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Abstract

The anti–de Sitter/conformal field theory (AdS/CFT) correspondence is a powerful tool that

promises to provide new insights toward a full understanding of field theories under extreme con-

ditions, including but not limited to quark-gluon plasma, Fermi liquid and superconductor. In

many such applications, one typically models the field theory with asymptotically AdS black holes.

These black holes are subjected to stringy effects that might render them unstable. Hořava-Lifshitz

gravity, in which space and time undergo different transformations, has attracted attentions due to

its power-counting renormalizability. In terms of AdS/CFT correspondence, Hořava-Lifshitz black

holes might be useful to model holographic superconductors with Lifshitz scaling symmetry. It

is thus interesting to study the stringy stability of Hořava-Lifshitz black holes in the context of

AdS/CFT. We find that uncharged topological black holes in λ = 1 Hořava-Lifshitz theory are non-

perturbatively stable, unlike their counterparts in Einstein gravity, with the possible exceptions of

negatively curved black holes with detailed balance parameter ǫ close to unity. Sufficiently charged

flat black holes for ǫ close to unity, and sufficiently charged positively curved black holes with ǫ

close to zero, are also unstable. The implication to the Hořava-Lifshitz holographic superconductor

is discussed.
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I. INTRODUCTION

Anti–de Sitter/conformal field theory (AdS/CFT) correspondence [1] [2] [3] has been

employed to study various strongly coupled field theories, the idea being that such field

theory on (d − 1)-dimensional boundary corresponds dually to black hole physics in d-

dimensional bulk in which the strings are weakly coupled, and so calculations in the bulk

can be done semiclassically. The various applications of AdS/CFT correspondence include:

quark-gluon plasma [4] [5] [6], holographic superconductor [7] [8](for introductory reviews,

see [9] and [10] as well as the references therein) and holographic metals [11] [12] [13]. See

also [14] for a useful review.

In the case of quark-gluon plasma, the plasma phase has nonzero minimum tempera-

ture, which means that the black hole dual to the theory should also have minimal allowed

temperature bounded away from zero due to a form of instability called the Seiberg-Witten

instability [15], which is closely related to the electrical charge carried by the black holes and

the existence of branes in the AdS bulk. In the case of modeling superconductors with black

holes, it is typical to consider not just electrical charge, but also scalar fields in the black

hole spacetime. This means that the issue of stability becomes much more complicated and

intricate. In view of recent applications of AdS/CFT to holographic superconductors using

a Hořava-Lifshitz black hole by [16] [17] [18], we feel that the stability of Hořava-Lifshitz

black holes in the context of AdS/CFT needs to be studied.

We should comment at this point that Hořava-Lifshitz gravity is not a string theory;

it is not even a relativistic theory. Therefore one might wonder whether one can apply

AdS/CFT, which is a string-inspired technique, to Hořava-Lifshitz gravity. This is espe-

cially a concern in our work since the Seiberg-Witten instability requires the existence of

branes. We nevertheless feel that it is worth studying the consequences of applying Seiberg-

Witten instability to Hořava-Lifshitz black holes, for several reasons. First, as mentioned

above, AdS/CFT has already been applied to the study of holographic superconductors in

various works [16] [17] [18], and seems to have yielded reasonable results. Closely related

are the recent efforts to build the holographic superconductors in the bulk backgrounds

with Lifshitz/Schrödinger scaling symmetry, according to the AdS/NCFT (nonrelativistic

conformal field theory) correspondence [19] [20] [21]. Therefore it is not too far-fetched to

consider Hořava-Lifshitz theory as a gravitational dual to some field theories [22]. Second, it
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is possible that Hořava-Lifshitz gravity can be formulated in a string-theoretic way, or string

theory may be modified to include Lorentz breaking [23] [24]. Furthermore, as commented

by Andrew Strominger et al. in [25], any consistent theory of gravity should behave a lot like

string theory. In other words, extended objects like branes probably arise in any consistent

theory of quantum gravity, including nonrelativistic theories [26] [27] [28] [29]. In addition,

AdS/CFT correspondence is also likely to occur in any quantum theory of gravity, as the

existence of holographic dualities is not contingent on the validity of string theory [25] [30].

See also [31] for a related discussion. To push Strominger’s ideology further, we should

expect that something similar (if not identical) to Seiberg-Witten instability is very likely to

arise in any theory that involves extended objects (e.g. branes) propagating in asymptoti-

cally AdS spacetimes. Therefore Seiberg-Witten instability or another qualitatively similar

instability is likely to be a feature of the Hořava-Lifshitz version of AdS/CFT, assuming that

this indeed exists, as suggested by the sensible results obtained from applying AdS/CFT

techniques to studying holographic superconductor in Hořava-Lifshitz gravity.

Therefore, assuming that Hořava-Lifshitz gravity is correct, and gravity/gauge correspon-

dence not too different from AdS/CFT indeed exists in this theory, we hope that our work of

applying Seiberg-Witten instability to a Hořava-Lifshitz black hole should be qualitatively,

if not quantitatively, correct. In other words, while it is far from clear that Hořava-Lifshitz

theory is compatible with string theory and therefore with AdS/CFT, we feel that the idea

is worth pursuing, at least by exploring the consequences of such a premise.

In Sec. II, we will review Seiberg-Witten stability (or the lack thereof) and its application

to asymptotically AdS black holes, which can have nontrivial topology (See e.g. [32] and

[33]). In Sec. III, we will give a quick review of Hořava-Lifshitz topological black holes and

some of their properties. In Sec. IV, we shall turn our attention to our original goal, namely

the study of Seiberg-Witten stability of topological black holes in Hořava-Lifshitz gravity.

We then conclude with some discussions in Sec. V.

II. INSTABILITIES IN ASYMPTOTICALLY ANTI–DE SITTER SPACE

In general relativity, (n + 1)-dimensional Reissner-Nordström-AdS black holes take the

form

ds2 = −fdt2 + f−1dr2 + r2dΩ2
k (1)
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where

f = k − 16πM

(n− 1)Γkrn−2
+

8πQ2

(n− 1)(n− 2)Γ2
kr

2n−4
, (2)

in which f = f(M,Q, k, r) and Γk denotes the area of compact space with r = 1. Throughout

this paper we will assume the charge Q > 0 for simplicity. In (3 + 1)-dimension, we thus

have, for a flat black hole,

f =
r2

L2
− 2M

πK2r
+

Q2

4π3K4r2
(3)

where K is a continuous parameter defined by Γ0(T
2) = 4π2K2, −∞ < K < ∞. This also

defines K so that for arbitrary compact flat 2-manifolds, K becomes a measure of the overall

relative size of the space.

In the study of quark-gluon plasma in flat spacetime [5] [6], the black holes considered

are those of (4 + 1)-dimension. It was shown that stringy effects can and do render charged

black holes unstable as more and more electrical charges are deposited into the horizon.

Furthermore, this instability occurs before the extremal limit is reached [5]. This type of

nonperturbative instability is known as Seiberg-Witten instability, which was first pointed

out in [15]. For an illuminating introductory account and examples of the Seiberg-Witten

instability, see [34]. Here we only briefly explain the idea.

Let M be a smooth Riemannian manifold equipped with a metric g and dimensionality

n > 2. Suppose the scalar curvature of M is R. Under the conformal transformation

g → f
n−2

4 g for some positive function f defined on M , the Ricci scalar transforms as

(corollary-1.161 of [35], p. 59)

R → g−
n+2

n−2

(

Rf +
4(n− 1)

(n− 2)
∆(f)

)

(4)

where ∆(f) is the usual Laplacian, which in local coordinates is defined by

∆(f) =
1

√

det(gkl)

∂

∂xj

(

√

det(gkl)g
ij ∂f

∂xi

)

. (5)

We define

Y [f ] =

∫

Mdxn√g
(

Rf 2 + 4(n−1)
n−2

(∂f)2
)

(

∫

Mdxn
√
gf

2n

n−2

)
n−2

n

. (6)

This quantity is defined for the conformal class of metric [g]. We then define the Yamabe

invariant as the infimum of all the Y [f ]’s. Note that for n = 4 and f = 1, this is just a

renormalized Einstein-Hilbert action.
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Recall that for pure anti–de Sitter space, a bulk scalar field can have negative squared

mass, as long as it is not too negative. To be precise, bulk scalar in (n+1)-dimensional AdS

with mass satisfying m2 ≥ −n2/4 is allowed. Equivalently the spectrum of the Laplacian

is continuous on [n2/4,∞), having no other eigenvalue below n2/4. This is the famous

Breitenlohner-Freedman bound [36].

If we have normalizable modes φ such that (−∆ + m2)φ = λφ, where λ < 0 and m is

the mass of the scalar, then we have so-called perturbative instability [34]. This does not

happen if the Breitenlohner-Freedman bound holds, e.g. in pure AdS space. However some

asymptotically AdS spaces or quotients of AdS can have discrete eigenvalues below n2/4.

This is only possible if the Yamabe invariant of the conformal boundary is negative [37].

On the other hand, Seiberg-Witten instability is a nonperturbative instability. The

Seiberg-Witten action is defined on the Euclidean spacetime obtained after Wick rotation

by

S = Θ(Brane Area)− µ(Volume Enclosed by Brane) (7)

where Θ is related to the tension of the brane and µ relates to the charge enclosed by the

brane due to the background antisymmetric tensor field. This brane is essentially a probe

that allows us to study the background fields and geometry of the bulk. Like test particles,

a probe brane is assumed not to disturb the bulk geometry and background fields. Seiberg

and Witten have shown very generically that nonperturbative instability occurs when the

action becomes negative due to uncontrolled brane productions. Brane-anti-brane pairs are

always spontaneously created from the AdS vacuum. In analogy to the Schwinger effect in

QED [38], the rate of brane-anti-brane pair production is proportional to exp(−S), where S

is the Seiberg-Witten action. Thus, if S is negative, the AdS vacuum nucleates brane-anti-

brane pairs at an exponentially large rate instead of being exponentially suppressed. This

disturbs the background geometry so much that the spacetime is no longer described by the

metric that we started with, i.e. the original spacetime is not stable if such brane-antibrane

production is exponentially enhanced due to the reservoir of negative action. Seiberg-Witten

instability occurs precisely if the Seiberg-Witten action becomes negative at large r “close”

to the boundary, which is equivalent to the boundary having negative scalar curvature [15].

To understand this picture in terms of brane and antibrane dynamics in a Lorentzian picture

in more details, see [39]. We also remark that in analogy with the Schwinger effect, there will

be a large backreaction once the brane-antibrane pairs are copiously produced, in such a way
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that the background geometry will evolve in response to the branes and the Seiberg-Witten

instability condition might cease to hold (i.e. the action might eventually become positive).

In other words, one might argue that such instability is self-limiting. However this is not

always the case. To see why this is so, we need to understand the Seiberg-Witten instability

from the dual field picture, i.e. the conformal boundary.

The conformal Laplacian of a compact manifold with metric g with conformal structure

is defined by

Lg ≡ −∆g +
n− 2

4(n− 1)
R(g) (8)

where ∆g is the usual Laplacian where we have emphasized its dependence on the metric g.

The conformal Laplacian is an elliptic operator with a discrete real spectrum bounded from

below. Suppose λ1 is its first eigenvalue, then the field theory defined on the boundary is

stable if λ1 > 0 and unstable if λ1 < 0. The case for λ1 = 0 is more delicate and requires

more analysis. Note that the eigenvalues λi = λi(g) are also dependent on the metric.

A classical problem in differential geometry called Yamabe problem is the following:

Given a smooth, compact manifold M of dimension n > 2 with a Riemannian

metric g, does there exist a metric g̃ conformal to g such that the scalar curvature

of g̃ is constant?

The answer is affirmative as shown by Schoen [40]. Therefore, there indeed exists such g̃ so

that the scalar curvature R(g̃) is constant. It is in fact equal to

R(g̃) =
4(n− 1)

n− 2
λ1(g̃) (9)

so that

Lg̃ = −∆g̃ + λ1(g̃). (10)

Therefore stability depends on the sign of the scalar curvature at the boundary. Indeed, in

the case where Seiberg-Witten instability occurs, the boundary has negative scalar curvature,

and thus correspondingly the field theory is unstable due to a negative squared mass scalar

field in the dual field description. Note that pure anti–de Sitter space has positively curved

conformal infinity and so is stable in the Seiberg-Witten sense. We note from Eq.(7) that area

contributes positively to the action, but the volume contributes negatively. This means that

the volume enclosed by the brane must not grow too rapidly relative to the area, otherwise

instability will eventually occur. Assuming supersymmetry in the bulk (this is not entirely
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impossible even for Hořava-Lifshitz gravity [41]), the amount of charge is bounded above.

Clearly the most dangerous case is when µ is maximum; this is the BPS case in which in

(n+1)–dimension is given by µBPS = nΘ/L. Indeed this analysis is not strictly restricted to

the AdS bulk, but also holds for an arbitrary Einstein manifold of negative curvature and

conformal boundary [15].

We remark that both perturbative and nonperturbative (Seiberg-Witten) instabilities do

not occur if the Yamabe invariant is positive, or equivalently, if the conformal boundary

has positive scalar curvature. However, see the subsequent discussion for the case where the

Seiberg-Witten action is negative for some finite range yet still asymptotically divergent.

Now coming back to a previous remark that Seiberg-Witten instability is not always self-

limiting. This is the consequence of the fact that there exist compact manifolds on which it is

impossible to define a Riemannian metric of positive or zero scalar curvature [42]. For such

cases, the AdS bulk is unstable due to emission of brane-antibrane pairs and will remain

unstable no matter how the metric is distorted due to backreaction. This is the case for black

holes with negatively curved horizon in general relativity: once brane-antibrane pairs are

produced, nothing can stop the instability; no matter how the branes deform the spacetime,

the scalar curvature at infinity can never become everywhere positive or zero [43]. This is

also clear from the fact that the Seiberg-Witten action is unbounded below in this case, as

we will discuss in more detail in Sec. IV. Therefore, whether instability is self-limiting or

not depends on the topology of the underlying manifold.

We should at this point stress that the stability issue discussed depends on whether the

theory is classical or semiclassical. For example classically Reissner-Nordström-AdS black

holes are gravitationally stable [44] despite the existence of a thermodynamically unstable

parameter range; but Gubser-Mitra instability [45] occurs for Reissner-Nordström-AdS black

holes in N = 8 gauged supergravity, due to tachyon mode of the scalar field which coupled

to the system which causes thermodynamically unstable black holes to be also dynamically

unstable. The Seiberg-Witten instability is likewise not a classical effect.

In the case of k = +1 and k = −1 black holes, the Seiberg-Witten stability issue

is straightforward: positively curved black holes are stable while negatively curved black

holes are always unstable in the Seiberg-Witten sense [46]. Flat black holes, however, are

marginally stable: the Seiberg-Witten action asymptotes to a value linearly proportional

to its mass, and adding charge lowers the action such that it eventually becomes negative
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at large r, rendering the black hole unstable. To be precise, the instability occurs as the

amount of charge reaches about 95.8% of the extremal charge for charged (4+1)-dimensional

black holes in anti–de Sitter space [5]. Therefore, the Seiberg-Witten instability provides an

explanation of why quark-gluon plasma cannot be arbitrarily cold – namely the dual black

hole cannot be too cold if it is to be stable.

However, as we have pointed out, applications of AdS/CFT correspondence are becoming

wider by the day, and in some of these cases, the field theory is not bounded away from

zero. One such example is the Fermi liquid. The black hole dual to the Fermi liquid might

be a black hole with dilaton charge or a relative to it [47]. Indeed dilaton black holes have

been extensively studied for their holography and applications in AdS/CFT correspondence

[48] [49] [50] [51]. In the case where the dual field theory can be arbitrarily cold or even

reach zero temperature, one wishes that the corresponding black holes were stable in the

Seiberg-Witten sense. The dilaton hair is not a fundamental “hair” since it couples to the

Maxwell field. For a flat dilaton black hole, at least for those with coupling strength α = 1,

the Seiberg-Witten action remains positive as the electrical charge increases [52]. Indeed,

for typical fixed charge Q1, increasing the charge to Q2 > Q1 makes the action starts out

with S(Q2) < S(Q1) initially, but subsequently takes over at some finite value of r = R so

that S(Q2) > S(Q1) for all r ≥ R. The value of r in which this takeover occurs decreases

with increasing charge.

On a similar note, some types of Hořava-Lifshitz black holes have been studied as being

dual to superconductors with Lifshitz scaling symmetry [16] [17] [18], and we would like to

explore the stability of these black holes when we take into account the influence of branes

to the AdS bulk geometry semiclassically. However before we discuss this issue, let us first

review the properties of topological black holes in Hořava-Lifshitz gravity.

III. TOPOLOGICAL BLACK HOLES IN HOŘAVA-LIFSHITZ GRAVITY

The idea of Hořava-Lifshitz gravity originated from the study of the longstanding problem

regarding nonrenormalization of general relativity. It is suggested that nonrenormalizability

implies that general relativity is only an effective theory which will break down in the high-

energy regime. As an effective theory then, the curvature scalar in the Einstein-Hilbert action

is probably only the first of many higher order curvature terms. An attempt to renormalize
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gravity by naively introducing higher order terms however is problematic because these

terms have derivatives of both spatial and temporal kinds, and we know that from a field

theoretical point of view, higher order time derivatives lead to problems like ghost degrees of

freedom which render the theory nonunitary. Therefore, the idea of Hořava-Lifshitz gravity

[53] is to break Lorentz invariance so that we can have higher spatial derivative terms yet no

higher time derivative terms. In other words time and space are not to be treated on equal

footing. This makes the theory power-counting renormalizable if space and time transform as

x → bx, t → b3t for some constant b. Note that in this construction, Lorentz invariance can

be recovered in the infrared limit where λ → 1, so that the theory will reduce to well-tested

general relativity. For a timely review, see [54].

In the well known (3+1)-dimensional Arnowitt-Deser-Minser (ADM) formalism [55], the

spacetime metric can be written as

ds2 = −N2dt2 + gij(dx
i +N idt)(dxj +N jdt), (11)

where N is the lapse function and N i is the shift vector.

The Einstein-Hilbert (EH) action is

SEH =
1

16πG

∫

d4x
√
gN

[

KijK
ij −K2 +R− 2Λ

]

, (12)

where Kij is the extrinsic curvature

Kij =
1

2N
(ġij −∇iNj −∇jNi) , (13)

with the dot denoting derivative with respect to time. Note that the covariant derivative is

a spatial one.

The action of the Hořava-Lifshitz gravity is, with g denoting the determinant of the

spatial metric gij ,

I =

∫

dtd3x
√
g[LK + LV ] (14)

where

LK =
2

κ2
(KijK

ij − λK2) (15)

is the kinetic term and

LV =
κ2µ2(ΛR− 3Λ2)

8(1− 3λ)
+
κ2µ2(1− 4λ)

32(1− 3λ)
R2− κ2µ2

8
RijR

ij+
κ2µ

2ω2
ǫijkRil∇jR

l
k−

κ2

2ω4
CijC

ij (16)
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is the potential term determined by what is known as a detailed balance condition, which is

inspired from condensed matter physics.

Here κ2, λ, ω, µ and Λ are all parameters of the theory, while

C ij = ǫikl∇k

(

Rj

l −
1

4
Rδjl

)

(17)

is the Cotton tensor. Of particular importance is the running coupling λ > 1/3, which at

IR limit is expected to flow to λ = 1 where general relativity is recovered.

We remark that the detailed balance condition is not an essential feature of the theory,

but it drastically reduces the number of terms one needs to consider. The Lagrangian in the

theory without detailed balance condition, with 0 < ǫ ≤ 1, takes the following form:

L = L0 + (1− ǫ2)L1 (18)

where

L0 =
√
gN

[

2

κ2
(KijK

ij − λK2) +
κ2µ2(ΛR− 3Λ2)

8(1− 3λ)

]

(19)

and

L1 =
√
gN

[

κ2µ2(1− 4λ)

32(1− 3λ)
R2 − κ2µ2

8
RijR

ij +
κ2µ

2ω2
ǫijkRil∇jR

l
k −

κ2

2ω4
CijC

ij

]

. (20)

We call ǫ the detailed balance parameter. Detailed balance condition is obtained when

ǫ = 0, while general relativity is recovered when ǫ = 1. One should note that however in

application to our physical Universe, the detailed balance condition is tightly constrained

from observations and is actually disfavored, although not completely ruled out [56] [57].

The speed of light in Hořava-Lifshitz theory is not fundamental but is given by:

c =
κ2µ

4

√

Λ

1− 3λ
, (21)

while Newton’s constant is given by

G =
κ2c2

16π(3λ− 1)
. (22)

Here Λ is related to the cosmological constant (CC) ΛCC by Λ = 2ΛCC/3. We note from the

square root in the expression for c that the cosmological constant must thus be negative,

although it is argued that it can be made positive via analytic continuation [58].
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Spherically symmetric black hole solutions in Hořava-Lifshitz theory have been found

[58], followed shortly by solutions of topological black holes [59]. See also [60] and [61].

We shall see that, as has been pointed out in these works, even in the limit λ = 1, these

black holes have very different behaviors than their counterparts in Einstein’s theory of

general relativity (see also [62]). We will focus on the case λ = 1 in the following discussion.

However before proceeding, we would like to remark that there is much we do not yet

understand about black hole solutions in Hořava-Lifshitz theory. For example, the horizon

radii generically depend on the energies of test particles [63], that is, it is not clear “when

and for whom they are black” [64]. Furthermore, many black hole–like solutions might not

be black holes in the usual sense due to different dispersion relations in the Hořava-Lifshitz

theory [63]. Nevertheless, since naive application to holographic superconductors seems to

yield reasonable results, we shall assume the validity of this approach and proceed to study

its consequences.

For comparison, let us first look at charged topological AdS black holes in Einstein’s

general relativity (GR): with metric ds2 = −fdt2+f−1dr2+r2dΩ2 where in (3+1)-dimension,

f(M,Q, r) = k − 8πM

rΓk

+
4πQ2

Γ2
kr

2
+

r2

L2
. (23)

The cosmological constant is ΛCC = −3/L2, where L is the length scale of the anti–de Sitter

space. Thus Λ = −2/L2.

In the absence of charge,

f(Q = 0,M, r) = k − 8πM

rΓk

+
r2

L2
, (24)

and so the temperature

T =
f ′(r+)

4π
(25)

where r+ denotes the horizon, is given by

TGR =

√
−Λ

8πx+
(3x2

+ + 2k) (26)

where we have defined x ≡ r
√
−Λ.

For Hořava-Lifshitz topological black holes with λ = 1, we have [59]

f(x) = k +
x2

1− ǫ2
−

√

ǫ2x4 + (1− ǫ2)c0x

1− ǫ2
(27)
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where

c0 =
x4
+ + 2kx2

+ + (1− ǫ2)k2

x+
. (28)

Expanding the square root terms as a power series, we can see that

f(x) = k +
x2

1 + ǫ
− c0

2ǫx
+O

(

1− ǫ2

x4

)

. (29)

Thus, we see that for ǫ → 1, the higher order terms vanish and we end up with

f(x) = k +
x2

2
− c0

2x
(30)

which recovers the topological uncharged black hole solutions in AdS. Furthermore even for

ǫ 6= 1, for large x (i.e. large r), the solution is again asymptotically AdS.

In the presence of electrical charge, we have [59]

f(x) = k +
x2

1− ǫ2
−

√

ǫ2x4 + (1− ǫ2)
(

c0x− q2

2

)

1− ǫ2
(31)

where the charge parameter q is related to the previous charge Q by

Q =
κ2µ2Γk

√
−Λ

16
q (32)

and

M =
κ2µ2Γk

√
−Λ

16
c0. (33)

Here

c0 =
x4
+ + 2kx2

+ + (1− ǫ2)k2 + q2

2

x+
. (34)

In the ǫ → 1 limit, we recover the usual AdS charged topological black hole solutions

f(x) = k +
x2

2
− c0

2x
+

q2

4x2
. (35)

The Hawking temperature is [17]

T =

√
−Λ

[

3x4
+ + 2kx2

+ − (1− ǫ2)k2 − q2

2

]

8πx+[x2
+ + (1− ǫ2)k]

. (36)

For convenience of discussion, we give explicit forms of the relevant equations for the

detailed balance case:
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As ǫ = 0, chargeless black holes in Hořava-Lifshitz gravity are given by [59]:

f(r) = k + x2 −√
c0x, (37)

where

c0 =
k2 + x4

+ + 2kx2
+

x+
> 0. (38)

The horizon has constant curvature 2k, where k = +1, 0,−1. In this case, it was shown that

the temperature and entropy take the form [59]

T =

√
−Λ

8πx+
(3x2

+ − k), (39)

and

S =
c3

4G

(

A− kΓk

Λ
ln

A

A0

)

, (40)

respectively, where A0 is a constant of dimension length squared, which cannot be determined

without knowing some details of quantum gravity. Thus we notice that the thermodynamics

of black holes in Hořava-Lifshitz theory is very different from that in general relativity: the

entropy is no longer a quarter of the horizon area, but contains a correction term which

scales as a logarithm of the area. This is not very surprising since in modified gravity, in

general, the entropy is not exactly equal to a quarter of horizon area (see, e.g. lesson-6 of

[65]).

An interesting feature to note, as pointed out in [59] and [66], is that the behavior of

the temperature of black holes in Hořava-Lifshitz theory is opposite to that of the black

holes in general relativity, i.e. that k = +1 black holes in one theory behave like k = −1

black holes in the other theory and vice versa. This can be seen from the opposite sign

in front of the k term in the temperature expressions of the two theories [Eqs.(26) and

Eq.(39)]. The “duality” is not exact. For example, we know that there exists minimum

allowed temperature for k = 1 black holes in general relativity. This is given by the turning

point of Eq.(26) with k = 1, which occurs at x+ =
√

2/3, or equivalently at r = L/
√
3.

Thus black holes under a certain critical temperature are unstable. Indeed, there exists a

Hawking-Page transition for k = 1 black holes [67]. This is however not the case for k = −1

Hořava-Lifshitz black holes [59]. This is because with k = −1, Eq. (37) evaluated on the

horizon gives

x2
+ −√

c0x+ = 1 (41)
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which enforces x+ ≥ 1. But the turning point of Eq.(39) occurs at x+ =
√

1/3. Since

x+|min >
√

1/3, the unstable phase for k = −1 Hořava-Lifshitz black holes does not arise

and so these black holes are thermodynamically stable. In fact, all uncharged topological

black holes are thermodynamically stable in Hořava-Lifshitz theory. This result is for λ = 1

only. Things are somewhat different for general λ [68]. We remind the reader that for k = 0

black holes in general relativity, there is no Hawking-Page phase transition into an AdS

background, although there can be transition into Horowitz-Myers soliton [69] [70], which

we will not discuss here.

In the presence of electrical charge, we have, by setting ǫ = 0 to in Eq.(31),

f(r) = k + x2 −
√

c0x− q2

2
(42)

where

c0 =
2k2 + q2 + 4kx2

+ + 2x4
+

2x+

> 0. (43)

The temperature is

T =
6x4

+ + 4kx2
+ − 2k2 − q2

16L2πx+(k + x2
+)

. (44)

Thus we see that the extremal limit T = 0 is achieved at

xE =

√

−k

3
+

√

8k2 + 3q2

3
√
2

. (45)

The charge parameter thus satisfies

q2 ≤ 2(−k2 + 2kx2
+ + 3x4

+) (46)

with the bound saturated for extremal black hole.

The temperature for k = −1 charged black holes then exhibit different behaviors from

the uncharged case: there is now minimum temperature for small black holes, i.e. black

holes with 0 < x+ < 1. This minimum point occurs at x = 1/
√
3 of the value of the charge,

as long as it is nonzero. Thus charged black holes are thermodynamically stable for the

k = 0 and k = 1 cases, and also stable for the k = −1 case if the black hole is sufficiently

large. See [66] for detailed discussions.

Therefore even if the Hořava-Lifshitz theory can recover Einstein’s theory in the IR, the

solutions might not. This is of course not the only problem with Hořava-Lifshitz gravity [71].

Regardless of the validity of Hořava-Lifshitz theory as renormalizable theory of quantum
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gravity to describe our physical world, it is hoped that the black hole solutions in Hořava-

Lifshitz theory might nevertheless be useful in application to understand superconductor-

type phenomena via AdS/CFT, which we will discuss in the following sections.

IV. HOLOGRAPHY OF HOŘAVA-LIFSHITZ BLACK HOLES

Hořava-Lifshitz black holes have been studied for their possible applications in AdS/CF;

see e.g. [16], [17], [18]. In [16], the authors studied the phase transition of flat Hořava-

Lifshitz black holes by introducing a Maxwell field and a complex scalar field and found

that the results are rather similar to those in the case of black holes in general relativity.

They thus concluded that the superconductivity phenomenon is rather robust, insensitive

to gravitational theories at hand, but rather associated with asymptotic AdS black holes.

In [17], the work is extended to the case without detailed balance condition.

In this section, we only consider (3+1)-dimensional charged Hořava-Lifshitz black holes.

We do not include effects of scalar fields. However, see Sec. V for further discussion.

Following [5] and [46], we consider the Wick-rotated version of the black hole metric with

a BPS brane of tension Θ wrapping one of the r = const. sections of the resulting space of

Euclidean signature. The Seiberg-Witten action is then

S(r) = ΘA− µV (47)

where

A(r) =
√
gττ

∫

dτ

∫

r2dΩk (48)

and

V (r) =

∫ r

r+

√
gττ

√
gr′r′r

′2dr′
∫

dΩk

∫

dτ (49)

are the brane area and volume enclosed by the brane, respectively. Since the brane is BPS,

we have µ = 3Θ/L in (3+1)-dimension.

Recall that in performing Wick-rotation, the time coordinate t now parametrizes a circle.

We can think of t/L as an angular coordinate on this circle with periodicity P chosen so

that the metric is not singular at r+.

The Seiberg-Witten action is
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S(x, k, q, ǫ) = PLΘΓk

L2

2















x2



k +
x2 −

√

ǫ2x4 + (1− ǫ2)(c0x− q2

2
)

1− ǫ2





1

2

− 1√
2
(x3 − x3

+)















(50)

where we recall that

c0 =
k2(1− ǫ2) + x4

+ + 2kx2
+ + q2/2

x+
. (51)

For a consistency check, as mentioned in Section II, for the case ǫ = 1, we should re-

cover Reissner-Nordsrtöm-AdS solution of general relativity. For flat case, we then have,

henceforth ignoring the overall positive multiple PLΘΓkL
2/2,

S ∝ x2

√

√

√

√x2

2
−

x
(

x3
+ + q2

2x+

)

− q2

2

2x2
− x3 − x3

+√
2

. (52)

With x+ = 1, we increase the electrical charge and observe that eventually the action

approaches zero at infinity for some near-extremal charge parameter qNE. We claim that

q2NE = 2. Indeed, we can check that with this value, the action becomes,

S ∝ x2

√

x2

2
− 2x− 1

2x2
− x3 − 1√

2
(53)

=
x√
2

√
x4 − 2x+ 1− x3 − 1√

2
, (54)

which indeed tends to 0 as x → ∞.

As shown in Fig.1, for any amount of charge exceeding q =
√
2, the action becomes

negative at some finite x and stays negative afterward. This signals instability by brane

production, and so the black holes become unstable before extremality is reached. Corre-

spondingly then, the temperatures of such stable black holes are bounded away from zero.

Comparing Eq.(3) and Eq.(35), we see that

q2

4x2
=

Q2

4π3K4r2
. (55)

Recall that x =
√
−Λr =

√

2/L2r; this reduces to

q2 = − ΛQ2

π3K4
. (56)
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FIG. 1: Flat black holes with ǫ = 1. From top to bottom, the charge parameter values are

q = 0, 0.5, 1,
√
2, 1.48, respectively. The value q =

√
2 corresponds to the amount of charge where the

Seiberg-Witten action becomes zero at infinity.

Therefore our result that q2NE = 2 agrees with the result in [72], from which we know that for

flat black holes in general relativity with n-dimensional horizon, the near-extremal charge

satisfies

πQ2
NEL

2 = 2
5n−3

n+1 (n− 1)n
1−n

n+1

[

π2MKL2
]

2n

n+1 (57)

and the horizon with this amount of charge satisfies

rNE =

(

ML2

2n−3nπn−1Kn

)
1

n+1

. (58)

Our case corresponds to n = 2, and we have set x+ = 1. By setting L = 1 and K = 1 and

varying M , we have indeed

1√
2
= rNE =

[

ML2

πK2

]
1

3

⇒ M =
π√
8

(59)

and thus

Q2
NE = 4π3

(

1√
8

)
4

3

⇒ q2NE = 2 (60)

as we have found previously. Therefore, we have a consistency check that we do recover the

result of Seiberg-Witten instability for charged flat black holes in general relativity when

ǫ = 1.

The behavior of the Seiberg-Witten action hugely depends on the value of ǫ. Even for

a fixed value, say ǫ = 0 for the detailed balance case, we see that for the uncharged case

(top-left diagram in Fig.2), the action for k = −1 black holes is positive and even greater
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than the flat and positively curved cases, which is a completely different behavior than its

general relativistic counterpart in which the action for negatively curved black holes always

turns to become negative at large x. Increasing electrical charge does lower the action of

such a detailed balance black hole, but the asymptotic behavior does not change – the action

still tends to positive infinity at large x regardless of the horizon curvature.

Note, however, that for some values of parameters, the action does become negative

for some intermediate range of x, although it is positive for large x. Note that this also

happens for charged k = 1 black holes at sufficiently small ǫ, although their action is always

positive in the case of general relativity. The fact that the action becomes negative at some

finite range does signal nonperturbative instability under brane nucleation as before, but of

a milder form. One way to interpret this is as follows: brane-antibrane pairs are created

at an exponential rate from the reservoir of energy where the action is negative. For the

action which is negative between some finite range, brane-antibrane pairs are produced with

the expense of the electrical charge µ on the brane so that eventually the action becomes

less negative. In other words the black hole spacetime which is unstable in this sense will

eventually settle down below the threshold value that triggered the instability. However,

when everything has settled down to a stable configuration, it is no longer the original

spacetime. It has become a “nearby solution” in the sense of Maldacena and Maoz [73].

We contrast this to the case of k = −1 black holes and near-extremal k = 0 black holes

in general relativity in which once the action becomes negative it stays negative. In such a

scenario, the spacetime is genuinely unstable because the action cannot become positive by

nucleating a finite number of brane-antibrane pairs.

Nearby solutions – in the sense of Maldacena and Maoz may correspond to deforming the

black holes in some ways, which should not be confused with so-called “deformed” Hořava-

Lifshitz black holes (Kehagias-Sfetsos black holes) [74] [66]. The latter refers to the situation

where there exists a term in the IR modified action of Hořava-Lifshitz gravity which allows

one to obtain a Minkowski vacuum instead of an AdS vacuum.

Furthermore, we observe in Fig.3 that even for uncharged black holes q = 0, the actions

for black holes of different horizon curvature cross over as ǫ varies from 0 to 1. With x+ set

to 1, we observe that under detailed balance condition (ǫ = 0), the action for the k = −1

black hole is the highest, followed by k = 0 and finally the k = +1 case. But eventually it

becomes the other way around at ǫ → 1.
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We observe that as the electrical charge increases, regardless of values of ǫ and k, the

Seiberg-Witten action for Hořava-Lifshitz black holes decreases. This is the same behavior

as the case in general relativity.

We note that the actions for flat black holes remain infinite as x → ∞ if ǫ 6= 1; indeed

from Eq.(50), we see that, at large x,

S ∝ x2

[

x2 − ǫx2

1− ǫ2

]
1

2

− x3

√
2
= x3

[

1√
1 + ǫ

− 1√
2

]

. (61)

Thus for 0 ≤ ǫ < 1, the Seiberg-Witten action always blows up at infinity independent of

the charge.

For the ǫ = 1 case which corresponds to general relativity, the result above does not hold

because we have to deal with indeterminate form. Indeed the action in this case reduces

to that of general relativity, that is, it asymptotes to a constant, which does depend on the

value of the charge as we have seen. Therefore there is a discontinuity in the behavior of

the Seiberg-Witten action as ǫ varies from ǫ = 0 toward ǫ = 1.

For negatively curved black holes, the action at large x is

S ∝ x2

[

−1 +
x2

1 + ǫ

]
1

2

− x3

√
2
, (62)

which can be negative if and only if

− 1 +
x2

1 + ǫ
<

x2

2
, (63)

i.e. if and only if ǫ > 1 as x → ∞.

Therefore similar phenomenon happens for negatively curved black holes: While the

Seiberg-Witten action eventually turns over and becomes negative and stay negative for

ǫ = 1, the action remains positive at infinity for all values of ǫ < 1. We plot the Seiberg-

Witten actions of topological black holes as the charge increases in Fig.4.

In fact, we see from Fig.6 that by holding the charge fixed and increasing ǫ toward 1,

the turning point of the action for k = −1 black holes shifts progressively toward the right,

and with ǫ → 1, this turning point gets pushed all the way to infinity, i.e. it does not turn

over for the case ǫ = 1, which recovers the case for general relativity with infinite reservoir

of negative action. A similar phenomenon happens for the case of k = 0 black holes. The

implication of this observation is that the “amount of negative reservoir” is not bounded. As

the brane-antibranes are produced in huge numbers in the bulk, the black hole spacetime
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FIG. 2: Top left: Seiberg-Witten actions for uncharged black holes with ǫ = 0 where the curves from top

to bottom are that of k = −1, k = 0, k = +1, respectively. Top right, bottom left and bottom right show

the behavior for the action as charge is increased (higher curves correspond to lower charge), for

k = +1, 0,−1 cases, respectively. The horizons (origins) are set to x = 2. Note that the action for

sufficiently charged k = 1 black holes can be negative in some range of x.

will be disturbed so much that one may reasonably worry that it might develop into true

instability. That is to say, although the Seiberg-Witten at infinity is positive which usually

means the field theory on the boundary is stable, this “stability” in the case of Hořava-

Lifshitz black holes should not be trusted until we have more details on how the spacetime

deforms and settles down after it gets rid of the negative reservoir of action via the huge

number of brane-antibrane emissions.

V. DISCUSSION

We have studied the Seiberg-Witten stability issues of asymptotically AdS Hořava-Lifshitz

black holes and found that for all three types of topological black holes (k = −1, 0,+1)
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FIG. 3: Seiberg-Witten actions for uncharged k = +1, k = 0, and k = −1 black holes are represented as

solid curve, dotted curve and dash-dotted curve, respectively. The values of ǫ from top left to top right are

0, 0.1, and 0.3; while the values from bottom left to bottom right are 0.5, 0.65, and 1 (which reduces to

general relativity). The horizons are set to unity.

there exists a parameter range in which the Seiberg-Witten action dips below the x axis for

intermediate values of x, where x = r
√
−Λ and r is the radial coordinate, but pulls back

up and diverges to infinity as x → ∞. This means that although some of these black holes

are unstable in the Seiberg-Witten sense, there exist “nearby solutions” which are stable

in the Maldacena-Maoz sense [73]. At this stage, the nature of these nearby solutions and

their possible implications on the dual field theories are not clear, which we leave open for

future works to explore. In particular, we have been arguing rather naively that such nearby

solutions exist and this needs to be proved. After all, not every naive deformation of a black

hole can be stable; without knowing the details it is hard to guarantee at this point that

there exists any stable deformation in view of [75]. As stability is inversely proportional to

how much of the action is negative, we conjecture that:

(1.) Uncharged positively curved AdS Hořava-Lifshitz black holes are stable in the Seiberg-

Witten sense, while charged ones can be stable in Seiberg-Witten sense if the action

remains positive, or stable in the Maldacena-Maoz sense if the action becomes negative

for some finite region. For sufficiently charged black holes, stability is less guaranteed

as ǫ → 0.
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FIG. 4: The behavior of Seiberg-Witten actions as the charge increases. The first, second and third row

correspond to k = +1, k = 0 and k = −1 cases, respectively; while the first, second and third column

correspond to ǫ = 0.9999, ǫ = 0.5 and ǫ = 0, respectively. Higher curves correspond to lower electrical

charge. Horizons are set to unity for k = 1 and k = 0 cases while those for k = −1 black holes are set to 2.

The asymptotic behavior for ǫ → 1 is however misleading in this plot: The graphs for S(k = 0, ǫ = 0.9999)

and S(k = −1, ǫ = 0.9999) actually diverges to infinity, as shown by the plot with bigger scale in Fig.5.

(2.) Uncharged flat AdS Hořava-Lifshitz black holes are stable in the Seiberg-Witten sense.

Charged ones can be stable in Maldacena-Maoz sense if part of the Seiberg-Witten

action becomes negative, but this stability is less guaranteed as ǫ → 1.

(3.) Uncharged negatively curved AdS Hořava-Lifshitz black holes are stable in the Seiberg-

Witten sense as long as ǫ is not too close to unity (For black holes with horizon set

at x=2, the action starts to have a negative portion at ǫ & 0.98. The lower bound on

ǫ before action starts to develop negative part becomes larger for larger black hole.)

Charged ones can be stable in the Maldacena-Maoz sense if part of the Seiberg-Witten

action becomes negative, but again this stability is less guaranteed as ǫ → 1.

It is unlikely that in cases 2 and 3 the black hole spacetime can be stable for ǫ close

to 1, even in the Maldacena-Maoz sense that there exists a nearby solution; instead there

might exist a critical value of ǫ for a given value of charge such that the black hole spacetime
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FIG. 5: The Seiberg-Witten action for S(k = 0, ǫ = 0.9999) and S(k = −1, ǫ = 0.9999) diverge to infinity.

becomes genuinely unstable even in the Maldacena-Maoz sense. One would need to know

the exact ways the black hole spacetime changes in response to brane nucleations to know

if this is indeed the case, and if so to find such critical value. Lacking a quantitative way to

investigate this issue right now, we leave this problem for future investigation.

At this point, we would like to remind the readers that our analysis should be taken

with skepticism, in view of the caveats we mentioned in the introduction. Nevertheless,

if our analysis is at least qualitatively correct, it provides an example of instability with

the Seiberg-Witten action being eventually positive but which is not bounded below as we

approach ǫ = 1. This recovers a general relativistic result of Seiberg-Witten instability,

which, though not a proof of validity of our approach, is at least a consistency check.

We now note that our analysis is somewhat incomplete since in the application to holo-

graphic superconductors, it is typical to add not just a Maxwell field [16] [17], but also a

scalar field. Therefore it is possible that in the cases where the Seiberg-Witten action be-

comes negative for some finite range of x, the solution can nevertheless be stabilized when

the scalar field is taken into account, even without deforming the black hole. Note that in

[16] and [17], the black holes considered are uncharged, with the background Maxwell field

and scalar field weakly coupled to gravity, i.e. there is no backreaction to the metric. There

is no Seiberg-Witten instability for all values of ǫ for flat uncharged black holes so all are

fine in such applications, which is what motivated our investigation in the first place.

Nevertheless, recall that in analysis of holographic superconductors dual to Einstein-

Maxwell-scalar black holes, we expect the black holes to develop scalar hair around and

below a certain critical temperature Tc if the Breitenlohner-Freedman bound is violated

near the horizon of near-extremal black holes [7] [10] [76]. Therefore it will be interesting to
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FIG. 6: The actions S(k = 0) and S(k = −1) are not bounded below as ǫ → 1. The curves from top to

bottom for S(k = −1)correspond to ǫ = 0.999, ǫ = 0.9999 and ǫ = 0.99999 respectively; while the curves

from top to bottom for S(k = 0) correspond to ǫ = 0.99999,ǫ = 0.999999 and ǫ = 0.9999999 respectively.

The actions eventually recover their corresponding behaviors in general relativity as ǫ = 1 and turning

point is pushed to infinity.

explore the stability issue when both the Maxwell field and scalar field are strongly coupled

to gravity in Hořava-Lifshitz theory. We expect that these black holes would exhibit behavior

similar to dilaton black holes and as such stable in the Seiberg-Witten sense [52], although

how much this behavior is preserved under Hořava-Lifshitz gravity is yet to be explored.

Finally we recall that the present work only considers Hořava-Lifshitz black holes for

λ = 1. The case for general λ is not only difficult from a calculation point of view, but

also conceptually: the metrics are no longer asymptotically anti–de Sitter [59], and it is not

clear whether “AdS”/CFT makes sense for such black holes (though perhaps not entirely

impossible – see e.g. so-called non-AdS/non-CFT correspondence [77]). It might also be

interesting to explore the Seiberg-Witten instability for Hořava-Lifshitz black holes in higher

dimensions (for a study of five-dimensional Hořava-Lifshitz black holes, see [78]).

It is clear that Hořava-Lifshitz black holes, especially in the case without detailed balance

have rich physics in need of further study. We may be able to learn something interesting

even if Hořava-Lifshitz gravity turns out not to be a theory for describing gravity in our

world.
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