities [7, 13, 14].
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FIG. 1. A simplified schematic of a single atom interferometer in which a bunch of atoms is dropped

vertically downward from the source at the top of the apparatus.

B. Organization of the paper

There are four parts to this paper. Part 1, Sec. I and II, summarize the atom interfer-

ometry theory and describes our terrestrial experiment. Part 2, Sec. III and IV, discuss the

severe experimental and observational limitations on our present knowledge of the nature

of dark energy and the experimental philosophy behind this experiment. Part 3, Sec. V,

VI, and VII, evaluate the reach of the experiment, and compare our experiments to other

possibly relevant experiments. In these sections we are reluctant to speculate using com-

plicated dark energy models, therefore we use pedestrian and limited models of how our

experiment might detect dark energy density. Part 4, Sec. VIII, and IX discuss variations

on our experimental design, and the advantage of moving from a terrestrial experiment to

a space experiment.

For those who wish to scan the paper we recommend reading Sec. I, II, III and VIII.

C. Summary of atom interferometry theory

Light-pulse atom interferometers use light to split an atomic matter wave, send it along

two separate spacetime paths, and interfere the partial waves when the paths merge. The
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FIG. 2. Classical trajectories of atoms in the drop experiment.

probability P of detecting the atom at one output of the interferometer is given by the

difference ∆φ = ∆φ1−∆φ2 of the phases accumulated by the matter wave on the two paths

by

P = [(1 + cos(∆φ))]/2. (1)

To further illustrate the interference mechanism, Fig. 1 shows a simplified schematic of

a single atom interferometer in which a sample of atoms is dropped vertically downward

from the source at the top of the apparatus [15]. An atom leaving the source is placed into

a superposition of two momentum eigenstates by interaction with the photons of counter-

propagating laser beams; the first component of the matter wave receives zero momentum

transfer while the second is given a downward momentum kick of ∆p. The two matter wave

packets then fall freely until a time T , whereupon they are given opposite ∆p momentum

kicks. The two wave packets continue to fall until time 2T whereupon the first is given an

upward kick of ∆p and the beams are recombined into a modulated single wave packet. The

final beam population is measured by laser-driven fluorescence. Fig. 2 shows the classical

paths of the beams to clarify the operation.

To calculate ∆φ1,2, Feynman’s path integral [16] or Bordé’s 5D atom optics [17] approach
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suggest themselves. Briefly, the atom is represented by a matter wave proportional to

exp[(i/h̄)
∫

L(x, ẋ)dt], where h̄ is the reduced Planck constant and L = 1
2
mẋ2 − V (x) is

the Lagrangian; m is the particle mass, x and ẋ represent the coordinates and their time

derivatives, and V the potential energy. Integrating over all possible trajectories gives the

propagator for a particle between two points. In the semiclassical limit, the path integral

is dominated by the classical path. In this case, the phase is given by an ordinary integral

over the classical path and

∆φ1,2 = φa,1,2 + φp,1,2, (2)

where

φa,1,2 =
SCl,1,2

h̄
, (3)

Here φa denotes the phase shift due to the action and SCl,1,2 =
∫

1,2 L(x, ẋ)dt is the classical

action, evaluated along the interferometer arms 1 or 2. An additional influence φp,1,2 arises

because whenever a photon is absorbed (or emitted), its phase is added to (or subtracted

from) the phase of the matter wave. The final equations take this into account.

For a Mach-Zehnder interferometer in the earth’s gravitational field with vertical laser

beams, V = mgz, where g is the acceleration of free fall, the leading order phase difference

between the paths is given by

φMZ = nkoptgT
2, (4)

where n is the number of photon momenta transferred to the atom in each beam splitter,

kopt is the laser wave number, and g is the local gravitational acceleration in the laboratory.

Thus, the sensitivity of the interferometer depends quadratically on the time of fall [18].

II. REALIZATION OF THE EXPERIMENT

A. Basic design of the experiment

Our experiment uses two interferometers, as close to identical in construction as is prac-

tical but separated in space. Fig. 3 shows a schematic. The system is designed to eliminate

the effects of gravity and many sources of noise. For explanatory simplicity we take g to

be constant in space and time. The interferometers A and B produce phase shifts ∆φA and

∆φB, which may be calculated as above, and give us a difference,

∆Φ = ∆φA −∆φB. (5)
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FIG. 3. Schematic illustration of the two interferometer system
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FIG. 4. The two interferometer system enclosed in a single vacuum envelope and using a common

laser system

If A and B are identical and no other interaction is present then clearly ∆Φ = 0. The

essence of our experiment is to null the phase shift difference ∆Φ due to gravity with

very high precision, so that any other interaction becomes detectable.

Figure 4 shows a present embodiment of our experiment in which the two interferometers

are enclosed in a single vacuum system and use a common laser system.
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B. Assumptions about dark energy inherent in this experiment

The experiment depends on two fundamental assumptions about the DCV:

1. The DCV has a non-uniform spatial distribution, contrary to the cosmological constant

model of dark energy. This leads to a potential dependent on the path of the falling

atoms.

2. There is a non-gravitational force on the atoms due to the DCV, leading to the po-

tential being larger than expected from gravity, Sec. VI.B.

We know little about the DCV but it is cetainly not stationary in the laboratory frame:

It is likely to exhibit temporal fluctuations as the Earth moves through the rest frame (if

one exists) of DCV with a velocity comparable to typical galactic velocities of order several

100 km/s, in analogy to our velocity relative to the cosmic background radiation. Since an

interferometer phase measurement requires about a second, ∆Φ will be an average of an

irregular signal. This is a crucial aspect of the experiment and will be discussed further in

Sec. VI.C.

III. OUR LIMITED KNOWLEDGE OF DARK ENERGY

Dark energy first entered physics, in the guise of the cosmological constant, when Einstein

introduced the cosmological term in the field equations of general relativity in 1917 in order

to balance gravitational attraction and construct a static cosmological model [19]. The field

equations including the cosmological term are

Gµν + Λgµν = (8πG/c4)Tµν , (6)

where the cosmological constant is now almost universally denoted by Λ. The balance

however was not stable, as soon noted by Eddington and others [20]. As is well-known,

Einstein later abandoned the cosmological term as unnecessary, which became especially

clear after Hubbles observation of the recession of galaxies and thus an expanding dynamic

universe [21]. Others continued to discuss the cosmological term however and the idea was

never forgotten [22].

In 1998, measurements of the recession velocity of type Ia supernovae were made that

implied the dynamic expansion of the universe is accelerating, and thus that the cosmological
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constant is nonzero and positive according to the standard cosmological interpretation [22,

23]. This interpretation is based on the assumptions of homogeneity and isotropy in our

region and throughout the universe. It is important to note that these assumptions and

the relevant supernova physics are still being debated and tested, and the existence of the

acceleration and of dark energy (or a cosmological constant) are still being questioned by

some [24].

The cosmological term on the left side of the general relativity field equations, as originally

used by Einstein, is consistent with and motivated by the mathematics of the Einstein

tensor; if there were no energy-momentum source Tµν it would imply that spacetime on the

cosmological scale is de Sitter space [25]. But the cosmological term may be simply moved

to the right side and interpreted as an energy momentum tensor source of gravity,

Tµν(vac) = −(Λc4/8πG)gµν. (7)

The cosmological term then corresponds to a fluid with the rather unusual equation of

state p = −ρ , for which both pressure p and density ρ = Λc4/(8πG) are uniform in space

and constant in time; this is the simplest conceptual version of dark energy [1, 26]. In

particular, there is no pressure gradient so the fluid does not exert a pressure force in the

usual Newtonian sense. The present standard model or concordance model of cosmology

includes this view of dark energy, with the equation of state parameter w = p/ρ treated

as an important observable quantity. The concordance model, including the value of w, is

being vigorously tested using different types of astronomical observation [27].

Dark energy can also be viewed as the ground energy state of the vacuum. This is

qualitatively consistent with the idea that quantum fields (such as the electromagnetic field)

have nonzero ground state energy that is constant in spacetime. However, quantum field

theory suggests a spectacularly erroneous size for the cosmological constant, about 10120

times larger than indicated by observation, and other current theories do not seriously

improve on this failure [27]. Thus it is, in our opinion, fair to say that present theory

gives us no fundamental understanding of the nature of dark energy or of the cosmological

constant [28].

The contents of the present universe, according to the concordance model and observation,

are about 75 % dark energy, 20 % cold dark matter, and 5 % ordinary baryonic matter [27].

The total density is consistent with a spatially flat Friedmann-Robertson-Walker universe in
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standard general relativity theory [29]. Note that the present era of accelerated expansion

is qualitatively similar to the early inflation era (preceding the era of radiation), but the

energy density is vastly smaller.

There are many speculations about the physical nature of dark energy beyond the simple

cosmological constant view, far too many to consider here. One of the best known is a

scalar quintessence field, ψ, which can cause acceleration much as the inflaton field in early

universe inflation theory. Such a field can act much like a perfect fluid as a source of gravity

with an effective equation of state parameter w given approximately by

w =
ψ̇2/2− V (φ)

ψ̇2/2 + V (φ)
(8)

where V is a self-interaction potential and the field is assumed to be uniform in space.

Thus if the field is changing slowly it behaves like dark energy and is consistent with the

concordance model [1, 30].

There are other interesting conjectures about the nature of dark energy, one of which

is known as a tracker field. It is somewhat peculiar that the dark energy and dark matter

energy densities have a ratio of about three at the present time, since that ratio changes

from a very small value to a very large value as the universe expands and the dark matter

becomes diluted. Thus some theorists speculate that there is a common source of the two

and the ratio has a deeper explanation. We will not discuss such ideas here, but refer the

reader to reference [31].

Dark matter has been considered on non-cosmological scales since it is supposed to clump

readily in galaxies and galactic clusters, and it should presumably be observable as particles

in the laboratory. But conventional dark energy has so far been associated only with the

cosmological scale. On smaller scales the cosmological constant has quite small effects;

roughly speaking it corresponds to a Newtonian quadratic potential [22]

ϕ = −(Λc2/6)r2 (9)

where r is the distance from an arbitrary “center”of the universe. There is thus a linear

repulsive force between the objects in the universe. It becomes non-negligible compared to

standard Newtonian attraction only on a scale larger than galaxies.

The all-important point we wish to make here is that we are at present totally ignorant

about the physical nature of dark energy on smaller scales than cosmological, either from
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observation or theory. No observations or experiments have been made (or even seriously

proposed!) due to the expected weakness of the associated gravitational forces involved. But

in view of our ignorance of the fundamental nature of dark energy this expectation should

be tested experimentally.

For example, on the cosmological scale it appears from both observation and theory that

the dark energy in a spatial volume must be uniform and proportional to the volume, which is

consistent with the concordance model. This clearly cannot be extrapolated to small scales,

anymore than the large scale homogeneity and isotropy of the universe can be extrapolated

to small scales, since that extrapolation would imply the nonexistence of galaxies and stars

and physicists. We remain free to speculate on the small-scale nature of dark energy and

to search for its properties, largely unconstrained by existing theory or observation. Thus

there is no necessity to assume that its local density is uniform or time independent or

comparable to its cosmological value, which is about 1GeV/m3 [29]. Moreover, it is not

necessary to assume that it interacts only gravitationally with ordinary matter, only that

the interaction is sufficiently weak to have escaped detection so far. The only reasonable

constraints are that, whatever its small scale nature, the average behavior of dark energy

on the cosmological scale is similar to that of the cosmological constant.

To emphasize our ignorance of the small-scale nature of dark energy we point out an ob-

vious analogy: on the cosmological scale both dark matter and baryonic matter are approxi-

mated as zero temperature uniform fluids whose non-gravitational interactions are irrelevant

to cosmology; however on smaller scales they behave entirely differently, clumping to form

complex structures and interacting much more strongly, so any extrapolation downwards

would be total nonsense.

We close this section by noting that of the many alternative approaches to the cosmo-

logical constant problem there are some that do not involve viewing the dark energy as a

physical fluid. In particular in one approach which we call “higher order general relativ-

ity” or HGR, the field equations of general relativity are recast as third order differential

equations for the metric tensor rather than the second order equations of standard general

relativity theory; the third order equations have a close similarity to the equations of classical

electromagnetism [32]. For the cosmological problem the equations can be integrated once

to obtain second order equations in which a constant of integration appears, which plays

exactly the same role as the cosmological constant. Thus, the cosmological constant may
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be re-interpreted as a purely mathematical constant of integration with an arbitrary value,

unrelated to a physical energy density. One peculiar property of the theory is that radiation

also appears in a very analogous way! It is presently not clear if HGR has physical content

beyond providing a different view of the cosmological constant as a constant of integration.

IV. PHILOSOPHY OF OUR EXPERIMENT

A. Philosophy

Although it is less than two decades since the astonishing discovery of the dark energy

phenomenon, the experimenter or observer desirous of investigating dark energy already

faces difficulties. Astronomical observations of the dark energy phenomenon are becoming

increasingly precise. But, as discussed in the previous section these observations are on the

cosmological scale and are unlikely to teach us anything of the essence of dark energy, is it

an energy field, is it related to matter, is it just a term in the equations that describe general

relativity, is it a fluid? Or is it some other phenomenon that we have never thought about?

During the doctoral research of one of us (M.L.P.) his supervisor, the laureate Isadore Rabi,

repeatedly reminded him that ”Physics is an experimental science”. This is the spirit behind

this experiment.

We are looking for a new way to microscopically penetrate the mystery of dark energy and

more generally to penetrate the puzzles associated with the vacuum. Atom interferometry

provides such a way for the following reasons:

• This technology depends on the simple , well understood interaction of a single atom

with a photon.

• This technology is becoming increasingly precise.

• The cost of the components is deceasing as industrial use of lasers and electro-optics

increases.

• The terrestrial version of this experiment can be constructed and carried out by a few

people thus providing the ability to rapidly improve the experiment.

• The terrestrial version of this experiment is inexpensive compared to most modern

astronomical instruments intended to study dark energy.
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• The terrestrial experiment can lead to the experiment being carried in earth orbit on

a space platform.

B. Comparison of dark energy density with electric field density

Another view of our philosophy is made evident by our early comparison between dark

energy and the electric field [2, 3].

Consider a weak electric field E = 1 V/m. Using

ρef = ǫ0E
2/2, ρef = 4.4× 10−12 J/m3 (10)

Hence the energy density of this electric field is 100 times smaller than the dark energy

density, ρDE = 6.3×10−10 J/m3, yet this weak electric field is easily detected and measured.

This realization first started our thinking about the possibility of direct detection of dark

energy. The point is that dark energy density is small but it is not zero. And to the

experimenter anything that is not zero may be, and should be, a subject for detection and

measurement.

Of course, it is easy to sense and measure tiny electromagnetic fields due to the relatively

strong coupling; on the other hand there are obviously severe experimental problems in

detecting dark energy or DCV density.

• Unlike an electric field in the laboratory, we cannot turn dark energy on and off.

• We do not expect there is a zero dark energy field that could be used as an experimental

reference.

• Even if the dark energy density should have a gradient, we do not know what force it

exerts on a material object as discussed in Sec. IV.

The point is that while these are severe experimental problems, the average dark energy

density is not zero, and given the correct experimental method, variations in it may be

detected.
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V. PARAMETERIZATION OF THE UNKNOWN CONTENTS OF THE

VACUUM

A. Basic physical concept

In accord with the comments in the previous section we will consider the possibility that

the DCV are not uniform in space and may involve non-gravitational interactions. We will

describe an ad hoc parametric model of the DCV on a small scale that is consistent with

the properties of the dark energy on the cosmological scale. It allows us to calculate phase

shifts for rather general interactions in terms of a few parameters. Of necessity the model

is very speculative but our hope is that it captures in a phenomenological way some of the

properties that the DCV may have.

In this experiment the interferometers are fixed to the earth. The earth is spinning and

moving in the Galaxy and the Galaxy is moving in the CMB frame with a velocity about

300 km/s. In any case, we do not expect the DCV to be tied to the earth. Therefore the

sought signal will average over many samplings of the DCV and will be an irregular signal.

Recall that the cosmological term of the general relativity field equations corresponds to

an effective Newtonian repulsive quadratic potential energy function Eq. (9) or a potential

energy.

U = mϕ = −mΛc2r2/6 (11)

This appears to represent quite well the effective behavior of the dark energy on the cosmo-

logical scale; on a smaller scale we simply do not know anything about its behavior. Thus

we will reasonably assume it behaves spatially in an irregular fashion. The rough magnitude

of the variations in the potential energy we denote bt ŨD (which may locally far exceed

the average of the potential), and the spatial extent of the variation by R. This view is

qualitatively equivalent to assuming that the DCV occurs in lumps randomly in space; thus

one atomic beam in a double interferometer may pass through a lump while the other beam

does not. Alternatively the variations in the DCV may of course have a regular structure.
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B. Quantitative phase shift calculation

For a quantitative description, we assume U(X) depends on position X but is time-

independent in some rest frame. While it is unknown what property of the test particle

the nongravitational coupling of the DCV couples to (e.g. baryon number etc), it is to be

expected that any such coupling is roughly proportional to the mass m of the particle; we

thus take it to be mu′, where u′ describes the local value of the fluctuating potential. To

model the stochastic fluctuations, we use a superposition of plane waves

U(X) = Re
(
∫ ∞

0
mu′(k)eikXdk

)

, (12)

where U is the potential energy, mu′(k) is the spectral density of the potential generated

by the DCV, and Re denotes the real part. In the following, we will drop the Re from the

equations; taking the real part is implied. This model is consistent with cosmology, because

the fluctuations average out over large distances for a suitable low-frequency cutoff of the

u′(k).

The Earth moves through the rest frame with velocity v, so that X = x− vt and

U(x) =
∫ ∞

0
mu′(k)eikx−iωktdk, (13)

where ωk = kv. We will now restrict attention to one Fourier component u(k). If we assume

that the dimensions of the apparatus are much smaller than 1/k, we can approximate

U(x, t) = mu(k)e(ikx−iωkt) ≈ mu(k)e−iωkt[1 + ik(x− x0)−
1

2
k2(x− x0)

2], (14)

where x0 is the lowest point of the interferometer. The constant term produces no effect in

the output signal, so we ignore it from here on.

To calculate the phase shift φ between the arms of one interferometer, we use a per-

turbative approach in which the phase shift is calculated by integrating the perturbing U

potential over the unperturbed paths of the Mach-Zehnder configuration shown in Fig. 2:

x1(t) =











(vL + vr)t− 1
2
gt2 t < T,

vrT + vLt− 1
2
gt2 t > T

(15)

and

x2(t) =











vLt− 1
2
gt2 t < T,

vr(t− T ) + vLt− 1
2
gt2 t > T

(16)
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Here, vL is the initial (launch) velocity of the atom and vr the recoil velocity i.e., the

velocity difference between atoms in the two interferometer arms. The phase between the

interferometer arms is given by

φ =
1

h̄

(
∫

Path 1
U(x, t)dt−

∫

Path 2
U(x, t)dt

)

. (17)

The phase difference between the two interferometers separated by L is given by

∆Φ = −4
(

L

v

)(

vr
v

)

(

mu(k)

h̄

)

sin2

(

kvT

2

)

cosωkt0. (18)

Here, t0 is the time at which the central interferometer pulse is applied. If we substitute

vr = nh̄kopt/m, where n is the number of photon momenta transferred to the atom per beam

splitter, and kopt the laser wavenumber,

∆Φ = −4
(

L

v

)

(

nkopt
v

)

u(k) sin2

(

kvT

2

)

cosωkt0. (19)

To get some intuition for the significance of u, note that u(k)k ≡ a(k) is the acceleration at

x0 of the test particle due to the DCV, hence

∆Φ = −4
Lnkopta(k)

vωk

sin2
(

ωkT

2

)

cosωkt0. (20)

For a numerical estimate, we use v = 300 km/s, kopt = 107/m and obtain

∆Φ = −21n
(

L

m

)

(

a(k)

m/s2

)(

ωk

2π1/s

)−1

sin2
(

ωkT

2

)

cosωkt0rad. (21)

This has to be compared with the resolution of the instrument, which may be on the order

of microradians to milliradians. For an estimate, we assume that the average atom flux

through the interferometer is η. We also assume that the interferometer resolution is shot-

noise limited. This leads to a phase noise spectral density of
√
η. If the interferometer can be

run for a long time, the resolution towards coherent signals will improve as the square-root

of the integration time. By choosing the pulse separation time T , the sensitivity towards a

given frequency ωk can be maximized; this maximum decreases as 1/ωk.

VI. COMPARISON WITH OTHER EXPERIMENTS

A. Comparison with gravitational wave detectors

In this comparison we use the dark energy density model of the previous section in which

the density is described by a spatial Fourier series. A gravitational wave detector, such as
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the Laser Interferometer Gravitational Wave Observatory LIGO [33], is modeled here as

a Michelson interferometer consisting of mirrors which are freely floating at the frequency

scales of interest. These mirrors will then accelerate according to Newton’s second law,

where the force is given by Eq. (14) as

F (x, t) =
∂U

∂x
= ikmu(k)eikx−iωkt. (22)

Note that we have not assumed that the arm length of the gravitational wave detector is

short relative to the length scales of the DCV fluctuations; we do, however, assume v ≪ c.

We integrate Eq. (22) twice to obtain the position modulation of the mirrors,

δx = −
iku(k)

ω2
eikx−iωkt. (23)

The difference between the modulations of two end mirrors that are assumed to be separated

by L is given by subtracting the above for x = 0 and x = L. We divide the result by L to

obtain h, the strain signal:

h = −
ia(k)

ω2
kL

e−iωkt
(

1− eikL
)

. (24)

This can be compared to the published noise equivalent strain magnitudes of existing grav-

itational wave detectors.

Fig. 5 shows a comparison of the equivalent acceleration noise spectral densities of the

proposed atom interferometer DCV detector and LIGO as used as a DCV detector [34]. The

graphs are plotted in terms of a per square root Hertz; any a that lies above the curves by

a sufficient signal to noise margin can potentially be detected.

It is obvious that LIGO is much more sensitive for frequencies above 3Hz; at the assumed

velocity, this corresponds to DCV potential fluctuations having a wavelength of 100 km or

less. The proposed atom interferometer, however, is better suited for the low frequency,

long-wavelength fluctuations below 3Hz or above 100 km.

B. Consideration of the expected gravitational force of dark energy

It is important to ask if a potential ŨD consistent with a gravitational interaction would

be detectable. If the interaction were gravitational we would expect on dimensional grounds

that very roughly

ŨD ≈
GmMD

R
≈
Gm(ρD/c

2)R3

R
= GmρDR

2/c2, (25)
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FIG. 5. A comparison of the equivalent acceleration noise spectral densities of the proposed

atom interferometer DCV detector (solid line) and LIGO as used as a DCV detector (dashed

line). Equivalent acceleration noise spectral density in m/s2/
√
Hz attainable with a dual atom

interferometer assuming L = 10m, kopt = 107/m, n = 10, v = 300 km/s, T = 1 s and atom flux of

η = 108/s.

where R is the blob size, MD is the mass of the blob and ρD is the energy density of the

blob. Thus from Eq. (17)

∆φ ≈
˜UDR

h̄v
≈
GmρDR

3

h̄vc2
. (26)

Using the dark energy density to illustrate, ρD ≥ ρDE ≈ 10−9 J/m 3, we obtain, with

m ≈ 10−25 kg and R ≈ 1 m

∆φ ≈ 10−32 rad. (27)

A phase shift of such an extremely small magnitude is not observable with an atom in-

terferometer, hence it is clear that we must assume a non-gravitational interaction in this

experiment.

C. Other possibly relevant experiments

There have been numerous recent and elegant measurements of g and G; and precise tests

of the validity of general relativity and of the equivalence principle. An example of the latter

is the test of Schlamminger et al. [35] using a rotating torsion balance to compare beryllium

and titanium. They found the upper limit on a deviation from the equivalence of inertial
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mass and gravitational mass to be 10−15 m/s2. This test is only relevant to the detection of

dark energy density if one assumes dark energy acts differently on beryllium and titanium.

VII. SENSITIVITY OF THE EXPERIMENT

An example of present experimental sensitivities is given by the measurement of g in an

atomic fountain interferometer as described by Chu [36] and by Chung and his coworkers

.[37] In a single interferometer, g has been measured with a precision of 10−9g =10−8

m/s2. The sensitivity is limited by noise caused by mechanical vibrations, laser frequency

fluctuations or optical component drifts and the like [38–40]. If there were no noise, the

maximum sensitivity would be set by the shot noise of the atomic beam.

We next calculate approximately this maximum sensitivity for our experiment. Consider

dropping Cs atoms from a height of H = 1 m. The total phase shift in the .45 s fall is given

by

∆φ = keffgT
2 = 6.51× 107 rad. (28)

Here, keff is the total momentum change in terms of wave number when the Cs atom absorbs

two photons of wave length 852 nm.

Define a = g/∆φ in units of m/s2. In this example a = 1.51×10−7m/s2. The shot noise

error in the measurement of g is given by the formula

σg = a/
√

(N(T/.45 s)). (29)

Here N is the number of Cs atoms in a single drop and T is the time in seconds. This

equation contains the ubiquitous square root of the total number of counts in a time T . We

evaluate this last equation for various relevant values of N and T .

For a moderately precise interferometer using N = 106.

σg(10
6, .45 s) = 1.5× 10−10m/s2. (30)

The most precise interferometers reach up to N = 108 and for various times we find

σg(10
8, 102 s) = 1.0× 10−12m/s2, (31)

σg(10
8, 104 s) = 1.0× 10−13m/s2, (32)

σg(10
8, 107 s) = 3.2× 10−15m/s2. (33)
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Here the 107 s example is representative of the long data runs intended for this experiment.

If we can increase N to 1010 the shot noise limit becomes

σg(10
19, 107 s) = 3.2× 10−16m/s2. (34)

Since we are looking for an irregular signal in this experiment, it is obvious that we

must substantially reduce the noise sources. Noise is a major concern in the community

of experimenters using atom interferometry [38–40]. Our approach is pay close attention

to mechanical vibrations and optical noise. For example, we intend to operate the entire

double spectrometer from a single laser and the first realization of the experiment uses the

compact design of Fig. 4.

VIII. OTHER GENERAL FORMS OF THE EXPERIMENT

A. The atomic fountain interferometer

In the discussions in this paper we have emphasized the atomic drop interferometer

for simplicity. The experiment can also be performed using the atomic fountain method

[36, 37]. Indeed for the same height apparatus the atomic fountain method gives four times

the sensitivity compared to the drop method.

B. Spread double interferometers

Figure 6 shows schematically two forms of the experiment in which the two interferom-

eters are separated in distance either vertically or horizontally. These designs are more

susceptible to uncancelled noise from mechanical vibrations and laser signal transport in-

stabilities. While we know nothing about the possible nature of inhomogenities in the dark

energy density, our intuition is that spread double interferometers provide a larger field of

exploration.

C. Use of a single interferometer

Our experiment uses a pair of interferometers, but we have also considered the experiment

using a single interferometer. Could one use a single interferometer, obtaining an indication
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B interferometer

A interferometer

A interferometer B interferometer

a b

FIG. 6. Schematic illustrations of spread double interferometers. (a) A vertically spread interfer-

ometer, the vertical distance would be of the order of several meters. (b) A horizontally spread

interferometer, the horizontal distance between interferometers would be of the order of several

meters.

of DCV by analyzing the signal as a function of time, say at half hour intervals? However

we do not see how to solve the problem of canceling the noise from mechanical vibrations

and laser instabilities.

IX. USING THE METHOD ON AN EARTH ORBIT PLATFORM

A great deal of design, experimental and theoretical work has been done on putting

an atom interferometer into space using an earth orbit satellite although this has not yet

been accomplished [41]. Operating an atom interferometer in space leads to substantially

improved measurements, both fundamental and geophysical [41].

It is obvious that space operation has two benefits for our search for DCV:
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1. The problem of precise nulling of g is eased, although gravitational tidal effects still

exist.

2. The measurement period for an atom bunch can be substantially extended.

On the other hand there are the well known problems and the substantial additional costs

of space operation:

1. Long periods of uniform data acquisition are required compared to current, terrestrial

atom interferometer experiments that run for short time periods.

2. Long periods of perfect apparatus performance are required compared to current,

terrestrial atom interferometer experiments that may require frequent adjustment or

maintenance.

3. The apparatus must be space qualified.

It will be a useful future task to make a quantitative study of carrying out our searches

in space.
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