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We propose a phenomenological model for the early universe where there is a smooth transition
between an early “quintessence” phase and a radiation dominated era. The matter content is
modelled by an appropriately modified Chaplygin gas for the early universe. We constrain the
model observationally by mapping the primordial power spectrum of the scalar perturbations to the
latest data of WMAP7. We compute as well the spectrum of the primordial gravitational waves as
would be measured today. We show that the high frequencies region of the spectrum depends on
the free parameter of the model and most importantly this region of the spectrum can be within
the reach of future gravitational waves detectors.
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I. INTRODUCTION

While our knowledge about the universe has improved
over the last decades with the advent of new observa-
tional data, there are several dark sides of the universe
that have not been so far described from a fundamental
point of view: what caused the initial inflationary era of
the universe? what is the origin of dark matter? what is
the fundamental cause of the current acceleration of the
universe? Even though nowadays none of the previous is-
sues have a satisfactory answer, a parallel approach, that
can shed some light on the dark sides of the universe, is
a phenomenological one or a model building strategy. A
good example in this regard is the inflationary paradigm
[1], where an inflaton field (or several scalar fields) in-
duce the initial acceleration of the universe. Such a field
would leave tracks on the evolution of the universe for
example through the primordial power spectrum of the
scalar perturbations [2–4], extremely useful to constrain
the inflaton field. It is precisely such an approach that
we will follow in this paper.
The main goal of this paper is to obtain a phenomeno-

logically consistent model for the early universe (infla-
tionary and radiation dominated epochs) by properly
modifying the generalised Chaplygin gas (GCG) [5]. A
first attempt in this direction has been recently carried
out in [6] (see also [7]) where a new scenario for the
early universe was proposed. Such a scenario provides a
smooth transition between an early de Sitter-like phase
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and a subsequent radiation dominated era. In that model
[6], the matter content was given by a type of generalized
Chaplygin gas for the early universe, with an underlying
scalar field description. Here, we give a more realistic

model where the early inflationary phase of the universe
is more general than a de Sitter-like universe. We will
show how the spectrum of the present model is not as
red as the one presented in [6] and therefore more con-
sistent with observations.

More precisely, rather than having a de Sitter-
like phase in the past, we will consider an early
“quintessence” inflationary phase. This phase will be
connected to a radiation dominated phase at later time.
The model can be described through a scalar field or a
Chaplygin gas inspired model. We will then analyze the
possible imprints of such a gas in the primordial power
spectrum of scalar perturbations and the power spectrum
of the stochastic background of gravitational waves.

The paper is organized as follows. In section II, we will
present the model which is based on a properly modified
Chaplygin gas that interpolates between a quintessence
inflationary era and a radiation dominated period. In
section III, we will show how this kind of gas can be
modeled by a minimally coupled scalar field. In section
IV, we constrain our model observationally and obtain
the full spectrum of scalar perturbations numerically. In
section V, we obtain the spectrum of gravitational waves
using the method of Bogoliubov coefficient. Finally, in
section VI we summarize our results and conclude.
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II. THE MODEL BUILDING

We generalize the model presented in [6] by considering
an inflationary period corresponding to a “quintessence”
like behavior (described by a power law expansion) and
followed by a radiation dominated epoch. The matter
content of the universe can then be modeled à la Chap-
lygin gas as

ρ =

(

A

a1+β
+

B

a4(1+α)

)1/(1+α)

, (2.1)

where A,B, α, β are constants being A,B positive.
The matter content is not interacting with any other

fluid and therefore its energy density is conserved:

ρ̇+ 3H(ρ+ p) = 0, (2.2)

where the dot stands for derivative with respect to the
cosmic time and p is the pressure of the fluid. If we
substitute the energy density (2.1) in the conservation
equation (2.2), we obtain

p =
1

3
ρ+

1 + β − 4(1 + α)

3(1 + α)

(

ρ−
B

a4(1+α)
ρ−α

)

. (2.3)

The above equation of state can be rewritten as

p =
1

3
ρ+

A

3(1 + α)

1 + β − 4(1 + α)

a1+β
ρ−α. (2.4)

This equation shows clearly that we recover the model
discussed by one of us in [6] for β → −1. We would like to
highlight that the equations of state (2.3)-(2.4) have been
previously analyzed in [8] to study a possible interplay
between dark matter and dark energy and therefore in a
scenario completely different to the one we study here1.
As the inflationary period takes place before the radi-

ation dominated one, we deduce that the inequality

B

a4(1+α)
≪

A

a1+β
(2.5)

must hold at early time; i.e. at small scale factors. This
will be the case as long as

0 < 1 + β − 4(1 + α). (2.6)

The inequality (2.5) implies a ≪ al, where

al =

(

A

B

)1/[1+β−4(1+α)]

. (2.7)

The scale factor al represents the “border line” between
two different regimes. More precisely

ρ ≃
A1/(1+α)

a(1+β)/(1+α)
a ≪ al, (2.8)

ρ ≃
B1/(1+α)

a4
a ≫ al. (2.9)

1 We thank Luis Chimento for pointing out this to us.

There are two more conditions that should be imposed
on α and β to have a model that interpolates between
an early inflationary phase of the type of quintessence
and a radiation dominated phase at later time: (i) the
energy density (2.8) must induce a period of inflation
and (ii) such a period of inflation should not induce a

super-inflationary expansion; i.e. 0 < Ḣ , and therefore a
super-accelerating phase of the universe where the energy
density (2.8) corresponds to phantom matter, with an
energy density that grows as the universe expands. By
combining these two ansatz with the inequality (2.6), we
can easily deduce that the set of allowed values of α and
β satisfy2

1 + α < 0,

1 + β < 0,

2(1 + α) < 1 + β. (2.10)

A perfect fluid with an equation of state (2.3) or (2.4)
describe an early inflationary period as long as the con-
ditions (2.10) are satisfied. The universe will exit the
inflationary epoch when the scale factor reaches the value

a⋆ =

[(

2(1 + α)− (1 + β)

1 + α

)

A

2B

]1/[1+β−4(1+α)]

.

(2.11)
The last condition can be obtained by imposing the con-
dition ρ + 3p = 0. Again this is in agreement with the
results of [6] for β → −1.
Before concluding this section, let us analyze more

closely what sort of inflation does the universe undergo
in its initial stages. The Friedmann equation with the
matter content (2.1) is too difficult to be integrated an-
alytically so we use an approximation where the energy
density can be written as in Eq. (2.8). Then the scale
factor can be approximated as

a(t) =

[

1 + β

2(1 + α)
A1/[2(1+α)]

√

κ2

3
t

]2(1+α)/(1+β)

, (2.12)

where t is the cosmic time and κ2 = 8πG where G is the
gravitational constant. As we can see from the previous
equation the inflationary era of the universe is given by
a power law expansion.
In sections IV and V, we will see that the entire evolu-

tion of the universe can be described by the appropriately
modified Chaplygin gas (2.4) and a subsequent ΛCDM
expansion, that is

ρ =







(

A
a1+β + B

a4(1+α)

)1/(1+α)
, early-time

ρr0(
a0

a )4 + ρm0(
a0

a )3 + ρΛ, late-time

(2.13)

2 Having a negative value α is not that surprising (see for example
[9]). Indeed, it has been shown in [10] that type Ia Supernovae
allow for negative α under the standard generalized Chaplygin
gas.
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FIG. 1: The blue curve corresponds to the scalar field, φ,
against x, where x corresponds to a power of the scale factor
a, x = (B/A)aq, with q = 1 + β − 4(1 + α). The values
x0 and x⋆ correspond to the moments when the pivot scale
k0 = 0.002Mpc−1 exists the horizon and the inflation ends,
respectively.

where a0 is the current scale factor, ρr0, ρm0 and ρΛ
are the current energy densities corresponding to radi-
ation, matter (cold dark matter and baryonic matter)
and dark energy (modelled through a cosmological con-
stant), respectively. On the other hand, at the radiation
dominated epoch the energy densities (2.13) are equal,
consequently

B =
(

ρr0a
4
0

)1+α
. (2.14)

The parameter A is related to the scale of inflation (see
Eqs. (2.8) and (3.7)).

III. AN UNDERLYING SCALAR FIELD MODEL

The inflationary dynamics of the model presented in
the previous section can be described through a min-
imally coupled scalar field, φ, with a potential, V (φ),
whose energy density and pressure read

ρφ =
φ′2

2 a2
+ V (φ) , pφ =

φ′2

2 a2
− V (φ). (3.1)

In the previous equations the prime stands for derivative
with respect to the conformal time. This scalar field can
be mapped to the perfect fluid with equations of state
(2.3) or (2.4); i.e. ρφ = ρ and pφ = p. Through this
mapping we can write down φ and V as a function of the
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FIG. 2: The blue curve corresponds to the scalar field po-
tential V (φ) against φ (see Eqs. (3.2)-(3.3)), where V0 =

A1/(1+α) (A/B)−(1+β)/[q(1+α)]. The values φ0 and φ⋆ corre-
spond to the moments when the pivot scale k0 = 0.002Mpc−1

exists the horizon and the end of inflation, respectively.

scale factor (see Fig. 1):

φ(a) =
1

qκ

{

4 tanh−1

√

1 +
q

4(1 + α)

1

1 + x
− 2

√

1 + β

1 + α

coth−1

[
√

4(1 + α)

1 + β

(

1 +
q

4(1 + α)

1

1 + x

)

]}

,

(3.2)

V (a) = A1/(1+α)

(

A

B

)−(1+β)/[q(1+α)]

x−(1+β)/[q(1+α)]

(1 + x)1/(1+α)

[

1

3
−

q

6(1 + α)

1

1 + x

]

, (3.3)

where x = (B/A)aq and q = 1+β− 4(1+α). The scalar
field starts with a negative value and it rolls down the
potential as the universe inflates (cf. Fig. 2).

We can also consider the behavior of the equation of
state parameter w, w = pφ/ρφ, for the scalar field as a
function of the scale factor (see Fig. 3). At early times,
the kinetic energy is negligible with respect to the po-
tential, and therefore w → −1. Afterwards, the param-
eter w increase gradually with time. The universe stops
inflating when w reaches the value −1/3 and becomes
radiation dominant when w finally reaches 1/3.

At very early times where the scale factor is very small,
it can be shown that the inflationary expansion follows a
power law. Indeed, the scalar field and the potential can
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be approximated by

φ(a) ≃ φ0 +
1

κ

√

1 + β

1 + α
ln(a), (3.4)

V (a) ≃

[

1−
1 + β

6(1 + α)

]

A1/(1+α)a−(1+β)/(1+α),(3.5)

φ0 =
1

qκ

[

√

1 + β

1 + α
ln

(

qB

4|1 + α|A

)

+4 tanh−1

√

1 + β

4(1 + α)

]

, (3.6)

and therefore

V (φ) ≃

[

1−
1 + β

6(1 + α)

]

A1/(1+α) exp

[

−κ

√

1 + β

1 + α
(φ− φ0)

]

.

(3.7)

At much later times where the scale factor becomes
large, the universe is radiation dominant. It can be easily
proved that for this period:

φ(a) ≃
2

κ
ln(a) + φ1, (3.8)

V (a) ≃
1

3
B1/(1+α)a−4, (3.9)

φ1 = −
2

κq

[

ln

(

Aq

16B|1 + α|

)

+

√

1 + β

1 + α
coth−1

√

4(1 + α)

1 + β

]

. (3.10)

Consequently, we obtain

V (φ) ≃
1

3
B1/(1+α) exp [−2κ(φ− φ1)] . (3.11)

Since we know the form of the potential V (φ) for this
modified GCG model, we are able to find the evolution
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FIG. 3: The equation of state w for the modified GCG model
with equation of state (2.3) or (2.4). The dashed red line
indicates the end of inflation. We set α = −1.06 as an example
here.

of the slow-roll parameters ǫ(a) and η(a), where

ǫ =
1

2κ2

(

1

V

dV

dφ

)2

, η =
1

κ2

1

V

d2V

dφ2
. (3.12)

The slow-roll approximation is valid when the condi-
tions ǫ ≪ 1, η ≪ 1 are satisfied, which means the poten-
tial energy dominates over the kinetic term during the
inflation era. In Fig. 4, we show the behavior of these
functions in terms of the scale factor a.

IV. PRIMORDIAL POWER SPECTRUM

Inflation not only solve some of the shortcomings
present in the big bang theory but also generates den-
sity perturbations that seeds the structure of the present
universe. Those density perturbations have been con-
strained through observations of the cosmic microwave
background (CMB). In this section, we will constrain
the model introduced in the previous section by using the
measurements of WMAP7 [11] for the power spectrum of
the comoving curvature perturbations, Ps = 2.45×10−9,
and its index, ns = 0.963, where

ns − 1 ≡
d lnPs(k)

d ln k
. (4.1)

These measurements correspond to a pivot scale k0 =
0.002Mpc−1 [11].
Once the parameters of the model have been con-

strained we will obtain the full spectrum of the scalar
perturbations.

A. Imposing Observational Constraints

At very early times, the model introduced in Sect. II
induces a power law expansion as shown clearly in

Ε

Η
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FIG. 4: The black line corresponds to ǫ and the blue one to η.
The dashed red line locates the time when inflation ended. We
also notice that the slow-roll conditions are no longer satisfied
when the field is close to the end of inflation (a = a∗). We
set α = −1.06 as an example here.
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Eq. (2.12) (see also Eq. (3.7) and Fig. 2). On the other
hand, the slow-roll approximation is valid for an inflation-
ary power law expansion as the one we are considering
(see for example Figs. 3 and 4). In this regime, the power
spectrum (for the comoving curvature perturbations) and
the spectral index can be expressed as (see for example
[2–4])

Ps ≃

(

H2

2πφ̇

)2

, (4.2)

ns ≃ 1− 6ǫ+ 2η, (4.3)

at the horizon exit; i.e. at k = aH . Throughout the
paper a dot stands for a derivative with respect to the
cosmic time. For a power law expansion, i.e., a ∝ τ l

where τ is the conformal time, the spectral index reduces
to ns = −(1 + 2/l). For the modified Chaplygin gas we
are analyzing l−1 = (1 + β)/2(1 + α)− 1.

With the previous inputs, we can proceed as follows:
(i) the parameter B is fixed by the current amount of
radiation in the universe as stated in Eq. (2.14), (ii) for a
given parameter α, the parameter β is fully determined
by the measurement of ns and (iii) the parameter A
is fixed such that Ps = 2.45 × 10−9 at the pivot scale
k0 = 0.002Mpc−1. Before moving forwards, we would
like to highlight that the mode k0 = 0.002Mpc−1 exits
the horizon well inside the inflationary era where both
the power law expansion and the slow-roll approxima-
tion are valid for the model (2.4). We found out that the
inflationary scale, V0 = A1/(1+α)(A/B)−(1+β)/q(1+α) ∼
1.2× 1016 GeV, is almost of constant.

The tensor power spectrum to the scalar power spec-
trum ratio in the slow-roll approximation can be ex-
pressed through the slow-roll parameter ǫ [2–4]:

r ≡
Pt(k)

Ps(k)
≈ 16ǫ. (4.4)

For power-law inflation in the slow-roll approximation,
the spectral index is ns = −(1+2/l), as we already men-
tioned, while ǫ = 1 + 1/l. Because this GCG model be-
haves like a slow-roll power-law inflation when the pivot
k0 exits the horizon, we can use these approximations to
evaluate r at that time. Using once more WMAP7 data
(ns ≈ 0.963 at the scale k0 = 0.002Mpc−1) we can find
l. We obtain r = 0.296 at the pivot scale k0, which is in
agreement with the WMAP7 constraints. We obtain the
full spectrum of the gravitational waves on section V.

At later times close to the end of inflation or when
larger modes k exit the horizon, the slow-roll conditions
are not fulfilled. This is a simple consequence of the be-
havior of the GCG model that deviates from a power-law
inflation at that time. Thus we cannot use the results in
Eqs.(4.2) and (4.3) when inflation approaches a∗ where
it halts. In this regime, we will rather calculate the spec-
trum numerically.

B. Primordial Power Spectrum: Methods and

Results

The primordial density perturbation can be directly
mapped to the comoving curvature perturbation, the last
remains constant on large scale after exiting the Hubble
horizon, as long as the perturbations are adiabatic. This
is precisely the case, as we have a unique degree of free-
dom corresponding to the generalised Chaplygin gas.
The comoving curvature perturbation, s, is determined

by the fluctuations of the generalised Chaplygin gas. The
corresponding power spectrum for the field νk is [2, 3]

2π2k−3Ps(k) =
|νk|

2

z2
, (4.5)

where z = aφ̇
H . The field νk satisfies in the Fourier space

the equation [2, 3]

ν′′k +

(

k2 −
z′′

z

)

νk = 0. (4.6)

If the slow-roll conditions are satisfied, the variation of
the field φ and the Hubble parameter H is much slower
than that of the scale factor a. Therefore, the following
approximation can be used: z′′/z ≈ a′′/a, at the lowest
order of the slow-roll approximation. Consequently, the
solutions of (4.6) read in this case [2]

νk ≈

√

1

2k
e−ikτ

(

1−
i

kτ

)

, (4.7)

where the Bunch-Davies vacuum has been imposed for
modes well inside the horizon (aH ≪ k). We remind that
the parameter τ stands for the conformal time. Now, if
we consider the super-horizon scale (|kτ | ≪ 1) and sub-
stitute the approximation a ≈ −1/(Hτ) into Eq. (4.7),
the solution becomes

νk ≈ i

√

1

2k

aH

k
. (4.8)

The corresponding power spectrum in this slow-roll ap-
proximation is given in Eq. (4.2). These results remain
valid on the next order of the slow-roll as shown for ex-
ample in [3, 4] and therefore can be applied for an infla-
tionary power law expansion as it is the case in the model
we are analyzing at very early time.
In order to obtain the full power spectrum Ps(k), we

use numerical methods instead of applying Eq. (4.2) for
the reasons stated in the previous subsection. Therefore,
we first solve the differential equation (4.6), and find the
solution νk(across) calculated at the time when the mode
k exits the horizon; i.e. k = acrossH . Then through
Eq. (4.5) we obtain the power spectrum Ps(k)|k=aH .
We proceed as follows. We separate Eq. (4.6) into two

first order differential equations:
{

X ′ = Y,

Y ′ = −
(

k2 − z′′

z

)

X,
(4.9)
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where we set X = νk. In order to solve the previous set
of differential equations, we take the following actions:

• It is easier to make a change of variable from the
conformal time to the scale factor. Notice that z =
aφ̇/H can be fully determined in terms of the scale

factor as φ̇ = aHdφ/da and the scalar field φ is
fully determined as a function of the scale factor
(see Eq. (3.2)).

• In addition, we have simply to use the set of values
for the parameters of our model that have been
deduced by imposing observational constraints on
the model as discussed in the previous subsection.

• Last but not least, we need to impose a set of
boundary conditions. When the wavelength of a
given mode k is much smaller than the Hubble ra-
dius3 k ≫ aH , the effect of curvature can be ne-
glected. Therefore, the result reduces to that of a
flat Minkowski spacetime (when k ≫ aH). So, the
initial condition is

νk →

√

1

2k
e−ikτ for |kτ | ≫ 1, (4.10)

which corresponds to the Minkowski vacuum at
very early time. We change the variable from the
conformal time τ to the scale factor a through the
relation4

a(τ) =

{

[

1 + β

2(1 + α)
− 1

]

√

8πG

3
A1/[2(1+α)]τ

}1/[ 1+β

2(1+α)−1]

.

(4.11)

Following a similar procedure, we can see if the spectral
index, ns (defined in Eq. (4.1)), depends on the scale.
Our results are shown in Figs. 5 and 6.
For lower modes, i.e., those that entered the hori-

zon very recently, the power spectrum is independent
of the parameter5 α. It is only for modes satisfying
105Mpc−1 ≤ k that we can start to see some dependence
of Ps on α. As should be expected, the power spec-
trum has a constant slope; i.e., a constant spectral index,
for lower k when the modified Chaplygin gas induces a
power-law expansion. Indeed, the results for power-law
matches very well those of our model for these modes
(cf. Figs. 5 and 6). However, the spectral index of the
primordial power spectrum is not scale independent as
Fig. 6 clearly shows. The deviation of ns from the scale

3 This condition is fulfilled by any mode (on the past) thanks to
the inflationary mechanism.

4 Notice at this regard that the expansion of the universe for modes
with a wavelength much smaller than the Hubble radius is well
approximated by a power law.

5 The other parameters of the model are fixed for a given α as
explained in the previous subsection.

1 104 108 1012 1016 1020
2´10-11

5´10-11

1´10-10

2´10-10

5´10-10

1´10-9

2´10-9

k HMpc-1L

Ps

Pure Power Law

FIG. 5: Primordial power spectrum Ps(k)|k=aH against k for
six different values of α. The dashed black line is the pure
power law inflation, and the vertical dashed red line locates
the pivot k0 = 0.002Mpc−1. We can see that all these lines
merge when small k; i.e. large scale, exits the horizon. The
grey, violet, red, orange, green and blue curve correspond
respectively to α = −1.1,−1.09,−1.08,−1.07,−1.06,−1.05.

independence starts when the slow-roll condition ceases
to be valid and therefore approximately a bite before the
end of inflation.

Before concluding this section, we recall that the cur-
rent CMB observations cover roughly the range of scale
k ≈ 0.0002Mpc−1 to k ≈ 0.2Mpc−1 [12]. In this observ-
able region, it is hard to separate a modified GCG model
for different values of α or even from a power-law infla-
tion. Could currently running observations or future mis-
sions help us in this regard? For example, it is expected
that the maximum scale ℓ in CMB observations from the
Planck mission would reach ℓmax ≈ 2000. This scale
ℓmax could be translated into a kmax scale. Even though
the relation between ℓ and k is not a one-to-one rela-

0.001 10 105 109 1013 1017
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0.9

0.95

k HMpc-1L

n s

FIG. 6: The spectral index ns against k. The red dashed line
locates the pivot scale k0 = 0.002Mpc−1. The spectral index
ns is approximately a constant at early time. The grey, violet,
red, orange, green and blue curve correspond respectively to
α = −1.1,−1.09,−1.08,−1.07,−1.06,−1.05.
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tionship, we can still find the main contribution for each
mode: k (τ0 − τ∗) ∼ ℓ [13], where τ0 − τ∗ is the elapsed
conformal time since the last scattering surface until the
present. Here we use the concordance ΛCDM model to
calculate (τ0 − τ∗) =

∫ a0

a∗

da/a2H numerically. We find

that the maximum scale corresponding to ℓmax ≈ 2000
is kmax ≈ 0.138Mpc−1. Consequently and unfortunately,
the answer to the question raised in this paragraph is neg-
ative, as is clear from Figs. 5 and 6. We will next show
that by looking at the high frequency spectrum of the
gravitational waves, it is possible to separate a modified
GCG model for different values of α. Those frequencies
might be within the reach of future gravitational-wave
detectors such as BBO and DECIGO [14].

V. GRAVITATIONAL WAVE SPECTRUM

The early inflationary era not only leaves imprints on
the scalar cosmological perturbations but also creates
a fossil of gravitational waves. In this section, we will
analyze the possible imprints in the power spectrum of
the stochastic background of gravitational waves, for the
model presented in section II. In this case the background
evolution of the universe, till nowadays, is described by
the matter content in Eq. (2.13). This analysis is quite
important as it can shed some light on the inflationary
scenario behind the early accelerating phase of the uni-
verse and its transition to the subsequent radiation era.

A. Method

In order to obtain the spectrum of the gravitational
waves (GWs), we will use the method of Bogoliubov co-
efficients. To our knowledge, this method was first devel-
oped in [15–17] and later applied in [18–21]. Bogoliubov
coefficients describe how the vacuum changes as the uni-
verse expands. In particular, one of these coefficients,
which we will denote βk, gives the number of gravitons
created. Furthermore, it can be shown that the dimen-
sionless relative logarithmic energy spectrum of the grav-
itational waves, ΩGW, at the present time reads [20, 21]:

ΩGW (ω, τ0) ≡
1

ρc(τ0)

dρGW

d lnω
(τ0) =

~κ2

3π2c5H2(τ0)
ω4β2

k(τ0).

(5.1)
The parameter ρGW is the energy density of GWs and
ω the respective angular frequency; ρc and H are the
critical density of the universe and Hubble parameter,
respectively, evaluated at the present time.

In summary, the present value of the Bogoliubov coef-
ficient, βk, determines the power spectrum of the grav-
itational waves. This parameter can be determined in
terms of two continuous functions X,Y such that |βk|

2 =

1 1010 1020 1030 1040 1050 1060

0.01

107

1016

1025

1034

a

HaHL2

a''

a

FIG. 7: The integration method we use for a given mode
k. The dashed line corresponds to (aH)2, and the solid line
corresponds to a′′/a for a modified GCG model.

(X − Y )2/4, where X,Y fulfil

{

X ′ = −ikY

Y ′ = − i
k

(

k2 − a′′

a

)

X
. (5.2)

The coefficient βk gives the number of gravitons, Nk, for
each mode k created during the evolution of the universe,
where Nk(τ) = |βk(τ)|

2.

To calculate the GWs spectrum (5.1), we have to solve
the differential equations (5.2) numerically and use ap-
propriate initial conditions for X(τi) and Y (τi). We pro-
ceed as follows:

• The expression for a′′/a can be obtained from the
Friedmann equation and the conservation law:

a′′

a
=

κ2

6
a2 (ρ− 3p) , (5.3)

and therefore can be written in terms of the scale
factor, a, in this modified GCG model as follows,

a′′

a
=















κ2

6 a2
[

4−
(

1+β
1+α

)]

A
a1+β ×

(

A
a1+β + B

a4(1+α)

)−α/(1+α)
, early time

κ2

6 a2
[

ρm0

(

a0

a

)3
+ 4ρΛ

]

, late time

(5.4)

• At very early time, the model we are analyzing be-
haves like a pure power-law inflation. In that case,
the set of differential equations (5.2) have an an-
alytical solutions [21], which we will use as initial
conditions for X(τ) and Y (τ) in our numerical in-
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tegration6:

X(τi) =

√

−kτiπ

2
H

(1)
1
2−p

(−kτi), (5.5)

Y (τi) = −i

√

−kτiπ

2

[

H
(1)

− 1
2−l

(−kτi) +
l

−kτi
H

(1)
1
2−l

(−kτi)

]

.

(5.6)

Before proceeding, let us highlight that the general
solution of Eq. (5.2) for a power-law inflation in-
cludes the first and the second kind of Hankel func-
tions [22]. But here we adopt just Hankel function
of the first kind because the solution should reduce
to the Minkowski spacetime solution (4.10) at very
early time when aH ≪ k [4].

• Similarly to the scalar perturbations, it is simpler
to solve the set of equations (5.2) in terms of the
scale factor. With this in mind and in order to
apply the boundary conditions (5.5) and (5.6), we
use the relation between the conformal time and
the scale factor stated in Eq. (4.11).

• An important issue is the range of integration of
Eqs. (5.2). In principle, the integration must be
done from a very early time when the mode is well
inside the horizon on the inflationary era to the
present time. However, there is a way of reducing
the computing time without affecting in practice
the results: for a given mode k, we start integrat-
ing from 0.01across1 until 100across2 , where across1
and across2 correspond to the scale factor where the
mode k exits the horizon and reenters the horizon,
respectively. Our numerical integration will be car-
ried out for modes k ranging from the maximum of
the potential a′′/a until the minimum one. The
last one corresponding roughly to the modes that
are reentering currently the horizon. The methods
is schematically shown in Fig. 7.

• As can be noticed from Fig. 7, there is an intersec-
tion point in the potential a′′/a which takes place
roughly at 1050. Given that we have set the cur-
rent scale factor to a0 = 1058, the intersection point
corresponds roughly to the time of Big Bang Nucle-
osynthesis (BBN). On our model, that point corre-
sponds to the transition between the modified gen-
eralized Chaplygin gas and the ΛCDM model. For
modes that enters the horizon after the BBN, we
will have to integrate Eqs. (5.2) twice as we will be
dealing with two different potentials as shown in
Eq. (5.4). For the second integration, we use the
final values obtained in the first integration as the
initial values for the functions X and Y .

6 Notice that the conformal time is negative.

Ω = 1.85´10-17 rad �s

Ω = 1.85´10-14 rad �s

Ω = 1.85´10-11 rad �s

Ω = 1.85´10-8 rad �s

Ω = 1.85´10-5 rad �s

Ω = 1.85´10-2 rad �s
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FIG. 8: Evolution of the graviton numbers, |βk|
2 = Nk. The

integration has been carried out for six different values of
frequencies. We can see that for each mode k, the gravitons
have been created mostly during the inflationary era. For this
plot we fixed α = −1.06.

• The integration will be performed assuming: Ωr0 =
8 × 10−5, Ωm0 = 0.24, a0 = 1058 and H0 = 71.0
km/s/Mpc. In addition, the parameters of the
model are fixed as explained in section II.

B. Results

In this subsection we present our results of the power
spectrum of the gravitational waves for the model pre-
sented in section II.

As we explained before, the Bogoliubov coefficient,
βk, gives the number of graviton created in each period,
|βk|

2 = Nk(τ), and therefore we can calculate the time
evolution of β2

k during the expansion of the Universe in
this GCG model. In Fig. 8 we present an example of our
results where we set α = −1.06. The plot corresponds
to six different wave numbers k: k = 1.9 × 10−3Mpc−1,
k = 1.9Mpc−1, k = 1.9×103Mpc−1, k = 1.9×106Mpc−1,
k = 1.9 × 109Mpc−1, and k = 1.9 × 1012Mpc−1, or dif-
ferent frequencies ω = k/a0.
Similarly we can obtain the spectrum of the gravita-

tional waves as shown in Fig. 9. This figure is quite en-
lightening. It shows that for large frequencies the larger
|α| is, the larger is the dimensionless logarithmic energy
spectrum of the GWs. On the other hand, the larger |α|
is, the more the spectrum is shifted towards larger fre-
quencies. This is a simple consequence of the fact that
a larger |α| implies a larger maximum of the potential
a′′/a. In summary, an increase in |α| implies two things:
an upward shift and a rightward shift of the spectrum. It
is also worthy of notice that the plateau of the spectrum
merges at middle/low frequencies for different values of
α. This is not surprising as the energy scale of inflation,
V0, is almost fixed and independent of α in our model,
where V0 ∼ 1.2 × 1016GeV (cf. the previous section)
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FIG. 9: The gravitational wave spectrum ΩGW against the
frequency ω for different value of α in this GCG model: the
blue line refers to α = −1.06, the red one refers to α = −1.05,
and the grey one to α = −1.04.

and it is precisely the value of V0 that shifts vertically
such a plateau [21]. The parameter V0 is fixed mainly
by the measurements of Ps and ns. The fact that ns is
much more constrained by the latest WMAP7 data than
the previous one, WMAP5, explains the changes in the
plateau of our Fig. 9 and Fig. 4 of Ref. [21], where on
the last mentioned figure different values of ns, or equiv-
alently different values of the power law universal ex-
pansion l (in terms of the conformal time) are assumed.
Therefore, the spectrum of GWs at very low frequencies
is insensitive to the value of α, because for larger fre-
quencies the spectrum already merged for different α’s
whereas for smaller frequencies the universe is described
by the concordance model ΛCDM (at time the modes
reenters the horizon), which is independent of the pa-
rameter α.
There are some observational constraints on the upper

limit of the energy spectrum ΩGW [20]:

• Constraint from CMB:
h2
0ΩGW (ωhor, τ0) ≤ 7× 10−11,

forωhor = 2× 10−17h0 rad/s.

• Constraint from timing observations of millisecond
pulsars:
h2
0ΩGW (ωpul, τ0) < 2.0× 10−8,

for ωpul = 2.5× 10−8 rad/s.

• Constraint from doppler tracking of the Cassini
spacecraft:
h2
0ΩGW (ωCas, τ0) < 0.014,

for ωCas = 7.5× 10−6 rad/s.

• Constraint from LIGO:
h2
0ΩGW (ω, τ0) < 3.4× 10−5,

for a few hundred rad/s.

• Constraint from BBN:
h2
0

∫∞

ωn
ΩGW (ω, τ0)dω/ω < 5.6× 10−6,

where ωn ≈ 10−9 rad/s,

where h0 = 0.71. All these constraints are fulfilled by the
power spectrum shown in Fig. 9.

This model is a clear example of how the detection
of GWs can be extremely helpful to distinguish among
several inflation models and a complementary tool to the
study of primordial spectrum of the scalar perturbations.
Indeed, while our model is indistinguishable for any value
of α at low k and ω, on the spectrum of scalar and tenso-
rial perturbations, respectively, it should be distinguish-
able at high k and ω. Most importantly, the high fre-
quency regime is within the reach of future gravitational
wave detectors such as BBO and DECIGO [14].

VI. CONCLUSIONS

We present a model that attempts to fuse the infla-
tionary era and the subsequent radiation dominated era
under a unified framework so as to provide a smooth tran-
sition between the two. The model is based on a modifi-
cation of the generalized Chaplygin gas. More precisely,
it interpolates between a “quintessence-like”, or power
law, expansion and a subsequent radiation dominated
universe. Such a gas fulfills an equation of state (2.3)
or (2.4) which has been previously used in the literature
as a means to explain a possible interplay between the
dark sectors of the Universe [8]. Our attempt is there-
fore in a different context. We have shown how such a
model has an underlying scalar field description, where
the scalar field starts rolling down a potential hill where
the extreme slow-roll approximation is valid until a bite
before the end of inflation.

We have obtained the full power spectrum of the scalar
perturbations and constrained the model using the latest
WMAP7 data. From our analysis it turns out that the
model is indistinguishable from a power-law expansion
at low wave numbers k (cf. Figs. 5 and 6) even if we
vary the only degree of freedom present on the model,
the parameter α. Notice in this regard that the rest of
the parameters of the model are fixed by observations as
explained on Sect. IV.

We have completed our analysis by obtaining the spec-
trum of the gravitational waves (cf. Fig. 9) where we
have used the method of Bogoliubov coefficients [15–21].
It turns out that our model is within the reach of fu-
ture gravitational-wave detectors like BBO and DECIGO
[14]. Most importantly, for those frequencies it appears
possible to distinguish this modified GCG model among
different values of α, while this seems unattainable using
the power spectrum of the scalar perturbation with the
present or near future observations.

Last but not least, we have shown as well how the
scalar perturbation spectrum of the present model is not
as red as the one presented in [6] for an alternative GCG
model for the early universe. In comparison, the model
presented here is more consistent with observations.
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0505, 005 (2005) [arXiv:astro-ph/0404540].

[10] O. Bertolami, A. A. Sen, S. Sen and P. T. Silva,
Mon. Not. Roy. Astron. Soc. 353, 329 (2004)
[arXiv:astro-ph/0402387].

[11] E. Komatsu et al. [WMAP Collaboration], Astrophys. J.
Suppl. 192, 18 (2011) [arXiv:1001.4538 [astro-ph.CO]].

[12] W. Zhao and L. P. Grishchuk, arXiv:1009.5243 [astro-
ph.CO].

[13] J. Väliviita PhD Thesis, University of Helsinki, Faculty
of Science, Department of Physical Sciences.

[14] T. L. Smith, M. Kamionkowski and A. Cooray, Phys.
Rev. D 73, 023504 (2006) [arXiv:astro-ph/0506422].

[15] L. Parker, Phys. Rev. 183, 1057 (1969).
[16] A. A. Starobinsky, JETP Lett. 30, 682 (1979).
[17] B. Allen, Phys. Rev. D 37, 2078 (1988).
[18] R. G. Moorhouse, A. B. Henriques and L. E. Mendes,

Phys. Rev. D 50, 2600 (1994).
[19] L. E. Mendes, A. B. Henriques and R. G. Moorhouse,

Phys. Rev. D 52, 2083 (1995) [arXiv:gr-qc/9410033].
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