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ABSTRACT 

Inclusive deep inelastic electroproduction processes, in which one (or more) 

hadrons in the final state observed in coincidence with the electron, is investi- 

gated using Regge-Mueller language, via the inclusive virtual photoproduction 

processes. The hadron distributions and generalized scaling laws are obtained, 

assuming that Pomeron is the dominant Regge trajectory, it is a simple pole and 

therefore factorizes at high energies. The contribution of the isospin carrying 

secondary trajectories cause charge asymmetries in the central and current frag- 

mentation regions, and these increase with Q2, for fixed total energy. Average 

multiplicity grows logarithmically with energy, as in the hadronic case. However, 

in the Bjorken limit, the major contribution comes from the current fragmentation 

region, contrary to the hadronic case, and the contribution of central region 

scales, and increases with increasing l/w= w’. Finally we show that the trans- 

c 

verse momentum of the produced particles is limited, and this limit depends on 

the density of the particles in the phase space, or rate of increase of average 

multiplicity with h s, and LC,. All the predictions are consistent with the data. 
- 
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1. INTRODUCTION 
- 

The scaling laws proposed by Bjorken [I] for the highly inelastic electron 

scattering processes are consistent with all the experimental data [2], and this 

phenomena is quite well established and understood at present [3]. In purely 

hadronic production processes another scaling law of rather different character 

had been proposed quite a while ago [4]. The interest in this hadronic scaling 

law has been reviewed by Feynman [5] and Yang [5] quite recently. This 

scaling law is also consistent with the present experimental data [5]. 

Recently there has been increasing theoretical [6] and experimental [7] inter- 

est in deep inelastic lepton scattering processes in which one or more of the 

final hadrons is detected in coincidence with the scattered lepton (though the 

interest on these processes was shadowed by the very exciting discoveries of 

heavy narrow vector mesons in the e+e- annihilation channel [lo]). The most 

recent experimental results of SLAC, Cornell and DESY are reported at the 

1975 SLAC conference [9]. The data seem to be offering no big surprises. 

On the theoretical side [8] the first attempts have been focused on the pos- 

sibility that the invariant distributions will exhibit some sort of, similar to that 

of Bjorken and Feynman and Yang, scaling laws. The exclusive subsets of these 

processes have been investigated by T. D. Lee [,S] using an SU2 phenomenological 

Lagrangian technique. The inclusive processes have been analyzed by Drell and 

Yan [8], and Landshoff and Polkinghorne [8], and Feynman [3], using different 

forms of the parton model. Stack [S] investigated the same problem by using 

the free-field light-cone commutators, and assuming the dominance of light-cone 

singularity for certain semiconnected diagrams. Then attempts have been made 

by the present author [ll] and the others [ll], to study the problem, by adapting 

the formalism developed by Mueller [12] for purely hadronic production processes. 
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This approach based on very simple and plausible assumption that processes 

involving highly virtual photons are also dominated by Regge trajectory exchanges, 

Pomeron being the highest, at high energies. The price paid for not having any 

fictitious entities like partons or quarks, is that-the predictions in this approach 

are not as detailed as that of a parton model [3]. This work is a corrected and 

updated version of the second reference in [ll], which was the first thorough 

attempt on the problemrt. All the predictions are in perfect agreement with the 

new available data [9]. 

A final work; although I will use always the terminology electroproduction, 

everything I say applies to muon production also (the terminology leptoproduction 

does not seem to be popular somehow). 
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11. DEEP INELASTIC ELECTROPRODUCTION 

We shall start with a short review of deep inelastic electron-proton scat- - 
tering from the Regge point of view for the sake of completeness. Treating the 

electromagnetic interaction to lowest order, the process is represented by the 

Feynman diagram given in Fig. 1. By applying F eynman rules, the differential 

cross section for fixed incident electron energy and fixed scattering angle is 

given by 

dF dg 47ra2 E’ &L,=--=-- 
dQ2& Q4 E 

28 5 + 2W,(Q2, v) sin 28 1 z , (2-l) 

where E(E’) is the laboratory energy of the incident (final) electron, 0 is the lab 

scattering angle, m is the nucleon mass, (Y is the fine structure constant, and q 

is the four-momentum transferred to the proton by the photon; we have also de- 

’ fined Q2=-q2. The invariant structure functions are defined by 

Wpv(q,p) = c ,‘d4x eiqsx <p I[J,(x), Jv(0)l lp> 
spins 

b -(A),, Wl(Q2, v) + 1 
m2 

(A- P), @a P~,W,(Q~, 74 > (2.2) 

where A =g 2/&* 
PV PV q2 

Both W1 and W2 are antisymmetric under v - -v : 

Wi(Q2 2 -v) = -Wi(Q2, v) . 

The total absorption cross section for longitudinal and transverse virtual 

photons, u L,T , is defined by 
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where eTFL 
P 

are the polarization vectors for virtual photons which satisfy the 

gauge condition q. E = 0. 
CI 

In a frame in which q= (qo, 0, 0, q3) we choose them as 

EL ~ = $ (s3,0,0,s0) 

T* 1 
c/J 

= z (0, 1, *i, 0) . 

Substituting in Eq. (2.7) we get 

(Flux) o-T = 4~~01 wl(Q2,v) 

(Flux)~~ = 47r2a! W2(Q2, v) - W,(Q2, v) 
I 

. 

(2.4) 

(2.5) 

By dimensional arguments, aL -Q2 as Q2 -0, andgT(Q2=0,v) is the total 

photoabsorption cross section for real photons of energy v . 

It is suggestive to write the differential cross section in terms of gT and cL 

as defined above: 

where 

E = [l.+2tan2i (1+-$1-l 

(2.6) 

(2.7) 

is called the polarization parameter [13] and often is small, and R =aL/oT. 

Bjorken [l] argued that the limits of W1 and vW2 exist as both v and Q2 tend 

to infinity with their ratio fixed: * 

Wl(Q2, v) - F ,b) 

& vw2(Q2, ~4 - F2h) 
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here w = Q2/2mv . Present experimental data [2] is in agreement with this pro- 

posal for Q2 > 0.5 (GeV/c)2, and we will take this scaling phenomenon, Bjorken 
- 

scaling, as an experimental fact. Furthermore experiments indicate that the 

ratio R is very small [2]: 

R = 0.14hO.067 . 

Now consider the forward elastic scattering of a massive photon of space 

like momentum q by a physical nucleon of momentum p; so q2 = -Q2 < 0, p2 = m2 . 

The amplitude averaged over nucleon spins has the form, 

Tpv(Q2, v) = i /d4x eiqsx<p ITk;m(~) Jzrnp)] lp> 

= -(LQ, Tl(Q2, v) + L (A.P)~ (A-P), T2(Q2, v) 
m2 

. (2.9) 

The structure functions Wl 2 
, 

are related to the absorptive parts of Tl and T2: 

Wi(Q 2 
, V) = 2= 1 Im Ti(Q2, v) . - (2.10) 

It can be shown that [14] T,(Q’, ) v is a helicity nonflip amplitude for the t-channel 

process y+y L+ N+ A. So we may decompose it into partial waves according to 

T1(Q2, V) = Jco (25+1) tl(Q2, J) b Jtcos et) + ’ Jfmcos et)] (2.11) 

appropriately analytically continued from the region t > 4m& q2>0 to the 

Compton region required for our problem, namely t=O, q2< 0 with v =p. q physical 

(Fig. 2). Here et is the scattering angle in the center of mass frame of the t- 

channel, and for small t, is given by * 
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where q = Jq2. For later convenience we shall also define Q2=-q2. Now let 

us look at the behavior of cos et, at various limits: 

(a^, Regge limit = v = p. q/m -c co, while q2 is large and fixed. 

Obviously cos et -03. 

(b) Bjorken limit = v, q2 -) 00 while w = & fixed. In this case 

cos Ot N -q/2mw - co. So the conditions for a Regge expansion, to be more 

precise a crossed channel SO(3) expansion, are satisfied in the Bjorken scaling 

region. The essential point is that the v-dependence in the Bjorken limit is 

exhibited by the Regge representation. 

Dropping the background integral in the Sommerfield-Regge expansion, we 

get 

Tl(Q2,v) N c wl,+ 1) 
pn(Q2, an) 
sin 7ro (COS et) + P Q! (-cos et) . 

n n n n 1 (2. lla) 

TO leading order, Pa (cos 0,) - (cos et) n as cos et - ~, so we get (Fig. 2) 
n 

(2. lib) 

where we have assumed factorization of Regge residues and absorbed the irrele- 

vant factors into the ,!3 1s. Obviously the validity of this argument requires Q2 to 

be large. For small Q2 this is rather dubious, for the neglected terms would be 

comparable to the nonleading Regge contributions of the Regge expansion. There 

is also the question of the region of validity of the expansion (2. lla). Since the 

sum extends over all leading trajectories, by the use of duality arguments, one 

may hope that (2. lla) is a good representation of the amplitude T,(Q2, v) even 

for moderate values of v, and not just the asymptotic region. 
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Note that we can pass to the Bjorken region from the Regge region, by 

keeping v large and fixed and let q2 -. m, We observe that the simplest way to 

obtain^the scaling laws (2.8) from the Regge expansion (2. llb) is to have [15] 

fi;;(Q2). N & 

Q Qon(“) --COO 
(2.12) 

for the photon-photon-Reggeon vertex for large Q2. Then we see that, if we 

believe in Bjorken scaling, then, in some loose sense, the photon-Reggeon 

coupling strength decreases as Q -co. This simple observation is very inter- 

esting and suggestive in the light of lately popular “asymptotically free field 

theorie&’ [16], which claim that Bjorken scaling is a consequence of asymptotic 

freedom. Equation (2.12) is the crucial prescription we shall extensively use 

in the rest of the paper. 

Using (2.12) we get 

i.e., 

(2.13) 

Similar arguments apply to W2(Q2, v) and we get a similar result 

Now if we take only the leading (Pomeron) trajectory, we get 

Fl(d - ; 
B j 

(2.15a) 
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F~(w) N 2a 
B j 

(2.15b) 

in ac;rd with the relation aL/cT - 0. A warning remark is appropriate here. 

Actually, the point o!(O)=1 is a nonsense point for W2, and the Pomeranchuk 

trajectory decouples unless a fixed pole is present which restores its contribu- 

tions. If we include the secondary Regge trajectory (P’), we get 

b F+) N L+- 
BY &d 

F2b) - 2a + 2b& 
B j 

(2.16) 

Notice that F2 goes to a constant from above, 1 2p.q as w = 
Q2 

+ 00 (Regge limit). 
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RI. INCLUSIVE ELECTROPRODUCTION 

III. 1 -Definitions and Kinematics 

We shall consider the process in which an electron scatters from a hadron 

(nucleon) and one of the hadrons in the final state, in addition to the scattered 

electron, is detected: 

e(Q) + h(p) 4 et@‘) + h’(k) + H(pH) . 

Treating the electromagnetic interaction to lowest order the process is repre- 

sented by the Feynman diagram given in Fig. 3, where E (E’) is the lab energy 

of the incident (final) electron. Applying Feynman rules the differential cross 

section for fixed incident electron energy, fixed electron scattering angle, and 

fixed hadron scattering angles (0 and #), and summing over all else, is given 

bY 

(Flux) da 
d3Q’ d3k 
2E’q 

where, the masses of target and detected hadron are denoted by m and p. 

Simple Dirac algebra gives 

- g/J-Q’ 1 with rnf - o 

W 
PV 

=; c c <plJ;(O) iH(PH)>k> -kH(PH) IJv(0) I> 
spins H 

4 
$f eiqsx <p I J;(x) Ik> <k I Jv(0) Ip> 

(3. I) 

(3.2) 

where Jp is the hadron electromagnetic current, lp> is a one-proton state and 

Ik, H> is a state of the one hadron being detected plus all possible others with 
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quantum numbers summarized by H. Here C means sum over all intermediate 
H 

states ,H, which is connected to the proton by Jem, and integrate over their in- 

variant phase. Our metric, normalization of states, etc. are the same as in 
- 

Ref. [17]. We denote the average over the initial spin by c. 

Lore& invariance tells us that W must be a second rank tensor. Be- 
PV 

cause of the average over spins we have only the vectors q k and the 
P’ pPy I-1’ 

tensor g 
PV 

at our disposal. Tensors of the type E pvap q”pp or E PV@P 
qokP are 

excluded because W 
PV 

has positive parity (current operator is a polar vector 

under spatial reflections). Furthermore, the electromagnetic current is con- 

served, i.e. , 

Therefore the most general form for the symmetric tensor W ’ pv lS 

Ii 
PV 

= -(fyvW1 + 1 (A~p)P(A~p)vW2 ++ (A.k)P (ABk)v 6, 
m2 P 

+ & [(A.p)P (A.k)v + (Ask& (A.p), 1 W4 

with 

Note that because of the conservation of the leptonic current, and a special 

choice of the gauge ( ePqP = 0) the relevant form of the tensor W in the inclusive 
PV 

virtual photoproduction processes is 

+ kPkv W3 + Apk+pk W4 
P C 1 2n-v P v v P 

(3.3)’ 

For the process y+p -. h + anything, we need 3x4-10+2=4 invariant inde- 

pendent variables, and for the process e+p --c er -t h+anything, we need 
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3 x 5-lO+l= 6 independent invariant variables to express the cross sections. 

But bezause of the single photon exchange dominance, hadronic and leptonic 

parts factor in the differential cross section as depicted in (3.1). Because of 

this fact, which is. known as the locality of the lepton vertex, the hadronic 

tensor W 
PV ’ 

cannot depend on the QP and Q’ , 
P 

except insofar as the p, k and pH 

are tied to Q and Q’ by the overall conservation laws. In virtue of these laws, 

q=Q-Q’ is eff ec ively a hadronic four-vector. t So W 
PV 

can depend on its compo- 

nents. But (Q+Qt)P=$ is not a hadronic four-vector and W 
PV 

cannot depend on 

its components to the extent that the latter are unconstrained. There are two 

such constraints: 

a. The magnitude of $ is related to the magnitude of qP: 

-2 q = (Q+Q’)’ = 4rni - q2 

b. Projection of $ on qP is not free either 

q ;p = Q2-Q12 = 0 
P 

This implies that six variables, which describe the whole process can be chosen 

in such a way, that W is independent of two of them. The dependence of do, 
PV 

‘ 

on these two variables must therefore be explicitly contained in the lepton factor 

Q 
PV * 

In the lab frame (rest frame of the target) we shall define the direction of 

qP as Oz-axis . We shall take the Ox-axis, in the plane spanned by the 

vectorsT and 7’. Then the azimuthal angle of the detected hadron, measured 

from the px-axis is going to be the angle between the planes (or their normals) 

defined rand T and < and E 

We shall choose the four invariant variables to describe the hadronic tensor 

W as follows: 
PV 

Q2=-q2>0 
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,uv’ = k. q 

m/c = p.k 

Two new variables are v’, the energy loss of the electrons in the rest frame of 

the detected hadron, and K, the energy of the detected hadron is the lab frame. 

Other sets of variables which are equally well suited for describing the hadronic 

part of the do are (Q2, t, M2, 4) or (Q2, IF I, cos 0, $) where 

t = @-k)2 = m2 + ,u~ -2rnK 
(3.4) 

M2 = (p+q-k)2 = m2+~2+2mv-2pvr -2mK-Q2 

Here 8 is the polar angle of the detected hadron, measured from the photon 

direction (Fig. 4). The invariant phase space volume element, in terms of 

these different sets, is given by 

3 -2 
$$=g dlmdcosfJd+ 

0 0 

= -+p dv’ dK de 
W2+Q ) 

(3.5) 

1 = 
8m(v2+ Q2) 1’2 

dt dM2 d+ . 

The old and new invariant variables (Q2, v) and (VI ,K ) satisfy the kinematical 

constraints 

Q2 <l O<cd=2mv , 2~~1 + 2mK < 2mv(l-w) 

which are derived from the positivity conditions 

s = (q+p)2 > m2 and M2 = (q+p-k)2 > 0 (3.7) 

(3.6) 

in the Bjorken limit. 
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As stated above, summing over the final spins, and averaging over the 

initial spins (unpolarized lepton scattering over unpolarized proton target) the 

number of independent helicity amplitudes is four. The differential cross sec- 

tion in terms of these functions is 

a2 E’ 
d~‘~‘~=G~Q2;l~e) w+++Ewoo- [I eW+’ cos 2@ - 2 J- e+e2 (Re W+“) cos $ 1 

0 (3.8) 

Here E is the polarization parameter defined in (2.7) and Wab are 

eb = Ea*Eb$v ; 
lJ v 

a,b=O,+ 

where (&) stands for two transverse polarizations and (0) for the longitudinal 

polarization as defined in (2.4). The lengthy relations between Wab and the Wi 

are given in Appendix 2. 

As is obvious from (3.8)) if we integrate over the azimuthal angle +, the 

last two terms vanish, and we are left with two structure functions, 
-I-!- 

W and 

00 w . Let us do this more systematically by integrating the hadronic tenor WC”” 

over the azimuthal angle +. 

iPv(Q2,~r,~) = /-~6(V'-$+(K-~)~v 

= j-~+~)~(K-$'+ 

4 
X $.$ eiqsx <p I J;(X) Ik> <k I Jv(0) iP> 

Now wr”” can be written in terms of two structure functions as: 

(3.8) 

wl”” = -(A),vu~l(Q2, V, v',K) + f (A.p),(A*p),~ti2(Q2, v, v’,K) (3.9) 
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and the differential cross section takes the familiar form 

(3.10) 

where lf( > lf stands for the azimuthal integration. The differential cross sec- 

tion for virtual inclusive photoproduction is defined in the usual way: 

(Flux) 2 
d3k 

= 4n?;o! E* E Ii+” 
P v 

(3.11) 

Conventionally the flux factor for the virtual photon is defined as the flux factor 

for a real photon with the same initial invariant mass (q+p)2 as 

(Flux) = q.p - $Q2 N mv(l-w) . 
bj 

Sometimes we shall define the flux factor as we do for hadron beams, whenever 

2 l/2 1 . A simple calculation gives 

v T EiTti E 
V 

+++ IeT.k12W3 
P 

= &, + v2+Q2 w2++ IeL-ki2w3 
Q2 P 

+-&Re(e*L.p)(eL.k)614 . 

After integrating over the azimuthal angle we get 

(3.13) c 
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Substituting these in (3.11) we get 

= 87r2a! 

2mv-Q 

= .87r2a, .“&g 
2mv-Q2 ’ 

v, V’,K ) 

9fi2(Q2, v, v’, K) 
I 

(3.14) 

Or in terms of the normalized inclusive distributions, which is defined as the 

ratio of the Lorentz invariant distribution to the total cross section (to get rid 

of all the irrelevant factors), we get 

p(Q2, v, v’, K) - 1 
/ da \ 

E* E pf#v 

=--IL- II.v 

?ot \d3k,‘2k0, , 
2b2+Q 

2 

Explicitly, in terms of the structure functions 

P 
T+L = 2 jvv m ‘VW2 

IJ 
[ I 

1 
VW 

m 2 

(3.15) 

(3.16) 

T-I-L 
P is written in this form, because we know that it is & v W which scales 

2 

in the Bjorken limit. Noting that 7 v +Q N v in the Bjorken limit, we get 

(3.17) 
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From (3. 17) it is obvious that for the inclusive cross sections (integrated over 

,c$) there is one more power of v , multiplying the scaling structure functions, 

compared to the ordinary electroproduction structure functions. Of course 

everything we did above is true if the virtual photon vertex factors out. We 

shall see that this is not true in photon-end of the phase space. And it is im- 

possible to make such simple predictions. For Q2 -0 we can relate inclusive 

electroproduction to the inclusive photoproduction as follows (see Appendix 1): 

III. 2 Variables 

In discussing purely hadronic inclusive processes it proved to be useful to 

parametrize the particle momenta in terms of rapidity variables. Therefore 

we shall use the same parametrization here also: 

p = m(cosh y2, 0 , 0 , sinh y,) 

q = Q(shh yl, O,O, cash Y,) (3.19) 

k 
k=,u 

1 
y, A , sinh 

pl 

where kl is the transverse momentum of the produced particle, with p and q 

taken to be colinear in the z-direction; and pI- /J + kl - ( 2 ‘)Y2 is the transverse 

mass. The rapidity yi specifies the longitudinal Lorentz transformation that 

relates the lab frame to the rest frame of the ith hadron. For a space-like 

photon, rapidity parameter is the Lorentz boost which relates the lab frame 

(or whichever frame this labeling is done) to the frame where photon has only 

a space-component and no energy. This frame is called Breit (or Brick-wall) 

frame and its usefulness in processes involving highly space-like photons was 
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&E!zl advertized by Feynman in Ref. [3]. The invariants v = m , v ‘-3, and - 
I-L 

-K = 9 which we have chosen to represent the inclusive electroproduction can m 

be expressed in terms of these rapidity variables: 

V= $p.q = Q sinh(yl-y2) - 

v’ = ; k.q= 5 1Q s~JNY~-Y) (3.20) 

K= &k.q=pi cosh(y-y2) . 

The longitudinal and transverse momenta, kg and kl , of the detected hadron 

in the c. m. frame of the initial photon-hadron system are related to the rapidity 

variable as follows 

I (3.21) 

We put all longitudinally moving frames on an equal footing by the use of rapidity 

variables, since they are all related by a simple shift of the scale. That is a 

longitudinal Lorentz transformation, characterized by p=tanh u, merely changes 

y to y’=y+u. 

Let us now find the absolute kinematical limits imposed on y, by the energy- 

momentum conservation. In the Regge region (which is a subregion of Bjorken 

region) 

&I2 = @+q-k)2 N -Q2+2p.q-2q.k-2p.kkO (3.22) 

From (3~20) we get in the lab frame 

v=QShY N 
B j 

i&e’ 

v’ = Q -iy Q sh (Y-Y) 
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Since it is only K , which does not involve Y, we can neglect 2mK compared to 

.otherAerms in (3.22)) for the minimum value of y, and obtain 

2mv (l-w) > 21.t~’ 

Substituting in the value. 2pv’ for y N ymin 

21.l~’ - qQ e 
Y-Ymin 

we finally obtain 

(3.23a) 

Note that this lower limit is particularly simple for nucleon production: 

Y min N Qn &U = w , 
( ) 

for small w (which of course means Regge limit). Again from (3.20) we see 

that for y = y,,, Y-ymax is small; but because of the factor Q in the front vr 
. - 

should not have been negligible compared to the other terms. Substituting in 

2/-w’ = %-5Q s-h (Y-Y~~) 

Y 
2mK = rn/..kl e lllaX 

we obtain 

or 

2mv(l-w) > 2pLv e -ymax v 
+mby 

“max 

Y max + 2 e-ymax 2v .e m s r (1-w) 
1 

A real careful study of this inequality, gives 

(3.23b) 



- 20 - 

Again notice that for nucleon production, this upper limit gets very simple 

4 
Y 

So in summary, the absolute kinematical limits-on y are 

(3.24) 

And for nucleon production, and for w N 0, 

One interesting thing about this results is that lower limit depends on W. In the 

deep Bjorken limit this dependence gets more pronounced. Another distinctive 

feature is that phase space (of the detected hadron) is not fixed by the rapidities 

of the target or projectile; in other words it is not y22 y( yl. Calculating the 

difference 

AY = Ymax -yl = Qn (1-w) + J?n 

we see that, for Q2 -pT, this quantity is negative and small (because Q2-p2 
1 

means w ~0). As Q2 gets larger the second term gets large; but fortunately, 

the first term also gets large and negative. Therefore we may think that, since 

the large pL production is severely suppressed [9,25] (see Section V for a 

detailed study), Ay is always finite, and never gets large. 

III. 3 Generalized Optical Theorem 

In purely hadronic inclusive reactions Mueller [12] indicated that the inclu- 

sive cross section is a piece of the discontinuity of the forward three-to-three 

amplitude. Stapp’s [12] formal proof does go through for virtual particles also. 

Therefore we are going to use the generalized optical theorem in our case as 
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well, to relate the virtual photo inclusive cross section to the discontinuity of 

I the f-orward three-to-three amplitude yfir -L yhli’ (Fig. 5). 

Denoting this discontinuity by A(q, p, h) , optical theorem states 

(&x) yT’” = AT, L(q, p, k) 
d k/2k0 

(3.26) 

where 

AT,L (q,P,k) = ciTyL cTTL d4x eiqax<p,-kl J:(x) Jv(0) Ip,-k> 

(3.26a) 
and 

t-J--=) 
drrTJ- 

d3k/2ko 
= 47r2a, e* 

1 
eiq’xcpIJ~(x)lk~<kIJv(0) Ip> 

(3.26b) 

This is not at least implausible, since the virtual photon at hand is space- 

like, whereas it is known that the normal threshold branch points and cuts exist 

only in the right half q2 plane. On the other hand, in the production of p+p- 

pairs by time-like photons, these singularities may be relevant and the use of 

Mueller’s results would require further justification. 
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IV. 0(1,2) EXPANSIONS 

Iff his famous work Mueller [12] expanded the absorptive part A into 0(1,2) 

harmonics to investigate the scaling properties in the purely hadronic inclusive 

reactions. In doing so his main purpose was to-connect the scaling properties 

of particle production (such as pionization and limiting fragmentation), and 

average multiplicity with Regge singularities familiar from two-body reactions. 

He showed that an appropriate single 0(1,2) expansion gives limiting fragmen- 

tation [5] (slow particles in the rest frame of the one of the initial particles are 

the fragments of that particular particle), and the appropriate double 0(1,2) 

expansion gives pionization (pionization products are those pions which maintain 

a finite momentum in the c. m. frame of the initial particles as the energy of the 

initial particles become very large). 

Following Mueller, in getting our generalized scaling laws, we shall use 

0(1,2) expansions, though our kinematic configuration again has sufficient 

symmetry to render an 0(1,3) expansion natural. If we use the 0(1,3) group, 

our expansion parameters would be the rapidity variables which we defined 

earlier. Both in the Regge limit and Bjorken limit yl-y2 becomes very large. 

There are, as in the purely hadronic case, three distinct type of regions avail- 

able in a single particle spectrum: 

a) yl-y large, y-y2 finite (N @( 1)) = target fragmentation region 

b) Both y l-y and y-y2 large = central region 

c) f-y, large, yl-y finite (-Q(l)) = current fragmentation region. 

Despite the fact that we made these definitions in exact analogy to the purely 

hadronic production processes, it is not at all obvious whether a hadron detected 

in any of the above regions should show the distinct features of the one detected 

in purely hadronic production. Because of the short range correlation assumption 
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we make in the rapidity space, we shouldn’t be surprised to see that a hadron 

detected in the region-a) above is slow in the target rest frame; but there is no. 

a priori reason why the particles detected in the region-b) should be slow in the 

barycentric frame, or why the particles detected in the region-c) should be 

slow in the Breit frame. 

Since A is an invariant function of p-q, k. q, and p. k (also Q2 of course) we 

may choose any coordinate frame which is convenient for our 0(1,2) parametri- 

zation. It turns out that the most convenient frame is one in which the produced 

particle is at rest. We shall make the following 0(1,2) parametrization in this 

particular frame 

k = ~tl,O, 0, 0) = 4,, k,, ky, 1’,, 

q = Q(sid 5,, cash tl cos +, cash tl sin $, 0) (4-l) 

p = m(cosht2, -sinht2, 0,O) 

where 

o+, 5,1.“, -7r($<7r . 

In terms of these, the three invariant variables become 

p. q = m Q(sinh 5, cash 5 2+ cash $ sinh [ 2 cos $) 

q.k=,uQ sir&t1 (4.2) 

p-k= m.,u cosht2 . 

Considered as a function of the independent variables [ 1, .$,, and &, A can be 

expanded in 0(1,2) harmonics 18 (neglecting the discrete series) 
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when 5 1([2) becomes large the behavior of (4.3) is governed by the leading singu- 

lariti&? in A,(h,). When both 5;, and 5, become large the asymptotic behavior is 

governed by the leading singularities ELI and o2 in Al and h2. 

Before starting the study of different asymptotic regions let us give the 

relation between the rapidity variables and the 0(1,2) parameters 

p-q = mQ sinh( y,-y,) = mQ(sinh t1 cash 5, + coshE 1 sinh t2 cos $) 

k. q = pl. Q sinh(yI-y) = p Q sinh[ 1 (4.4) 

k*p = rnpL cosh(y-y2) = ~JJ cosht2 . 

IV. 1 Target Fragmentation 

From (4.3) we see that when yI-y is large (photon and the produced hadron 

is well separated in the rapidity plane) 5, is also large, and 5 2 is finite because 

y-y2 is (as long as kL is small, which seems to be the case from the experiments). 

The 0(1,2) analysis of El, for large < 1, yields (Fig. 6) 

(J-5) 

% where a! is the leading singularity in Al of A, , which we assumed to be a 

simple pole. Assuming that only the Pomeranchuk pole dominates we have a=l. 

Also assuming that the leading singularity is a simple pole probably means its 

residue factorizes in the usual sense: 
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where we used our prescription (2.12) for the photon-photon-Reggeon coupling 

“in the4iast step. Substituting these in (4.5) we get 

(Flux) dCT 
d3k,‘2ko [ ,=-- 

(4.6) 

Going back to the invariant variables V, v’, K, we get 

cash 5, = k-p _ m2+p2-t 
ml-l 2ml.l 

Large 5, means large VI/Q, and finiteness of 5, and $ means the finiteness of t 

and VI/V. For the normalized cross section we finally obtain 

p(Q2, v, V’, K) 
Ej 

Xtft(xt> K) 

Y1-Y-- 

y-y2 finite 

(4.7) 

where xt = k. q/p. q is the new scaling variable. Using (3.17), we obtain 

+g vgp = A~ (u)pT(Q2,v,v’ lBj2 1 >K) = Flk4 Xtft(XtJ) 

4F2b)P TcL(Q2 , V, v', K) = F2(c4 Xtft(xt, K) 

Recalling that F 1 is one power down in W, compared to F2, we see that the same 

is true for 

& VW1 - t gl(o, x; K) = F,(w) G&K) 
W 

Y1-Y-03 

y-y2 finite 

(4.8) 
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and 

- -&v2w2 - 
Bj 

~~(w,x;K) = F2(ti) Gt(xt,~) 

Y 1-Y-W 

y-y2 finite 

Now the question is whether this particular single Regge limit corresponds to 

the limiting hadron fragmentation in the sense of Ref. [5]. In order to prove 

that this really is the case we have to show that the above limit includes the case 

where kg is small in the laboratory frame. Taking the extreme case k3=0, we 

have 

cosht 2 = 7 , finite 

sinh[,t= v’ - - 
Q 

” Q-coo 
4mpw . 

Bj 

So we see that the hadron produced in the region-a) has similar features to the 

target fragments of the purely hadronic processer and Eq. (4.7) shows that in 

the kinematical region which is a combination of ordinary hadron fragmentation 

region and the Bjorken scaling regions the quantity p(Q2, v, vr , K) scales 

in a general way. The scaling variables are the old w = Q2 / 2~. q and new 

x = t K . mv (Note that in the target fragmentation region we have enough freedom 

to choose another scaling variable, 2,uv’ /Q2, and these two scaling variables 
2p.v’ * 2mv Xt are related to each other as - = 
Q2 2mv - = - . 

Q2 w 
But we shall see below that, 

our choice xt== Pv’ has better features, that it is proportional to the celebrated 

Feynman scaling variable xF = 2k$ /&s . ) The meaning of the scaling variable 

xt is not immediately clear. In order to relate it to a more natural experimental 

variable let us consider the c.m. system of p and q, in which (dropping the 
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asterisk) 

4r P’ (P,O,O,P) 9 

Note that, using s = 2mv (l-w) 

k.q-k (p2 ‘Q2)1/2+p: k 
3 - 2 & 

Therefore 

Xt$21=1 2k3 _ 
P*q (1-w) -yp = (l-w)% * (4.9) 

Since 0 < 1-w -C 1 and IxF I < 1, we have lx 11 1. We also immediately obtain 

the following relation which is well known in purely hadronic inclusive reactions 

M2 s=l /L-is N 1-x 
3 

l-w p-q F 

as S/M2 becomes large xF 2: 1; this corresponds to the boundary of the phase 

space. When restated in terms of our new variable, xt, this says that the phase 

space boundary in the hadronic side corresponds to xt~ l-w, i. e. , it depends on 

w. 

We also notice that, to leading order in terms of Regge singularities we 

considered, the scaling occurs in a factorized form: (Hadronic Feynman 

scaling) x (Leptonic Bjorken scaling). Adding secondary Regge trajectories 

spoils this form of factorization. Including only the next leading trajectories, 

9’ and A2, we have 

A f: 
51-+~ 

@oWlMp(@,t2~Q2) + (cosh~l)1'2~~,(~,S2,Q2) - 
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Using factorization of Regge residues and (2.12), and recalling cash 5 = L 1 Q’ 
we get - 

(-J?lux) da - 
y d3k/2ko Bj 

~“&‘Xt4 + L 2/;(t&&;t) 
Jill 

(4.10) 

y-y2 finite _ 

Yf-Y-=J 

Arriving at this general scaling law we have used the factorization of the 

Pomeranchuk residue and the prescription (2.12) for the photon-photon-Reggeon 

vertex (the factorization of the Pomeranchuk residue also implies that the frag- 

ments of the hadron are essentially independent of the virtual photon beam). 

IV. 2 Central Region 

We shall look at the central region of the single particle spectrum where 

both yl-y and y-y2 are large, at high energies. From (4.4) we see that 

sinh 5 1 % = 7 sinh (y,-y) = 5 

cash t 2 5 = T cash (y-y,) =; . 

So both { 1 and 5, are large. If the leading singularities in Al, A2 are simple 

poles, we get from (4.3) (Fig. 7) 

A(Q2,t2AAl) N 
o1 

t,: t2-* 
(cosWl) 

cr2 
(coW2) P, a (hQ2) (4.11) 

12 

From (3.20) we have 

Sh(Y l-Y2) 

~~~~~P) = 2 * Sh(YI--Y) Ch(Y-Y2) c! 2 

Also from (4.2) we obtain 

Pq 
(k- q);k.p) = 

1+cos 4 . 
1*2 
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This gives us I+ cos + - JL~/~: . This relation tells us that cos C@ is always 

finite. 4 
The Pomeranchuk trajectory can always contribute, so that the largest aci 

are 1. Assuming that the leading singularity is -a simple pole probably means 

that it is factorizable in the usual sense in which case 

Again using our prescription (2.12) for the photon-photon-Reggeon vertex, we 

d3k/2k0 

or, for the normalized distribution 

dQ2, v, v’, K) 

(4.12) 

xc i$~c) (4.13) 
3 

Yf-Y- 

Y-Y2-m 

where 

We see that the general kinematical region which combines the double Regge and 

Bjorken scaling regions we get scaling and the new scaling variable is xc. Re- 

p-k calling the definition cash e2 = - 
w 

we notice that if we make (p.k) also finite, 

which takes us from the double Regge region back to single Regge region, we 

recover the scaling variable xt again, which we found for the hadron fragmenta- 

tion region. The function g,(q) we found above is a universal function depending 

only on the type of particle observed, but not on the virtual photon beam or the 

target. The coordinate system described by (4.1) is not a very transparent one 

in terms of physical quantities. In particular the meaning of C#J is not immediately 
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clear. In order to relate $ to a more natural experimental variable again let 

us cons+ider the c. m. frame of p and q (again dropping the asterisk) 

X 
c gj 

+ (2w+1)+0-k3) ko-k3) - 2w kg] 1+2w (4.14) 

- 
For small values of kg 

2 
X c ij 5 

k*3-‘0 

This shows that for samll kg, the xc dependence is equivalent to the k: depend- 

ence, which is transverse momentum of the produced particle in the c. m. frame 

of the virtual photon-hadron system. 

In the purely hadronic production processes pionization products are those 

hadrons @ions) which maintain a finite momentum in the c. m. system of the 

initial par titles , as 

most characteristic 

which k3=0. Let us 

k3=0. We have 

the energy of these initial particles become very large. The 

momentum value for the pionization products are those for 

see whether the double Regge expansion (4.10) is valid for 

(4.15) 

In order to have [ 1 large we have to have w ~0, which is implicitly really the 

case in all our analysis, for finite k . 
1 

So, central region contains particles 

which are slow in the barycentric frame. But of course there is nothing in the 

above argument which shows that these slow particles are the only ones produced 

in the central region. 
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If we include the next leading Regge trajectory also, we get for the nor- 

malized distribution - 

ptQ2, v, v’,K) - xc 

I-- 
9’ 

+ xcw Pyy - -Ty gppc) 
K prr 

or since the cross terms break the scaling, and we have two contributions 

pt&2,W’,~) - x 

(4.16) 

one scaling, and one scale breaking. Equation (4.16) shows that to get the 

scaling, Pomeron dominance is crucial (Reggeon-Reggeon contribution is sup- 

pressed like <u, but increases with Q2 causing charge asymmetries) I 

Note that when the contribution of the secondaries become comparable to the 

Pomeron contribution we are at the boundary of the central region, i. e., for 

These mean 

n-w 
rnv’ = -$ Q sinh (y-,-y) - Q2 
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or 

fwYf-Y) - f- $ 
1 

(4.17a) 

- 

K = PL c0d-1 (Y-Y,) - P 

or 

cash (y-y2) N k 
3 

(4.17b) 

Equations (4.17a) and (4.17b) show the passage to the current fragmentation and 

, target fragmentation region respectively. 

By using (3.17) we find the scaling behavior of the structure functions as 

follows 

1 Bj 
+J, xc) = F,(w) GC(xc) 

central 
region 

(4.18) 

& v2w2 - 
B j 

~2~wQ = F2W G’(x,) 
central 
region 

Here the function Gc(xc) is a universal function depending only on the type of 

particle observed, but not on the virtual photon beam or the target. 

IV. 3 Phase Space Boundary on the Target End (Triple Regge Limit) 

If the produced particle is sufficiently near the hadron end of the spectrum, 

that is if, say y-y2, is nearly as small as possible, it becomes possible to 

calculate ft(@, y-y,) in (4.7) explicitly in the Bjorken limit. This is the route 

followed in the case of purely hadronic inclusive reactions. They show that 

phase space boundary corresponds to the Triple Regge Limit (TR). Here we 

shall follow the reverse route, by studying the mathematical TR limit, and then 
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looking what physical region does it correspond to. From Fig. 8 we see that 

in the TR region A T’ LtQ2, - v, v’, K) is given by 

AT’ L(Q2, v, v’,K) “, 
TR 

. 

(4.19) 
-T,L where a’(t) is the leading Regge trajectory in the t-channel, and A stands 

for the absorptive part of the virtual photon-Reggeon forward elastic scattering 

amplitude, M2 is the missing mass, and Ot is the c.m. angle for the process 

p-t-q -k-t anything in the t-channel, and for small t, and if the detected hadron 

is a nucleon given by 

-t 
J 

w+x 
cos e N t 

t ZqTr (4.20) 

where xt=k*q/p.q. When thp detected hadron is a nucleon, then the dominant 

a’-trajectory is a Pomeron. So cos et has a power of 2. A similar analysis 

gives 

&L 2 (Q ,M2A = 0 0 ga,al$, t, 0) $4 L(Q2)(cos ‘l,fto) (4.21) 
ML, QL-ca 

where g olQ1a(t, t, 0) is the triple Reggeon vertex, and eM is the scattering angle 

in the barycentric frame on the cross channel of the photon-photon channel for 

the forward process photon + Reggeon - photon + Reggeon, and is given by 

(4.22) 

Pomeranchukon is the dominant a-trajectory, and using (2.12) for the photon- 

photon Reggeon vertex, we get 

AT,L 2 (Q ,M2,t) - (4.23) 

t small 
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Substituting this in (4. 19) we get 

(4.24) 

small t 

where 

The region in which our expression is valid is given by the following kinematical 

constraints: 

(a) t small, fixed. 
w+x 

fb) -t & large, which means xt - 1. And this ratio is very sensitive to 

the variation of xt around xt N 1. In terms of Feynman’s variable this means 

1 
XF-l-w* 

(c) p* “i k’ q large, This condition is automatically satisfied in the Bjorken 

limit, as long as (b) is satisfied. 

The constraint (b) implies yl -y= yl - y2. This shows that indeed the 

the TR region corresponds to the boundary of the phase space available for the 

single particle spectrum. 

So, we see that for a nucleon produced near the end of the phase space, the 

invariant distribution is 

(Flux) do 
d3k/2ko 

N rTTLp2 
Bj.P ’ 
TR 

tw+q2 
W 

(4.25) 

i.e., there is a peak at the target and of the phase space in terms of the variable xt. 

This agrees with the data beautifully (Fig. 10) [9]. The existence of this peak 

(elastic peak) was also predicted, via quite formal arguments in Ref. [19]. 
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If the detected hadron is a pion, then the dominant cz’-trajectory is a 

%baryqX1 trajectory with the intercept, on(O) M 0.3. In this case, 

cos ei ) 
w+x 7r -l--& N 

-tBj.i+q 
TR 

Substituting these in (4.19), we get 

tFl=4 
doTy L M rT9” $ (l-xt)0.4 

d3k/2ko Bj 
TR 

This distribution vanishes at the boundary. Again, this result agrees with 

experiment (Fig . 11). 

The scaling laws, for the structure function are, using (3.17) 

-.pki - $R(~,Xt, K) = 

W 
TR 

&V2gdi - @lR(w, 

Bj 
TR 

(l-xt)O. 4 

(4.27) 

The first ones are for nucleon production, the second for pion production. 

IV. 4 Current Fragmentation 

From (4.4) we see that when y-y2 is large, while yl-y is finite (Fig. 9) the 

0(1,2) expansion yields 

A(Q2;t2, $3 tl) = ( cash t2ja P(Q2;9, 5,) (4.28) 
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where CY is the leading singularity and assumed to be a simple pole. Again 

assuming that this leading singularity is the Pomeron trajectory, and it - 

factorizes, we obtain 

(Flux) do p! 
d3k/2ko 

(4.29a) 

where the function p 9 
Y 

stands for the right-hand blob in Fig. 9. 

Since in this particular region, we do not have the photon-photon-Reggeon 

vertex explicitly in a factorized form, this is as far as we can go in our approach, 

namely we cannot predict explicit scaling forms. For the normalized distt-ibu- 

tion we have 

(4.29b) dQ2, v,v’, K) 
ITj o( ) 5Q21.Y2 

V G 
p8 pyh(Q ;Y,-Y) 

yl-y finite YY 

Y-Y -O” 2 

All we can do is really guess and find plausibility arguments for the scaling 

variables, and the distributions. Let us first study the possible candidates to 

be the scaling variables. Since yl-y = &7( 1) , and y-y2 large, we have in the 

B jorken limit 

v’ - d(Q) K - @(Q/w) 

- - a(&-‘) K V’ 
V - - @(Q-l) V (4.30) 

- - @(Q-l) K V’ 

; Q2 
2 

- @(Q-l) 
Q 

m’e 1 1+ t3-l or-Y11 
7-G 2 1 

From this list we see that if we would like to have a scaling variable in the 

conventional form (conventional in the hadronic sense) the only likely 
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candidate is the last one. But unfortunately, that it is nothing but the Bjorken’s 

scalingvariable can be seen by explicitly calculating it out (as is already obvious 

from (4.30)) in any frame we like. Doing it in the c. m. frame we find 

ko’k3 k3 
fs=Gly& 1-2vq r 1 ; LrgeW 

3 

That eventually we took the limit kg - ~0, was in accord with the definition that 

the detected hadron has a finite fraction of the photon mass. Since both photon 

and the detected hadron are well separated from the center of the rapidity space, 

this means that photon fragments have large longitudinal moments in the c. m. 

frame. 

Since the photon fragmentation region is quite a peculiar region for high 

Q2, we have to give up the conventions we made for the purely hadronic 

processes. To find the correct scaling variable let us review the scaling vari- 

ables we have obtained for the neighboring regions: 

-k. =r WY1-Y) 
“t - p-q 

M & -(Y-Y,) 

m Sh(yl-y2) m 
e 

xc _ Oy..$k) _ P2 Sh(y1S-y-y~;;y2) M P2 
. 1 1 

Calling Sh(yl-y) =zl, Sh(y-y2) =z2, Sh(yl-y2) =z2, Sh(yl-y2) =z we see that 

-LZ1 2 z1z2 
xt - my 7 xc = P1 z 

The scaling variable $hich would match with xc and xt and would carry the same 

meaning would be 

z2 NY-Y2) 

“r=z = 
= a!Li = ($22) 

sh(yl-y2) v/Q 
(4.31) 
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In terms of this new scaling variable, our normalized distribution becomes 

- py(Q2,w”,~) 
Zj 

+ .fiFhtQ2, Y ,-Y) 
yl-y finite %Y 

(4.29c) 

Y-Y2-03 - 

As we see p does not even have Bjorken scaling, as it is. To guess the scaling 

form, consider the inclusive sum rule [6] : 

d3ki 

-ii- i0 
py(Q’;v, V’,K)kiO = Etot (4.32) 

We know that the total available energy is Etot N v . We shall show in the next 

section quite generally that, the transverse momentum of outgoing particles is 

limited. From our detailed kinematical analysis above, we see that in the 

current fragmentation region k. - a(v), and it is at least one power of Jv sup- 

pressed in the neighboring region (because the boost parameter which relates 

the lab and the c. m. frame is Ch p = 4 v/2m(l-w) ) . Assuming that cross 

sections are bounded as Q2--m (i.e., multiplicities do not grow as powers of 

Q2), then this sum rule is saturated by the contributions in the current frag- 

mentation region. This means that the integral in rapidity extends only a finite 

region: 

CJ 

k. 

i (yl-y=2) 
d2kli /dyi py(y1-y2i~; ) $ = 1 (4.33) 

Since kiO N@(V), the simplest way of satisfying this sum rule would be to have 

p(Q2, v, V’,K) independent of Q2, i.e., scale in W. (This would mean that vGVl 

and v29ti2 are the scaling structure functions, as in the neighboring region, and 

is in agreement with the parton model predictions [8] also, if this means 

anything). This is simply achieved if the explicit Q-dependence of the blob 
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pFh(Q2, Y-Y,) was 

If this ansatz is correct, we finally obtain 

(4.34) 

Y-Y2 -+m 
yl-y finite 

Where in the last step we also used the fact 

WY-Y2) 

“r = SMy-y2) - e 

-(Y,-Y) -1 
=$ 

( J 

Adding the next leading trajectory breaks the scaling 

(4.35a) 

As K gets large we approach scaling from above. Note that for x 
Y 

~1, close to 

the end of the boundary, we have ~/p=v/Q. Substituting this in (4.35) we get 

py(Q2, v, v’,K) - x Y E f% P )+ Y Y’ 1 vf 
Q 9’ y fy (x,dy 1 (4.35b) 

For small Q (and fixed value of initial total energy) Pomeron contribution dominates. 

But if we increase Q2, the contribution of the isospin carrying secondary tra- 

jectory (PI+ A2) becomes comparable to the y-contribution. This implies that 

,*/,- asymmetry, which is due to isospin carrying secondary Regge trajectory 

increases as a function of Q” , or as a function of w for fixed value of s. This 

prediction although not as detailed as that of the parton model [20], is supported 

by the data (Fig. 12) [9] . 

Now, let us investigate the questions whether the hadron produced in the so 

defined current fragmentation region show the same features as in the purely 
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hadronic case. (In the purely hadronic case, particles which are slow in the 

.beamest frame are the fragments of the beam.) Because it does not make 

sense, to talk about the rest frame of a space-like photon, let us work in the 

barycentric frame: 

cash ,$ P-k = - - 2 rnp - k3+m 
-f&+- 

So our expansion is valid for the fast particle production. Let us see now 

whether there are any slow particles produced in this region also: 

cosht2 2: ‘“L (v/d2 - 03 
k --+Ix) 

3 ” JF) 

(4.36) 

(4.37a) 

k. sinh 5, =--$ - l-2w 1 - large 
k310 2 J-j WOO 2& 

(4.37b) 

This result shows that particles with ki;-0 are produced in the central region, 

and the central region may be called the “pionization region” as in the hadronic 

case without any further reservation. The structure functions scale as follows: 

; V96 1 gj 
<+, “r, cl,) = F 1(4 G;Gy> cl,) 

Y-Y -03 2 
yl-y finite 

(4.38) 

1 
G 

V2W 2 Bj 
LF;(w,x~,PL) = F2(w) G;+L(xy,pl) 

Y-Y;!- * 
yl-y finite 

The hope that, we can find the form of Gy(xy , p,) explicitly, by taking the single 

pion exchange diagram for pion production close to the boundary, fails when Q2 

large, because (q-k)2 N -Q2. This is a peculiarity of the highly space-like 

photon. 
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V. AVERAGE MULTIPLICITIES 

V. 1 Contributions of Each Kinematical Region to the Multiplicity 

Tc average multiplicity of the produced particles is defined by 

CT~~~(Q~~V) ii(Q2, v) .= /$ datQ22 1/p ' ' 
0 ( d3k/2ko ‘) - 

(5-l) 

where g tot is the total spin averaged virtual photon-proton cross section at a 

given v and Q2 and the integral (5.1) extends over the allowed phase space. In 

our definition ii means the average multiplicity for a specific type of particle, 

say pion (?;‘, 1~-, or r”) to which dcr/(d3k/2ko) refers. To get the average mul- 

tiplicity for all kinds of pions produced in virtual inclusive photoproduction 

processes we have to add the contributions of all. Clearly if one does not have 

information about the transverse momentum distributions it is difficult to esti- 

. - 

mate the multiplicity of the pions. However, if kl dependence of the invariant 

distribution (explicitly f t, fY, and g) falls faster than (k$-l, then the leading 

behavior of n(Q2, v) can be calculated when the Pomeranchuk pole is the leading 

singularity. 

At the end of this chapter we shall carefully study this point and will show 

that the suppression of transverse momentum comes out naturally as a result of 

other assumptions already made, and the data seems to be in perfect agreement 

with this (Fig. 12) [9,25]. Making a variable change from (k k ) to (y k ) we 
3’ 1 11 

get 

2%Q2, v) = /d2kl fdy pttxts,) + /dy/d2kl p,Gul) + /d2kl j-d~p~(xr,~~~ 

Because the pL behavior is damped, the total multiplicity is proportional to the 

length of the phase space, In 
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Now let us calculate the shares of each region. The first integration is 

over a finite length of rapidity (-2), and therefore is a constant. The second 

integral is proportional to the length of the phase space of that region, because 

the integral of the universal function pc@,) over ki is constant: 

2+L 

/2 ’ dy/d2kl P&P,) = (const) x Lc 

where Lc is the length of the central region, in rapidity space. 

Even though we assume that photon fragments very much like a hadron does, 

we know that certain things are different, because the photon is very highly 

space-like. To find the contribution of the current fragments, let us keep Q2 

fixed and large, and decrease s, until the projectile communicates with target, 

in the rapidity plane (this can be achieved, by keeping Q2 fixed and letting w to 

1 also). The length of the projectile fragmentation region is 

LY = Y-Lt = In [ 1 4 (l-w) * 5 
Substituting 

= Q2(1w) 
W” 1 

we get 

Ly N an (l-w)2 $ [ 1 PI (5 * 3) 

If we now let s-03 (keeiing Q2 large, and fixed) central region reappears again. 

The size of the central region is, then 

Lc = Y-L?/- @i(l) N In -$ + iI 1 Q -cd 
(5 * 4) 
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Finally, the contribution of each region to the total average charged multi- 

plicity is (Fig. 14) 
- 

$,(Q’, v) = constant 

iic(Q2,,v) = (const) Qn (l/o) 

i'iy(Q2, v) = (const) + (const) In (Q”/,uT) 

- (5.5) 

V.2 An Upper Bound on the Transverse Momentum. 

Now it is well known that the logarithmic growth of the average multiplicity 

(at least in the purely hadronic case) arise from populating the longitudinal phase 

space dk3/ko = dy in a statistically independent manner [6]. We would like to 

point out here that for this type of longitudinal distribution the transverse mo- 

mentum must be limited for the general case like the one in hand, where we have 

highly off shell virtual particles involved [21,22]. We shall make the following 

assumptions: 

a) phase space is completely filled 

b) transverse momentum is independent of rapidity . 

Since the assumption (a) is the most crucial one for the processes involving 

highly virtual particles let us give a plausibility argument in support of it, re- 

calling the kinematical study in Section III. 2. The quantity 

AY = Y,, -yl = Qn (1-w) + In 

would measure the unfilled positions of the longitudinal phase space. Fortunately 

it is small (N d(1)) for all values of Q2. If Ay was not small, it would mean that 

there are new regimes opened up in the phase space, other than the so defined 

target fragmentation, central and current fragmentation regimes. 

That Ay - @( 1) means that phase space actually extends only between limits 

fixed by the rapidities of the leading particles, although it does not seem to be so 
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at first sight. Let us calculate the mass, ,&, of the “Feynman gas” of length 

Y. Let us first translate the gas in y by a Lorentz transformation so that it is - 
centered at y=O. Let us call the average density of particles integrated over 

k 
1’ 

C, i.e., dii/cly= c. Since k3=yL sinh y, with the gas centered at y=O, its 
- 

total momentum is zero; therefore its mass is its total energy. Assuming that 

I;, is independent of y, we obtain 

Jtt= 2CcLsinh N Ci eyj2 
1 (5.7) 

From (3.24) we immediately see that 

Y = In (1-w) -E- [ 1 m2 

Substituting this in (5.7), we get 

(5-W 

(5 * 9) 

Since &T cannot exceed the total available c. m. energy, 

c.m. 
du $‘Etot = J-s 

we get 

gL+ 1 
m Bj 1-w of0 (5.10) 

From (5.10) we see that if C is to be of order -1 as is experimentally (Fig. 15) 

[9] then for w-0 (deep Regge region) PI is constrained to be of the order of a 

typical hadron mass or less, the same behavior we see in hadronic production 

processes [6]. As Q2 gets very large, or as w -) 1, (5.10) predicts large devia- 

tion from this typical hadronic behavior. If C is again to be of order 1, then 

LA/m may get very large with increasing Q2, for fixed s: 

L<ll --=- 
m N C 1-w C +$) (5. 11) 
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This linear increase with Q2 seems to be consistent with the data (Fig. 13). 

From the data (Fig. 15) we get C-l. 4 Se we see that this inequality is well 

satisfied by the data; for the left-hand side is 0.47, but the right-hand side is 

1.08. Notice also that (5.9) and (5.10) set a rough upper limit on the value of 

C, because P$,?~. These upper limits are 

CT MN 7 N-N 
max M , CN MN 1 N-X 

max ?T MN ’ 

and these give 

C;ax/C;ax N MN/MT M 7 . 

Now it is the right place to note that if the central plateau is really two 

plateaus, hadronic plateau and the current plateau, lying between the current 

fragmentation and the hole fragmentation regions [23], our result (5 .lO) applies 

again. If they are of equal height C is their common height; if they are of 

different height it is their average, C= i (Ch+Cy). 
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VI. FINAL REMARKS 

hthe preceding chapters, following Mueller’s analysis of purely hadronic 

processes closely, we calculated the momentum distribution of the final state 

hadrons in deep inelastic electroproduction processes, and obtained general - 

scaling laws. Our approach to the problem is fairly model independent. We can 

list the ingredients that led up to the above result as follows: 

(a) We assumed that the amplitude for the forward virtual Compton ampli- 

tude can be written as a sum over the leading Regge poles over a wide range of 

values of Q2 and v and not just the asymptotic limit (a plausibility argument for 

this is duality). 

(b) The scaling law obtained by Bjorken for the ordinary deep inelastic elec- 

troproduction processes are consistent with all the experimental data available 

at present. Therefore, we take it as an experimental fact, and combining this 

with (a) above we get a prescription for the Qi: dependence of the virtual photon- , 

virtual photon-Reggeon vertex. 

(c) We assume that Pomeranchukon singularity is a Regge pole, so that its 

residue factorizes. This assumption enables us to use the information we obtained 

in (b) for the ordinary deep inelastic electroproduction processes. 

(d) We expand the absorptive part of the forward three-to-three amplitude, 

“virtual photon + nucleon + pion -virtual photon + nucleon + 5,” into harmonics 

of 0(1,2), as Mueller did in analyzing the purely hadronic inclusive reactions. 

Because of the existence of a highly spacelike virtual photon, this is not trivial 

exercise at all. Also, in this analysis, we did not assume the mass of the virtual 

photon, Q2, to be small compared to v . 

Although we assumed that the virtual photon fragments very much like a had- 

ron does, we get some interesting features in our case which are absent in purely 
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hadronic case. For instance, we observe that the size of the virtual photon 

fragmentation region in the rapidity plane changes with Q2. Factorization of 4 

the Pomeronchukon residue insures that in our case also the target nucleon frag- 

ments exactly as it does in purely hadronic inclusive processes, i.e., its size 
- 

in rapidity plane is a constant, so its contribution to the multiplicity is a constant. 

The average multiplicity again grows logarithmically with energy, as in the purely 

hadronic case. But this time the contribution fram the photon fragmentation region 

is really large. If we fix w at a not too small value, we see that the major con- 

tribution to the multiplicity comes from the photon fragmentation region, whereas 

in purely hadronic case it was coming from the central region. 

We have, then, shown quite generally that the logarithmic increase of the 

multiplicity imposes a constraint on the average transverse momentums produced, 

and this upper limit increases with Q2. 

We have shown that, at not too high energies where the contribution of 

secondary Regge trajectories are comparable to the Pomeron, the charge 

asymmetries carried by these isospin carrying trajectories increase with in- 

creasing Q2, both in the current fragmentation region and central region. This 

behavior for current fragmentation region is beatifully supported by the data. 

But since energies are not high enough to develop a plateau, the prediction for 

the central region is to be tested in the future. 

We finally point out, as a final digression on the soft-pions (in Appendix 3), 

that the contributions of the soft-pions does not increase with energy, i. e., in 

the center of mass frame, it is the soft-pions’ contribution which gives early 

onset of scaling. 

Kinematics relevant to the problem is very thoroughly and carefully inves- 

tigated throughout. 
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APPENDIX 1 

Fox Q2 -0 we should have dcL 

d3k/2ko 
-0; this gives us the following relation 

lim Wl(Q2,v, v’,K) = W2(Q2 v v’ 73 9 K) 
I 

. - (Al. 1) 

Q”-0 

Also dU 
T 

d3k/2ko 
(Q2 = 0, v , V’ , K) is the inclusive photoproduction. 

We observe that as Q2+0, sin 26 20 y -0, and so cos 2 - 1, therefore 

(dQ2dVz, &j Q< o 47r2a! (g) Q;zo [“?(Q;;yv1y7)] . (Al. 2) 

Comparing this with the photo inclusive cross section 

(Al. 3) 

we finally obtain 

. (Al. 4) 
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APPENDIX 2 

The relations between Wab and W i are as follows 

++ 
w = 

w 00 =E”*Eow~v=-wl+ 
P v 

.k12W +L Re(c”*.p)(co.k)W4 
3 mp 

W+- = .s;* c;ti = + (E+*.~)(E-. k) W3 
P 

Re W” kX =1zl(,‘.k)W3+% (c”.p)W4 . 
P2 
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APPENDIX 3: INCLUSIVE SOFT-PION ELECTROPRODUCTION 
- 

We shall now consider inclusive electroproduction process where the de- - 

tected particle is a soft pion: 

e(Q) + N(P) t eYQ7 + rtoft(k) -t- anything (p,) . _ 

We shall first look at the problem as a special case of the general pion produc- 

tion process we investigated in the preceding chapters. 

The notion of a soft meson depends on a particular Lorentz frame just as a 

soft (infrared) photon does. We are going to assume here that in some Lorentz 

frame, which we are going to specify explicitly below, all soft-pion momenta, 

say kcl, are so small, that they satisfy [24] 

II3 << p . (A3.1) 

In order to get started we have to choose a special frame first. Special frames 

at our disposal are rest frames of the target and projectile, and the center-of- 

mass frame of the initial virtual photon-nucleon system. If we take the lab frame 

(target rest frame) as our special Lorentz frame, emitting soft pions correspond 

to target fragmentation, or, expressed in another way, we say in the lab frame 

target fragmentation limits and soft-pion limits are kinematically same (to be 

more precise it is not really the whole target fragmentation region but the end 

region of it, i.e., the triple Regge limit). We can rephrase this as follows: A 

soft meson is soft only in the rest frame of the primary particle that emits it 

(we must be careful at this point, because it may be difficult to identify the rest 

frame of the primary particle, since, in order to radiate, it must experience an 

acceleration, and therefore its rest frame changes). The invariant kinematical 

variables in this case are 
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and 

Therefore 

V’ -N 1 . v (A3.2) 

For a consistency check let us calculate the rapidity variable in this case: 

cash (y-y2) = + 2: k . 
1 5 

This tells us that in the soft-pion limit indeed the rapidity difference cannot be 

large. So the Regge limits which involve large values of rapidity difference 

y-y2 are inapplicable in this case, and the only allowed Regge limit is the one 

in which yl-y2 -03 , yl-y - 00, and y-y2 finite. So for the soft-pion production 

in the lab frame we have the scaling law (4.7) with the special values (A3.2) of 

the scaling variables. The particular value of t - 1 GeV2 shows that one nucleon 

exchange approximation is a fairly good approximation for the soft-pion produc- 

tion in the lab frame. We have shown in Chapter V that the contribution of the 

target fragmentation products to the multiplicity is a constant. Since the soft 

pions in the target frame are the fragments of the target their multiplicity is a 

constant. 

Now we shall choose the c. m. frame of the initial system as our special 

Lorentz frame, as is usually done [5]. In this case the process of emitting soft 

real or virtual pions is known as pionization. The invariant variables in this 

case are 

v’dzL- w+L 5 -l/2 

( ) 
l/2 

P -2/-t 2 (mv) 
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For the soft-pion production in the c. m. frame we have the scaling law (4.13) 

with the following special value for the scaling variable 7: -cI 

r=* N- +2 . 
soft 

(A3.3) 

pion - 

For a consistency check let us calculate the rapidity variables in this case 

cash (y-y2) = K - I.tl c;(y2 -m 

(A3.4) 

J.% 
-l/2 

‘Osh 0’1~Y) = c1 Q - 6 (‘d+ ;) (mv) 
1 

Again recalling the last chapter’s prediction that the contribution of the pioniza- 

tion products to the multiplicity is Qn(l/w), i. e. , scales, the multiplicity of the 

soft pions, in the c.m. frame, is Qn(l/w). So we see that which ever special 

Lorentz frame we choose for our definition the multiplicity for the soft pions 

does not grow with the energy, it is constant and it scales in the c.m. frame. -- 

T. D. Lee [S] showed that there is a general relation between the multiplicity and 

the energy scale (he defines the scale SC, so that when S is bigger than SC the 

structure functions scale). His prediction is that if the average multiplicity n 

increases with energy, say, like 

ii 
S 

where K is a number, then the scale SC for a channel with a large multiplicity 

should increase exponentially with n, i. e. , 

% - 
Mi en/K . 
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In the case of finite average multiplicity he finds that the scale for any channel 

.of mu.Uiplicity n, is approximately 

SC - (MN+ hMrm2 

where h is some large factor, say 10. Applying his predictions to our problem, 

we claim that for the soft-pion production in the deep inelastic processes the 

scaling sets in early, i. e. , the over all scale is low, for the multiplicity is 

finite irrespective of the Lorentz frame we choose. Then the possibility exists 

that if one excludes all the hard mesons in the deep inelastic electroproduction 

processes, the remaining hadron multiplicity at infinite energy may stay finite 

and not too high. Notice that our prediction is contrary to that of~lee’s. He 

claims that the growing multiplicity is due to soft mesons, and our prediction 

is that it is rather due to hard mesons, and it is the soft mesons which set the 

scaling so early. 

Now integrate the equation (3.10) over v’ around the value v’ - v in an 

interval of length G in the lab frame. Since the structure functions 9kl and 

vW2 scale with the SpeCid VaheS, K = E 7r - p, x N p/m of the variables, we get 

do 
dQ’dvdE* ii 

K) COS 
28 

5 

soft pion 

+ 29k,(~.d,x,, K) sin "$ IFI 1 (A3.5) 
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and in the c . m. frame, again integrating over V’ along an interval of length 

I-E- I .-- ,4we get m 

dD 47rcY2 NP 
dQ2dvmT Q4 1 Isi] (A3.6) 

- 

where x - 2 
C 

,u 
1 

in the soft pion limit, and 0 is the electron scattering angle. 
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FOOTNOTE 

f-j-The last reference in [ll] was an attempt to modify the erroneous treatment 

of the current fragmentation (and some kinematical errors) in the second 

reference in [ll]. Unfortunately they failed firstly to notice the, w-dependence 

of the phase space, which is so crucial, especially in proving that no new 

regimes other than those studied in this work, open up at high Q2; in other 

words the phase space is completely filled by the secondaries. Secondly, 

their scaling variable (and also scaling distribution) for the current fragmen- 

tation region is not a scaling variable for high Q2, as is obvious from our list 

(4.30). So their only two new results being incorrect, they fail to outdate the 

second reference in [ll]. In this work in addition to correctly and thoroughly 

treating the kinematics, we manage to get a unified scaling variable (which is 

related to Feynman’s purely hadronic scaling variable) for both fragmentation 

regions, which is supported by the data beautifully. 
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Optical theorem for deep inelastic electroproduction process. 

Regge expansion of the forward virtual Compton scattering. 

Inclusive deep inelastic electroprodiction. * 

Generalized optical theorem, for three-to-three amplitude. 

Definition of the kinematic variables in the laboratory and barycentric 

frames . 

Single Regge exchange diagram relevant for the target fragmentation. 

Double Regge exchange diagram relevant to the central region. 

Triple Regge exchange diagram for the hadron end of the phase space. 

Single Regge exchange diagram relevant for the current fragmentation. 

The normalized distribution for the process yv+p -+ p -t anything 

(Cornell data [9]). 

The normalized longitudinal distribution for the process y,+p -+ 7r- + 

anything, for 2.2 < & < 2.8 GeV at Q2=0, and for Q2 intervals 0.3-0.5 

and 0.5-l. 4 GeV2 (DESY data [g]). 

The charge asymmetry versus l/w for the process y,+p - h*+ anything 

Ed. 

i ) ky versus Q2 (GeV2) for the process y,+p - r-+ anything. 

The shape of the distribution in rapidity space. 

Average charged multiplicity versus s for different Q2 intervals [9]. 
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