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Abstract

We present measurements of the branching fractions of 3-prong and 5-prong 7 decay modes using a
sample of 430 million 7 lepton pairs, corresponding to an integrated luminosity of 468 fb™!, collected
with the BABAR detector at the PEP-II asymmetric energy ete™ storage rings. The 7~ — (37) nv-,
7~ — (37) wrr and 77 — 7w f1(1285)v, branching fractions are presented as well as a new limit on
the branching fraction of the isospin-forbidden, second-class current 7~ — 7w~ 7'(958)v decay. We
find no evidence for charged kaons in these decay modes and place the first upper limits on their

branching fractions.

PACS numbers: 13.35.Dx, 14.60.Fg

I. INTRODUCTION 200

201

The BABAR Collaboration has studied 3-prong and 5-202
prong 7 decay modes where “prong” refers to the number3
of charged hadrons (7~ or K ) in the final state (for»*
example, see [1], [2]). The study of these decays was®
motivated by a search for the second-class current 7~ —206
71 (958)v,, which is forbidden if isospin is conserved.?
The selection criteria developed to search for second-class®
current decays are also able to identify many other rare®
or previously unobserved 7 decay modes. As a result,2o
we have used the large BABAR 7 data sample to makezu
a comprehensive study of these high-multiplicity decayz:
modes. 213

We present measurements of the 7= — (37) nu, 2
7~ — (37)"wv; and 77 — 7~ fiv, branching fractions.2s
Here and throughout this paper, charge conjugation isze
implied. We use the primary decay modes of the 7,27
w and f; mesons: 1 — vy, n — aTa 7w, n — 37928
w— 0, fi— 27727~ and fi — 7777 (note thatawe
the fi1 meson studied in the work is the f1(1258)). Noxxo
other narrow resonances are observed. We find that thesez
modes with narrow resonances cannot account for all ofx

*Now at the University of Tabuk, Tabuk 71491, Saudi Arabia

the observed decays. We measure the branching fraction
of the “non-resonant” decays although these decays may
involve a broad underlying resonance. In addition to the
new limit on the branching fraction of the second-class
current 7~ — 71’ (958) v, decay, we present the first lim-
its on the allowed (first-class current) 7= — K~ 1/(958)v,
and 77 — 7 1/(958)7 v, decays using the ' — 77ty
decay mode. Finally, we present the first limits on the
branching fractions of 5-prong decay modes in which one
or more of the charged hadrons is a charged kaon.

This analysis is based on data recorded by the BABAR
detector at the PEP-II asymmetric-energy ete™ stor-
age rings operated at the laboratory known as the SLAC
National Accelerator Laboratory. The data sample cor-
responds to an integrated luminosity (L) of 468 fb~*
recorded at center-of-mass (CM) energies of 10.58 GeV
and 10.54 GeV. This data sample contains approxi-
mately 430 million 7 lepton pairs using the measured
ete” — 7777 cross-section of o,+,- = (0.919 £ 0.003)
nb [3].

The BABAR detector is described in detail in Ref. [4].
Charged particle momenta are measured with a five-layer
double-sided silicon vertex tracker and a 40-layer drift
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chamber inside a 1.5 T superconducting solenoidal mag-
net. A detector of internally reflected Cerenkov light pro-
vides charged 7/ K separation [5] . A calorimeter consist-
ing of CsI(T1) crystals measures the energy of electromag-
netic showers, and an instrumented magnetic flux return
is used to identify muons.

The background contamination and selection efficien-
cies are determined using Monte Carlo simulation. The
T-pair production is simulated with the KK2F Monte
Carlo event generator [6]. The 7 decays, continuum
qq events, and final-state radiative effects are modeled
with Tauola [7], JETSET 8], and Photos [9], respec-
tively. Dedicated samples of 777~ events are created
using Tauola or EvtGen [10] where one of the 7 leptons
can decay to any mode and the other 7 decays to a spe-
cific final state. The detector response is simulated with
GEANT4 [11]. All Monte Carlo simulation events are
passed through a full simulation of the BABAR detector
and are reconstructed in the same way as the data.

II. EVENT SELECTION

The 7 pair is produced back-to-back in the ete™ CM
frame. As a result, the decay products of the two 7 lep-
tons can be separated from each other by dividing the
event into two hemispheres — the “signal” hemisphere
and the “tag” hemisphere — using the event thrust axis
[12] which is calculated using all charged particle and
photon candidates (“neutral clusters”) in the event.

We select events where one hemisphere (tag) contains
exactly one track and the opposite hemisphere (signal)
contains exactly three or five tracks with total charge op-
posite to the tag hemisphere. The event is rejected if any
pair of oppositely charged tracks is consistent with being
a photon conversion. The component of the momentum
transverse to the beam axis for each of the tracks must
be greater than 0.1 GeV/c in the laboratory frame. All
tracks are required to have the point of closest approach
to the interaction region less than 1.5cm in the plane
transverse to the e~ beam axis and less than 2.5cm in
the direction of the e~ beam axis. This eliminates K
mesons that decay to 7#T7~ at points distant from theers
ete™ collision point. 219

To reduce backgrounds from non-7 pair events, we re-2s
quire that the momentum of the charged particle in thez:
tag hemisphere be less than 4 GeV/c in the CM frame andzs
be identified as an electron (e-tag) or a muon (p-tag).2ss
The ¢gq background is suppressed by requiring there bezss
at most one electromagnetic calorimeter cluster in theas
tag hemisphere that is not associated to the track andzss
has an energy less than 1 GeV. Additional suppressionze
of the background events is achieved by requiring thezss
magnitude of the event thrust to be between 0.92 andas
0.99. 200

We reject events in which the invariant mass (M) of thez
charged particles, and the 7° and 7 candidates, all in theas
signal hemisphere, is greater than 1.8 GeV/c?. Neutralus
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FIG. 1: The vy, n7n~ 7° and 37° invariant mass distribu-
tions for 77 — 71'771'771'*771/7 decays, and the rtr 7% invari-
ant mass distribution for 7~ — 7~ 27%), decays in the data
sample after all selection criteria are applied. The solid lines
represent the simultaneous fit to the n peak and background.
The dashed lines show the extrapolation of the background
function under the 7 peak.

pion and eta candidates are reconstructed from two neu-
tral candidates, each with energy greater than 30 MeV
in the laboratory frame; the invariant mass of the 7% ()
is required to be between 0.115(0.35) and 0.150 (0.70)
GeV/c?. Neutral pion candidates are reconstructed first
in the signal hemisphere; the candidate with an invari-
ant mass closest to the nominal 7° mass is selected. The
residual neutral clusters are used to search for the n— vy
candidates. If there are more than two neutral clusters,
we select the candidate whose invariant mass is closest
to the nominal mass [17].

The branching fractions are calculated using B =
Nx/(2Ne) where Nx is the number of candidates af-
ter background subtraction. The number of 7 pairs, IV,
is determined from the product of the integrated lumi-
nosity times the ete™ — 7777 cross-section and the
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FIG. 2: The 27" 27~ (top plot) and 77~ 5 invariant massss

distributions for 7~ — w1

nv, decays in the data samplesss

after all selection criteria are applied. The lower three plots,s,

are for the n — vy, n— =

+

7~ 7m° and n — 37° decays. The,,,

solid lines represent the simultaneous fit to the fi(1285) peak,
and background. The dashed lines show the extrapolation of342
the background function under the fi peak.
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uncertainty is estimated to be 1%. The selection effi-y,
ciencies (€) are determined from the signal Monte Carlo,,
samples. The uncertainty on the selection efficiencies in-s,
cludes 0.5% per track on the track reconstruction effi-,;,
ciency, as well as particle identification (PID) selectionss,
uncertainties. From studies conducted on real and sim-

ulated events, the uncertainty on the charged particle

identification selectors are estimated to be 1% for elec-

trons, 2.5% for muons, 0.5% for pions, and 1.8% forss:s
kaons. The combined electron and muon particle iden-sss
tification uncertainty is estimated to be 1.6% based onsss
the composition of the event samples. The uncertaintysss
on the 7 — 44 and 1 — 77y reconstruction efficiency isss
estimated to be 3% per candidate. 358

III. RESULTS

We present measurements of 7 decays to a system with
7, f1 and w resonances in Sections A, B, and C, respec-
tively. Decays with these resonances cannot account for
all three or five prong 7 decays and we present measure-
ments of the tau branching fraction through non-resonant
modes detailed in Section D. Finally, in Sections E and
F we present searches for 7 decays containing an n’ (958)
meson or up to two charged kaons.

A. 77— (3m) s

The 7~ — 7~ 7~ w v, mode is studied in the n— 7,
n— ntn 7% and n — 37Y final states while the 7~ —
7~ 21%v; mode is studied in the n — 77~ 70 final state.

The number of decays is determined by fitting the n
mass peak in the vy, 7t7~ 7% and 37° invariant mass dis-
tributions (see Fig. 1). The fit uses a Novosibirsk function
(Gaussian distribution with a tail parameter) [13] for the
7 and a polynomial function for the background.

The Monte Carlo simulation predicts that some of the
events in the n peak are from eTe™ — ¢g. Control
samples, obtained by reversing the requirement on the
invariant mass of the observed decay products (M >
1.8 GeV/c?), are used to verify the background estimate.
If the ratio of data to Monte Carlo events in the control
sample is found to be different than unity, then the num-
ber of background events is corrected by the ratio, and
the statistical uncertainty of the ratio is included in the
background systematic uncertainty. This method of ver-
ifying the ¢gg background is used for all decays and will
not be mentioned in the later sections.

The reconstruction efficiencies are determined from fits
to the signal Monte Carlo samples. The 7~ — 7~ 270,
sample is generated using a phase space model for the
final state particles. The 7= — 7~ 7~ 7 v, sample is
composed of 77 — 7~ fiv, (fi — 7777 n) decays and
decays without an intermediate resonance. The 7= —
7=~ w T, (excluding f1) and 77 — 7~ fiv, efficiencies
are the same for n — 777~ 7" and n — 37°, whereas a
slight difference is observed for n— ~v. The difference is
added to the selection efficiency systematic uncertainty
for the 7~ — 7~ 7~ 7w, decay via the n— vy mode.

The three determinations of the 7= — 7 7 7w tnv,
branching fraction are found to be in good agreement
(see Table I); the average branching fraction (inclusive of
T =7 fivr) is

B(r~— a7 7w nu,) = (2.254+0.07+£0.12) x 107,

Hereinafter, when two uncertainties are quoted, the first
is statistical and the second is systematic. The branch-
ing fraction shown is the weighted average obtained by
combining the statistical and systematic uncertainties in
quadrature, accounting for correlations in the systematic
uncertainties.
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TABLE I: Results and branching fractions of 7~ — (37)  nv, decays

T — 7T771'77T+?71/7—

T — 7T77T77T+T]l/7—

T — 7r7271'0771/7
+ 0

T — 7r771'771'+771/7

+ 0

n— 3n°

n— Yy n—mT T T n—mT T T
Branching fraction (1074) 2.10£0.09 £0.13 2.37+£0.12+0.18 2.65 £0.28 £0.27 2.01 £0.34 £0.24
Data events 2887 £ 103 1440 + 68 315+ 34 381 £ 45
Y2/NDF 107/76 60/52 31/34 95/75
Selection efficiency (3.83+0.11)% (2.97 £0.02)% (0.42 £0.01)% (0.75 £ 0.02)%
Background events 131 £29 65 £ 38 <1 83 £12
Systematic uncertainties (%)
Tracking efficiency 2.7 3.8 2.7 2.7
7% and n PID 3.0 3.0 9.0 9.0
Pion PID 1.5 2.5 1.5 1.5
Lepton-tag PID 1.6 1.6 1.6 1.6
Lo s 1.0 1.0 1.0 1.0
Selection efficiency 3.0 4.0 2.8 2.7
Background Modeling 1.0 2.8 1.6 4.0
B(n— ~vv) 1.0 - - -
B(n— ntrx%) - 1.8 - 1.8
B(n— 37°%) - - 0.9 -
Total (%) 6.3 74 10 11
The 7~ — 7 27°nv, branching fraction is found to be
Bt~ — m21%1,) = (2.04+0.3+0.2) x 1074 F, 2 2 -

Naively, we expect the ratio of the 7~ — 7~ 7~ 7 v, to )

7~ — 7w 27w, branching fractions to be 2 : 1 if the fy-Trmn —

decay is dominated by the 7= — 7~ fiv,; decay mode n -

(based on the f; branching fractions [17]).
The previous measurement of the 7~ — 7~ 7 7wt nu, n - 3

via n— 77 branching fraction (1.60£0.0540.11) x 10~4 .

[1] is superseded by this measurement. n-Vvy
The 7~ — 7~ n~ 7 nv, and 7~ — 7~ 27%v, branching T T . . T

1.26 1.265 1.27 1.275 1.28 1.285 1.29

fractions are in good agreement with the results from the
CLEO Collaboration of (2.3 £+ 0.5) x 10~* and (1.5 +
0.5) x 10~%, respectively [14]. Li predicts a larger 7= —
7~ n - nu, branching fraction of 2.93 x 10~4 [15].

B. 7 =7 fivs

The branching fraction of 7~ — 7~ fiv; and the mass
of the f; meson are measured using the f; — 2727~
and f; — 777 1 decay modes, where the f{ — 777 n
decay is reconstructed using n — vy, n — 77~ 7% and
n — 3w, The criteria used to select the 77 — 7T~ fiv, 3
decays for the branching fraction measurement were de-sss
scribed earlier. We modified the selection for the masssss
measurement, dropping the requirement that the trackss
in the tag hemisphere be a lepton and the restriction onsss
the number of neutral clusters in the tag hemisphere, toss

increase the size of the event sample. 390

Mass (GeV/c?)

FIG. 3: Compilation of measurements of the fi invariant
mass. The values shown do not include the global mass cor-
rection obtained from fits to other resonances. The solid line
is the weighted average value and the shaded area is the one-
standard-deviation region.

The number of 7~ — 7~ fiv, candidates is determined
by fitting the f; peak in the 27727~ and 777 invari-
ant mass distributions (see Fig. 2). The f; lineshape is
expected to be a Breit-Wigner distribution, modified by
the limited phase space. Previous results show that the
f1— ag 7t (ag (980) — 7w~ n) appears to account for all
the f; — 777~ n decays [16]. The mass of the T —an(980)



391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

TABLE II: Results and branching fractions of 7~ — 7~ fiv, decays

fi— 2t o~

fi—mm

n— 7y

+ ¥ ¥

fi—m fi—m
+
n—m

T
n— 3n°

T
0

TN

T

Branching fractions (10™%)
Bt~ — 7" fivr)
B(r~— n fiw)B(f — 7 nt)

4.73£0.28 £0.45

1.25 £ 0.08 + 0.07

1.26 £0.11 £ 0.08 1.33£0.39£0.14

Data events 3722 £ 222 1605 £ 94 731 £ 62 197 £ 59
x*/NDF 77/62 50/43 61/55 39/43
Selection efficiency (8.3+£0.1)% (3.75 £ 0.04)% (2.97 £ 0.05)% (0.53 £ 0.02)%
Systematic uncertainties (%)

Tracking efficiency 3.8 2.7 3.8 2.7
7% and 1 PID - 3.0 3.0 9.0
Pion PID 2.5 1.5 2.5 1.5
Lepton-tag PID 1.6 1.6 1.6 1.6
Lot 1.0 1.0 1.0 1.0
Selection efficiency 0.6 1.1 1.6 4.1
Fit model 5.0 2.7 - -
B(fi— 2rt2n7) 6.4 - - -
B(n—7) - 0.7 - -
B(n— a7 n°) - - 1.2 -
B(n— 37°%) - - - 0.9
Total (%) 9.5 5.6 6.1 11

system and the 7 mass provide a lower and upper limit, s
respectively, on the f; lineshape. We use the four-vectorsaa
of the charged pion and a((980) from the EvtGen gener-as
ator to determine the f; lineshape and find it to be a closeas
approximation of the Breit-Wigner expectation. The fiar
peak is fit using this lineshape convolved with a Gaus-as
sian distribution to take into account the effects of theaso
detector resolution. The results of the fits are presentedaz
in Table II. There is no evidence for peaking background
from ¢g events or other 7 decays. This is confirmed by
selecting events above the 7 mass and seeing no f; can-
didates in either the data and Monte Carlo samples.

The 7~ — 7~ fiv, branching fraction, using the f; —

27127~ decays, is measured to be a2
422

B(t~— 7 fiv,) = (4.7340.28 £0.45) x 1074 423

424
The result is obtained using B(fi — 277277) =us
(11.070-7)x 1072 [17]. o
The product of the 77 — 7~ fiv; and fi — 77 Nar
branching fractions is measured to be 228
429
B(T_—>7T_f11/7.)8(f1—> 7T+7T_77) 430

= (1.26 +0.06 + 0.06) x 10~4, 431

432

based on a weighted average of the branching fractionsas
of the three » modes. The B(t~ — 7~ fiv,) branchingss
fraction is determined to be (3.59 £ 0.19 £ 0.35) x 10~ %4s

after dividing the product of the branching fractions byas

B(fi — 7t7n~n) = 0.35 £ 0.03 [17]. We note that the
Particle Data Group uncertainty on B(f; — 777~ n) de-
creased from 0.11 to 0.03 in the 2011 partial update due
to a re-evaluation of the existing data [17]. The signif-
icant difference in the 7= — n~ fiv; branching fraction
obtained using the f; — 27127~ and f; — 777 71 modes
suggests that the f; — w7~ n branching fraction is too
large. As a result we measure B(f1 — 7777 n) using

[Br—— 7 fivr)B(fy — 7~ a"n)]

B(T__> 7T_f1VT)
= 0.265 +0.022 £ 0.027

B(fi = n~nn) =

where a number of the systematic uncertainties cancel
in the ratio. The largest uncertainty in B(f;1 — 77 n)
is due to the uncertainty in the f; — 27727~ branch-
ing fraction [17] that is included in the 7= — 7~ fiv,
branching fraction in the denominator.

The systematic uncertainties of the branching fractions
are listed in Table II. We observe that the number of
events in the f; peak in the f; — 27727~ sample varies
by 5% for different background shapes. This variation is
included as a systematic uncertainty. We also observe
that the selection efficiency obtained from the Monte
Carlo simulation has a slight dependence on whether the
f1 decays via the f1 — ag 7t or the f; — 777 1 mode,
and the variation is included as a systematic uncertainty
(listed under “Fit model” in Table II).

The 7~ — 7~ fiv, branching fraction is consistent with
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the previous BABAR measurement [1]. CLEO published
a branching fraction of (5.8773 +1.8) x 10~ [18] and Li
predicts a branching fraction of 2.9 x 1074 [19).

The f; mass is determined by fitting the peak with a
non-relativistic Breit-Wigner function, which was used in
previous measurements of the f; mass [17]. As a cross
check, we fit the energy-momentum four-vectors from the
generator Monte Carlo simulation and the peak value is
found to be consistent with the input mass value.

We fit the invariant mass distribution in the fully-
reconstructed Monte Carlo samples to determine whether
it differs from the input mass of the Monte Carlo gener-
ator. The largest differences are observed in the modes
with the highest number of neutral mesons in the final
state (see Table IIT). The difference is used to correct the
value of the invariant mass of each channel obtained from
the fit and the uncertainty in the difference is included
as a systematic error.

Table IIT and Fig. 3 show the results of the fits to
the data. The last column of the table gives the mass
after the application of the reconstruction correction fac-
tor. The average of these results is My, = (1.28025 +
0.00039) GeV/c2.

Previous BABAR analyses have measured the invariant
mass of resonances to be approximately 1MeV/c? less
than the PDG value. This shift was observed in the
measurement of the mass of the f; meson [20] and the 74so
lepton [21]. The shift has been attributed to the absolutesso
energy and momentum calibration of the detector. Weua
measure the calibration correction factor by fitting the 7,0
w, ', D and D*~ states using data samples that havess
one track in the tag hemisphere and either three or fives,
tracks in the signal hemisphere. No other selection crite-ses
ria are applied. The invariant mass is found to be lowerasp
than the known values by (—0.91+0.10) MeV/c? and theus
value is independent of mass of the resonance. The cali-qo
bration correction factor is applied to the invariant massae
and its error is included in the systematic uncertainty. sop

We determine the invariant mass of the f;(1258) mesonso
to be 502

503

My, = (1.28116 4 0.00039 + 0.00045) GeV/c? 504

The systematic uncertainty includes the reconstruction
uncertainty and the calibration uncertainty. This result
is in good agreement with the PDG value of (1.2818 +
0.0006) GeV/c? [17].

505
506
507
C. 77— (3m) wr, o8
509
We measure the 7= — 7 7 ntwr, and 7°
7~ 2%, branching fractions. The number of events issu
determined by fitting the w peak in the 77~ 70 invari-si
ant mass distributions (see Fig. 4) with a Breit-Wigners:s
distribution (the width of the w is fixed to its nominalsu
value), which is convolved with a Gaussian distribution tos:s

take into account the detector resolution. The resolutionsis
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FIG. 4: The fits to the w peak in the 777~ 7% invariant mass
distributions for 7~ — 7 1 w7 twr, and 77 — 1270w, de-
cays in the data sample after all selection criteria are applied.
The solid lines represent the simultaneous fit to the w peak
and background. The dashed lines show the background func-
tion under the w peak.

parameter of the Gaussian distribution is determined us-
ing a data control sample consisting of ¢g events, which
is then fixed in the fit used to determine the branching
fraction. A polynomial function is used to fit the back-
ground. The results are presented in Table IV.

Approximately 10% of the events in the 7= —
7~ nTwy, channel are from backgrounds from other
tau decays (primarily 7= — 7 7wy, decays) and
ete™ — qq events.

The 7~ — 7~ 27%ww;, sample has substantial contribu-
tions from 7~ — 7wy, and 7~ — 7 71°wr, decays. The
background is estimated with the Monte Carlo simulation
and verified using data and simulation control samples.
The control samples follow the nominal selection criteria
but select one or two 7% instead of three 7° mesons.

The branching fractions are found to be

B(r~— a7 rTwr,) =(84+£04+0.6)x 1075
B(r~™ — m21%w,) = (7.34+1.2+1.0) x 107°.

The systematic uncertainties are listed in Table IV. The
uncertainty on the 7~ — 7~ 27%v, branching fraction is
dominated by the large contribution of the background
decays.

The 7~ — 7~ 7 ntwy, and 7~ — 7 27% v, branch-
ing fractions agree with the results from CLEO of (1.2 +
0.240.1) x 107* and (1.4 4 0.4 £ 0.3) x 10~*, respec-
tively [14]. Gao and Li suggest that this mode is domi-
nated by the (mpw) state and predict a branching frac-
tion in the range of 1.8 — 2.1 x 10~ with the two modes
(17 — 77 7twy, and 77 — 7 27°0wr,) having the
same value [22]. The result measured in this work is ap-
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TABLE III: Results of fits for the mass of the fi resonance in 7~ — 7~ fiv,; decays

11

Decay Mode Monte Carlo Data Data
(generator - fit) (fit) (corrected)
(GeV/c?) (GeV/c?) (GeV/c?)
fi—2nton” 0.00074 £ 0.00008 1.28031 4 0.00067 1.28105 4 0.00067
fi— Ty
n— vy 0.00292 £ 0.00040 1.27775 4+ 0.00045 1.28067 4 0.00060
n— ntr~ % 0.00018 £ 0.00020 1.27787 £ 0.00080 1.27805 + 0.00082

n— 3n° 0.00347 + 0.00033

1.28036 £ 0.00335

1.28383 £+ 0.00337
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FIG. 5: The 37°, n7n~7° and 7~ 7~ 7" 37° invariant mass
distributions in 77 — 7~ 7~ 7737 0, decays. The prediction
of the Monte Carlo simulation are shown for the resonant
and non-resonant 7 decays, and the background from other
7 decays and ¢q events. The resonant decays include decays
with correct topology and a resonance (1, fi or w) in the
final state. The contribution of the non-resonant decays is
very small for this mode.

proximately 50% of the predicted rate but the ratio of
the two branching fractions is consistent with unity.
522
523
D. Non-resonant decay modes woa
525
The resonant modes, involving 7, w and f; mesons,ss

do not account for all of the observed decays. Wesx
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FIG. 6: The 7™, 20727~ and 37~ 27" invariant mass dis-
tributions in 7~ — 37 27 v, decays. The prediction of the
Monte Carlo simulation are shown for the resonant and non-
resonant 7 decays, and the background from other 7 decays
and ¢q events. The resonant decays include decays with cor-
rect topology and a resonance (7, fi or w) in the final state.
The non-resonant decays are generated using 7~ — aj vr.
The difference between the data and Monte Carlo prediction
is discussed in the text.

consider the excess in the observed decays to be from
“non-resonant” modes. We made no attempt to iden-
tify the contribution of resonances with broader widths
(> 100 MeV/c?) as the nature of these resonances is com-
plex and their lineshape will be modified by the limited
phase space in the 7 decay. The Monte Carlo simula-
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TABLE IV: Results and branching fractions of 7~ — (37)” wv, decays

A S o R T — 71'7271'0(.‘11/7
w— a0 w— T

Branching fractions (107%) 0.84 £ 0.04 + 0.06 0.73+£0.124+0.10
Data events 2372 £ 94 1135 £ 70
X*/NDF 55/44 42/44
Selection efficiency (3.27 £ 0.03)% (0.75 £ 0.01)%
Background 25771 709 £ 59
Systematic uncertainties (%)
Tracking efficiency 3.8 2.7
7% and 5 PID 3.0 9.0
Pion PID 2.5 1.5
Lepton-tag PID 1.6 1.6
Lot - 1.0 1.0
Selection efficiency 0.8 1.8
Background modeling 3.4 14
B(w— - n "7 0.8 0.8
Total (%) 6.8 17

TABLE V: Results and branching fractions of 7~ — 7r77r77r+37r01/7, 77 = 31 27w, and 77 — 37 27T 7%, non-resonant
decays
T — 71'771'771'*371'01# T3 2Ty, T — 371'7271'*71'01#
Branching fractions (10™%) 0.06 £ 0.08 £ 0.30 7.68 +£0.04 £0.40 0.36 £0.03 £0.09
Data events 4094 + 64 68985 + 263 7296 £ 85
Efficiency (0.88 +0.01)% (7.98 +£0.02)% (3.71 £ 0.03)%
Background
Resonant 1795 4+ 221 4441 + 370 4458 + 244
Other 7 decays 1681 £+ 44 10621 £ 719 1315 4+ 100
qq 573 £ 50 1171 + 205 359 £ 37
Total 4050 £+ 231 16233 £+ 835 6132 4+ 267
Systematic uncertainties (%)
Tracking efficiency 2 3.8 3.8
7% and 1 PID 9 - 3.0
Pion PID 1 2.5 2.5
Lepton-tag PID 2 1.6 1.6
Lo+, — 1 1.0 1.0
Selection efficiency 2 0.2 0.9
Background modeling 520 1.6 22.9
Total (%) 520 5.2 23.7

tion models the final states using a phase space modelss.
for the final state particles. The only exception is thess
77 — 37 2r v, decay where Tauola models the decaysss
using 77 — aj v, [23]. 537

We measure the branching fractions of the non-ss
resonant 7~ — 7w 7w 7 371%,, 7 — 37 27tv, andswe

77 — 31 277’0, decays. The number of events is de-
termined by subtracting the resonant decays and back-
ground from other 7 decays and ¢g events from the total
number of decays (see Table V).

The invariant mass plots in Fig. 5 show that the res-
onant decays dominate the 7= — 7~ 7~ 7+37%, mode.
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FIG. 7: The nt7n 7% and 37727 #° invariant mass distri-
butions in 7~ — 37~ 27" 7%y, decays. The prediction of thess
Monte Carlo simulation are shown for the resonant and non-sss
resonant 7 decays, and the background from other 7 decaysss,
and qq events. The resonant decays include decays with cor-
rect topology and a resonance (7, fi or w) in the final state.
The resonant decays can account for a large fraction of this

mode.
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The background is primarily from 7~ — 7~ mwv, and g™

events. The branching fraction of the non-resonant 7~ —**
7 w370, is determined to be (0.6+0.8+3.0) x 107
where the first error is statistical and the second system-*
atic. The systematic uncertainty on the branching frac->*
tion is dominated by the uncertainty in the background®”
which includes the Monte Carlo statistical uncertainty®
and the 7 branching fraction uncertainties. The branch-
ing fraction is consistent with zero and we set a limit

564
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Of 566
567

B(rm— m a7 37%;,) <5.5x107° 568

569

at the 90% confidence level. 570

The 7= — 37 27w, decay, in contrast to the othersn
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FIG. 8: The ntn ™7 invariant mass in 7~ — 7 7 7 v,
decays for the n— v, n— 7 7 7% and n— 37° decay modes
in the data sample after all selection criteria are applied. The
fit to the n’ peak (in the top two plots) is represented by the
solid line. The solid line in the bottom plot excludes the data
point near the n’ peak. The peak in this plot indicates the
expected location and width of an 7" signal.

two modes, has only a small contribution from resonant
decays (see Fig. 6). The branching fraction of the non-
resonant 7~ — 37~ 27T v, decay is determined to be

B(r~— 3r 2rtw,) = (7.68 £ 0.04 + 0.40) x 10—,

The 77 — 7 7 7wy, (w— 7 7w7y) is considered as
a resonant background and is not included in the non-
resonant branching fraction. Although the modeling of
the 37~ 27T invariant mass distribution is not ideal, the
selection efficiency remains the same if the Monte Carlo
is re-weighted to resemble the data distribution. The
decay model is a significant improvement over a phase
space model (in which the p meson, observed in the 77~
invariant mass distribution, would not be included) and
further tuning of the model is required. The background
of the ¢g events was checked by comparing the number
of data and Monte Carlo events in the region above the 7
lepton mass (M > 1.8 GeV/c?). The branching fraction
of the 7= — 3h™2hT v, decay (where h is either a 7~
or K~) was measured to be (8.56 + 0.05 4+ 0.42) x 10~*
in a previous BABAR publication [2] using a smaller data
sample, which used no charged particle identification and
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the branching fraction included the contribution of the
77— 7 T wr, decay.

The 7= — 37 27770, decays are dominated by the
resonant modes (see Fig. 7) and the branching fraction
of the non-resonant 7~ — 37~ 27T 7%, decay mode is

Bt~ — 3r 271" 7%,) = (3.64+0.3+£0.9) x 107°.

There is an excess of data in the 27t27~ 70 invari-

ant mass distribution near 1.4 GeV/c?, which can be
attributed to the 7= — 7 w'(1420)v, (w'(1420) —
7tm~w), observed by BABAR in radiative return events
[20]. The systematic uncertainty on the non-resonant
7~ — 37 27t 7%, branching fraction is dominated by
the large uncertainty in the background (see Table V).
Although the invariant mass distributions of the reso-
nant modes in the Monte Carlo simulation were corrected
to give better agreement with the data, the corrections
made little difference to the final branching fraction. The
other 7 decays and the ¢g events contribute to a lesser
extent; their contribution to the uncertainty of the back-
ground is very small.

The 7~ — 37 27" 7%, (including w and excluding 7)
branching fraction is (1.11 + 0.04 £ 0.09) x 10~%. This
branching fraction can be compared with isospin model
predictions [24, 25]. There are three 7 decay modes
with six pions in the final state: 7= — 7~ 7 7+37%;,
7= — 3n 277, and 7= — 7 57%, (there are no
measurements of the 7~ — 7~ 57y, decay mode). There
are four possible isospin states for six pion decays: (47p),
(3p), (3mw) and (mpw). The relative rate of the decays
can be used to identify the dominant isospin states. The
approximate equality of the 7~ — 7 7~ 7+37%, and
77 — 371 27 7%, branching fractions suggest that the
(4mp) and (wpw) should dominate. The limited phase
space imposed by the 7 mass suppresses the higher mass
states and as a result we do not observe evidence of the
p meson in these decays.

E. Search for ' (958) decays

We next search for the 7= — 777/ (958)7%v, , 77 —
K 1n/(958)v,; and 7= — 7~ 1/(958)v, decays where 1 —
7~ nTn. The first two decays are allowed first-class de-
cays whereas the last decay is a second-class decay with
a rate that is expected to be zero in the limit of perfect
isospin symmetry.

The selection efficiencies are determined using the sig-
nal Monte Carlo samples using the criteria described ear-
lier. The numbers of signal candidates is determined by
fitting the ' peak in the 777~ n invariant mass distri-
bution with a Gaussian function where the mean ands
resolution parameters are fixed to values obtained frome2
a fit to 7/ mesons in a sample of ¢g events. In a num-er
ber of cases (both 7= — K™ 1/(958)v, decays and thess
77— 71 (958)m v, via ' — 7 ntn and n— 7T 70
decay) the statistics is too small for a fit and we countss
the number of events in the region around the 7’ masses:
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FIG. 9: The K 2n 2rx", K™3r ", K K™ 2r nt,

K727 2n7 7% and K37~ 7t 7 invariant mass distributions
in the data sample after all selection criteria are applied. The
unshaded histogram represents 7 decays in which a charged
pion is mis-identified as a charged kaon, and the shaded his-
tograms are primarily ¢g events in which there is a charged
kaon in the final state. The Monte Carlo simulation does not
include any signal decays.

and estimate the number of background events using the
sidebands around the peak.

The 77~ 7 invariant mass distribution for the 7= —
71’ (958)v; decays is shown in Fig. 8. The number of
7’ candidates is determined by the fit method for the
n— v and n— 77~ 7" channels and by the counting
method for the n — 37° channel. We do not show the
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TABLE VT: Results and branching fractions of 7~ — 777/ (958)7%, , 77— K™ 1/(958)v, and 7~ — 71’ (958)v, decays

+ 0

77— 7' (958)7v, n— vy n—rtrTw
Limit (90% C.L.) 1.4 x 107 1.5 x 107°
Branching fraction (107%) 7.8 4+£4.1+£1.7 0.0£0.7£0.9
Data events 24+£10 5+6
Background 5+7 5+8

Selection efficiency

(1.58 £ 0.02)%

(1.00 + 0.03)%

15

77— K n'(958)v; n— vy n— wtr

Limit (90% C.L.) 3.9 x 1076 4.2 %107

Branching fraction (107%) 0.5+1.3+04 1.6+£1.4+1.2

Data events 67 15+4

Background 3+4 11+£3

Selection efficiency (3.47+£0.03)%  (3.09 £0.04)%

T — 7 1 (958)v, n— vy n— wtn n° n— 3x°
Limit (90% C.L.) 5.7 x 107° 9.0 x 107° 2.1x107°
Branching fraction (107%) —1.5+354+1.8 —04+39+43 10+6=+5
Data events 48 £ 22 44+ 11 547
Background 57+ 11 45 £ 12 41+6

Selection Efficiency

(4.06 £0.34)%  (3.25+£0.15)% (0.96 + 0.05)%

invariant mass distributions for the 7= — 77 7/(958) 7 1/, sss
and 77 — K 1/(958)r; decays. The analysis of thesess
decay modes uses only the n — vy and 7 — 777 70%ss
channels (the 7— 37° channel was not considered due tosso
the limited size of the samples). 660

The results for the three decay modes are given in Ta-
ble VI. The background from 7’ mesons is attributed
to eTe™ — qq events and estimated using the Monte_
Carlo samples. The background estimation is validated
by comparing the prediction of the Monte Carlo simu-
lation with data for events where the invariant mass of*”
all the observed final state particles is greater than the 7%
mass.

We find no evidence for 7= — 77 7/(958)7%v, , 77 —°
K1/ (958)v; and 77 — 77 1/(958)v, decays (see Ta-**
ble VI) and place upper limits on the branching fractions®

1

664

Of 668
669

B(r™ — 71/ (958)7",) < 1.2 x 107° 670
B(r~— K 1/ (958)v,) <2.4x107° 671

Bt~ — 7 1/ (958)r,) <5.0x 1076 ore

673
at the 90% confidence level. The limits are deter-em
mined from the average of the branching fractions mea-ers
sured for each mode. The 7= — 77 7/(958)7 %y, andss
77 — K 1/(958)r, are potential backgrounds to thes
T~ — 71/ (958)v, decay. We find that the backgroundss
from these two decays is less than two events based on thes
upper limits on the branching fractions and we consideres

this background to be negligible. The previous limits on
the 77 — 71/ (958)7%v, were measured by BABAR to be
7.2x 1079 [1] and by CLEO to be 8 x 105 [18]. It is pre-
dicted that the branching fraction of 7= — 7w~ 1/(958)v;
should be less than 1.4 x 1076 [26].

F. Search for charged kaonic decays

Finally we present the first search for high-multiplicity
7 decays with one or two charged kaons. We find no sig-
nal decays and place upper limits on the branching frac-
tions of the 7= — K27 2rtv,, 7~ — KT 3n ntu,,
™ = K Kt ntuy,, 7 - K 2r 2xt7%,., 77 —
K3r~nTn%, and 7= — K 1/(958)r, decay modes
(the 77 — K1/ (958)v, decay was presented in an earlier
section).

The events are divided into topologies in which the
charged kaon has either the same or opposite sign of the
parent 7 lepton. If there are two candidates, they must
have opposite charge. All other tracks are required to
be identified as charged pions. The selection criteria and
systematic uncertainties have been described earlier. The
requirement on the invariant mass (M < 1.8 GeV/c?) of
the final state uses the kaon mass for tracks identified as
charged kaons (see Fig. 9). The prediction of the Monte
Carlo simulation is divided into decays with K~ and de-
cays without a K~ (in this case a m~ is mis-identified
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as a K7). The figure does not include any signal decaysno
in the Monte Carlo samples. The background estimate,
which is the dominant systematic uncertainty, is verified
by comparing the number of events in the data and Monte
Carlo samples in the M > 1.8 GeV/c? region. If the kaonmo
and 7 have the same charge, then the background is from
7 decays in which a 7~ is mis-identified as a K~ meson.,,
The numbers of events selected in the data and Monte,,
Carlo simulation are given in Table VII. The back-,,
ground predicted by the Monte Carlo simulation is ap-,
proximately equal to the number of events in the data,,
sample. There is an excess of data events in the 77 —__
K277 27" 7%, mode, but this excess extends to mass,,
values above the 7 mass, indicating that events are due,,,
to background 7 decays or ¢g events. -
The upper limits on the branching fractions are given,,,
in Table VII. There are no predictions for these modes..,,
We estimate that B(r~— K27 27 v,) ~107°—107°_,
if the decay is related to B(r~ — 37 2ntv,;) by the,,
Cabibbo angle. The 7~ — 37 27t 7%, decay is domi-_,
nated by decays to the narrow low-lying resonances and.,,
the branching fraction of decay modes created by replac-.,,
ing a 7~ with K~ would be highly suppressed due to the,,,

limited phase space. 730

731

732

IV. SUMMARY

733

734

We have presented measurements of the branchings
fractions of 7 lepton decays to high multiplicity 3- and

5-prong final states. The results are shown in Table VIII;;
(note that all modes are exclusive of the KY meson). The

16

results are more precise than previous measurements and
many decay modes are studied for the first time.
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TABLE VII: Results and branching fraction of charged kaon decay modes

T K 2n 2T,

T K 3 xtu,

T K K or rntu,

Limit (90% C.L.) 2.4 x107°
Branching fraction (107%) 06+05+1.1
Data events 1328 + 36
Background 1284 £ 72
Selection Efficiency (7.9+0.1)%

2.8 x107° 4.5 x 1077
1.6+06+24 0.30 £ 0.10 £ 0.07
1999 + 45 32+6
1890 + 163 15+4
(7.94+0.1)% (6.7+0.1)%

= K 2 27O,

= Kt3r atnl,

Limit (90% C.L.) 2% 107°
Branching fraction (107°%) 1.0+£04+04
Data events 112+ 11
Background 87+ 10
Selection Efficiency (29+0.1)%

8x 1077
—0.6+0.5+0.7
154 + 12
170 + 16
(29+0.1)%

(2009).

17



TABLE VIII: Summary of branching fractions (excluding KJ)

Mode

Branching fraction

Resonant decays
77— m 7 7 v, (including f1)
77— 7 ntnu, (excluding f1)

77— 7 21%v, (including f1)

T =1 five
77— five via fi — 7wt

fi— onton—

TN

T — 7r77r77r+w1/7

T — 7r7271'0w1/7

(2.25 4 0.07 £0.12) x 1074
(1.00 £ 0.09 £ 0.13) x 107*
(20+£03+0.2) x 107*

(4.73 4 0.28 £0.45) x 1074
(1.26 £ 0.06 £ 0.06) x 10™*
0.265 4 0.022 £ 0.027

(84+04+0.6)x107°
(7.3+£1.2+£1.0)x107°

Non-resonant decays

77— 37 2n v, (excluding w, f1)

77 = w31, (excluding 1, w, f1)

77— n w7t 37%; (excluding 7, f1)

77— 317 2n 7%, (excluding 7, w, f1)

77— 3n 2n 7%, (excluding 7, f1)

(7.68 & 0.04 £ 0.40) x 10~*

(0.6 £0.8+3.0) x 107°
(16.9£0.84+4.3) x 1075

(3.64+0.3+£0.9) x 107°
(1.11 4 0.04 £ 0.09) x 107*

Inclusive decays (including 1, w, f1)
T — 71'771'771'*371'01#
77— 31 2r v, (excluding w)

T — 37r7271'+71'01/7

(2.03£0.18 £0.37) x 107*
(8.334+0.04 £0.43) x 107*
(1.65 £ 0.05 £ 0.09) x 107*

n’ (958) decays (90% upper level confidence limit)

7 — 7' (958)7v, 1.2 x 107°
77— K™ n/(958)v- 2.4 x 1076
T~ — 7 7' (958)v, 5.0 x 107°
Kaonic decays (90% upper level confidence limit)

T = K 2r 2nTu, 2.2 x107°
7= K3 rtu, 2.8 x107°
T K K 2ty 4.5 x 1077
T K 2r 2nt 70, 2x%x 1076
77— Kt3r ntnlu, 8 x 1077
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