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ABSTRACT 

We show, by means of a simple example, that the Bloch-Nordsieck 

program cannot be applied to non-Abelian theories in an identical manner 

to quantum electrodynamics. The simple example is single gluon brems- 

strahlung in quark-quark scattering to lowest order in perturbation 

theory, the cross section for which is found to be quadratically divergent, 

i.e., -1/A2, where h is the fictitious gluon mass. Radiation from inter- 

nal gluon lines is found to contribute to this divergence. Application to 

the scattering of color singlet states is discussed. 
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1. INTRODUCTION 

She most popular class of models for the strong interaction today are the 

non-Abelian (Yang-Mills’) gauge theories. 2 Their renormalizability and ability 

to explain the short distance phenomenon of Bjorken scaling in terms of - 

17asymptotic freedomTf3 makes them particularly attractive. However no one 

has yet demonstrated that their long distance behavior can account for the fea- 

ture of “quark-confinement”, essential for any realistic description of hadron 

physics. The hope is that somehow the infrared (IR) divergences of these 

theories are so severe that they prevent asymptotic states which are not singlets 

of the gauge group. To this end we are studying the most severe infrared diver- 

gences in these theories. In this paper we present the results of .a simple cal- 

culation, which demonstrates that indeed these divergences are worse in non- 

Abelian (NA) theories than in QED, so that they cannot be cured by the standard 

techniques used in QED. 4,576 The simple calculation is the evaluation of the 

cross section for the process 

quark + quark (antiquark) -. quark + quark (antiquark) + gluon 

which is found to be quadratically divergent (i.e., ml/h2 where A is the 

fictitious gluon mass) .7 This divergence comes entirely from the forward region. 

The cross section for the analogous process in QED is only logarithmically 

divergent, and this divergence is cancelled by virtual gluon contributions, in the 

way first discovered by Bloch and Nordsieck. 4 

Among the diagrams which contribute to this quadratic divergence in NA 

theories is one in which the soft gluon is radiated from an internal gluon line, 

whereas in QED only radiation from external lines contributes to the worst IR 

divergent terms. This is due to the fact that photons only couple to massive 
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particles whereas the gluons which carry the group charge can couple to them- 

selve&hrough 3 (or 4) gluon couplings. 

In order to put our work in perspective we start by briefly reviewing other 

related results. A detailed study of infrared divergences in.NA theories away - 
from the forward direction has been undertaken by Cornwall and Tiktopoulos. * 

By explicitly evaluating lowest order perturbation theory diagrams and studying 

all orders by means of a certain differential equation these authors are able to 

isolate the leading infrared divergences to each order in perturbation theory. 

The validity of their differential equation has not been established rigorously for 

NA theories, nevertheless it seems exceedingly plausible. The leading infrared 

divergences from each order of perturbation theory are then summed, and one 

finds that these nonforward processes have associated with them a factor of the 

form 

-A g2 c cj f(h) 
j I 

(1-l) 

where h is the fictitious gluon mass introduced as an lR cutoff, and f(h) -!2nh or 

.fln2h depending upon the process and region of phase space being studied. A is 

a kinematic factor independent of A, and cj is the eigenvalue of the quadratic 

Casimir operator for the group representation to which the jth external particle 

belongs. Thus if at least 1 of the external particles is not a singlet this expo- 

nential factor goes to zero as A -+ 0, a feature which the authors interpret as 

confinement. It will be extremely interesting to see if a similar result can be 

established when forward processes are included, since that is where the worst 

IJ3 divergences occur. It is, of course, divergences in the forward direction 

which are responsible for the infinite Coulomb cross section in electro- 

dynamics. 
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In spite of the appealing results mentioned above, there remain the usual 

doubtscabout the validity of summing a series of leading logarithms (especially 

as the series is alternating in sign and its sum is much smaller than the 

neglected terms individually), together perhaps with the doubts about the differ- - 
ential equation. Several authors” “7 ‘IL have tried to understand the infrared 

structure of NA theories order by order in perturbation theory, analogously to 

QED. In particular Yaog has studied nonforward quark-quark and off-shell 

gluon-quark scattering to lowest nontrivial order in the coupling constant (sixth 

order in the cross section), and found that the logarithmic IR divergences which 

appear, cancel between the real and virtual gluons, just as in QED, as long as 

the observer cannot detect the group charge. For quark-quark scattering the 

calculation is then essentially the same as in QED, none of the r9rew’j diagrams 

(i. e. , those with 3 gluon vertices, etc.) are divergent. If the result of Cornwall 

and Tikotpoulos* that II, . . cross sections of nonforward processes involving 

nonneutral (i. e. , nongroup singlet) particles, whether or not an indefinite num- 

ber of soft gauge mesons are included, vanish in the limit h - 0, ” is correct, 

then the analogy with the situation in QED will break down in higher orders. 

However worse divergences appear in the forward direction, and it is these 

which are the subject of study in this paper. 

Appelquist et al. lo -- have studied IR divergences to lowest order in pertur- 

bation theory in the famous process 
-!-- ee -y + hadrons 

and found that the cross section for this process is IR finite, diagram by diagram 

for the vacuum polarization. Contributions to particular final states may how- 

ever be JR divergent in a given order. This is similar to the situation in 

QED. 12,13 Thus it seems that for this process, confinement cannot be seen in 
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any finite order of perturbation theory. Since this calculation was done in one 

orderilf perturbation theory, there is of course no conflict with the results of 

Cornwall and Tiktopoulos . * 

In Section II we review very briefly the process e-e-(e+) - e-e-(e+)y in 

QED. In Section III we present our results for the analogous process in non- 

Abelian theories and show that it is quadratically divergent. Finally in Section 

IV we present our conclusions, in particular relating the results of Section III 

to the scattering of group singlets. 

II. THE PROCESS e-e-(e+) -. e-e-(e+)+ y 

4,5,6 Infrared divergences in QED are now well understood, both classically 

and quantum mechanically. The only infinite cross section is the elastic one, 

which makes manifest the infinite range of the Coulomb potential. Here we will 

not present any classical examples, but will study the process. 

e-e- - e-e- + y (2.1) 

in terms of Feynman diagrams. The amplitude for this process in the infrared 

limit can be written as the sum of four diagrams (Fig. l(i)-(iv)), and we start by 

considering the first two. Working in the Feynman gauge we write 

Tl = - U(p,) es r(ti,+k+m) ? u(pl) . V(P,) ylnv(p4) + ’ 
@4-P,) 

2 

N- -k $P3)? u(P,) ‘(p,) Ycl v(p4) 
P3’ ; 

(2.2a) 

in the infrared limit, where the k in the numerator has been neglected. Similarly 

E* PI 
N- 

T2-pl.k U(P,)? U(PI) 7(P2)Yp v(p4) 

Calculating the contribution of Tl to the cross section (it itself is of course not 

gauge invariant) one finds that it is quadratically divergent. This divergence is 
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not a physical one however, since in the sum Tl+T2 there appears a factor 

E’Pl E-P3 
-- 

Pl .k p3.k (2.3) 

which vanishes in the forward direction, which is where Tl and T2 individually - 

are most singular. In potential scattering for example, the factor (2.3) cor- 

responds to 

E * v. E *v 
1 f 

w-k. vi - w-k. yf 

where v. 
l(f) 

is the initial (final) velocity of the electron, w is the conjugate vari- 

able to time, and k= & where x is position in space. This factor appears in 

the expression for the vector potential, and hence in many physical quantities. 

The contribution of Tl+T2 to the cross section is only logarithmically divergent. 

Altarelli and Bucella 14 have calculated the cross section for this process 
. - 

to this order in perturbation theory at high energy and obtain 

(2.4) 

where w is the photon energy in the c. m. frame, re = e2/m and, E = &/a. The 

logarithmic divergence as w + 0 is explicitly demonstrated. For e+e- 
+- 

-e e y 

there are also the annihilation diagrams. These diagrams individually do not 

lead to any quadratic divergences. 

In non-Abelian theories Tl and T2 now have different group theory matrices 

associated with them so that the cancellation (2.3) as pl - p3 does not occur. 

However there is a new diagram (Fig. l(v)) and the question which will be 

studied in the next section is whether the five diagrams of Fig. 1 can conspire 

to remove the quadratic divergence. 
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III. THE PROCESS qq(;) - qq(i)+y 

We consider in this section the on-shell process: 

quark+ quark (antiquark) - quark+ quark (antiquark) + gluon 

in lowest order perturbation theory and isolate the most infrared divergent part. 
- 

For this process we do not have any obvious classical limit to guide us. The 

theory is defined by the Lagrangian density 

_ $ F;vFi~V . . 
+ {(i$-M -igAIT1) q 

which couples a set of gluon fields AL to a multiplet of quark fields q. The 

matrices T1 are the generators of the gauge group normalized by 

[ 1 Ti Tj = ic 9 ijk 
Tk 

where c ijk are the structure constants of the group. F1 
PV 

is defined by 

Fi =aAi * - ifvA; + gc.. Aj Ak 
PV PV 1Jk P v 

(3.2) 

(3.3) 

For definiteness the calculation is carried out with SU(n) as the gauge group, 

but it will become clear that our main results are independent of the group. The 

charge associated with this group will be called color, even for n#3. 

In the infrared limit there are five diagrams for this process (Fig. l(i) - (v)). 

Each of the diagrams of Fig. 1 can be written as a product of a group theory 

weight and a quantity which depends on the kinematic variables. Evaluation of 

the group theory factor is particularly simple using the graphical techniques of 

Cvitanovic, 15 and we would like briefly to illustrate this here. For simplicity 

we assume that the initial state is a quark-antiquark system in a singlet state, 

although the reader can readily generalize this (in particular one can average 

over the colors of the initial quarks), and as will be shown below it does not 

alter our conclusions, The group theory weight is a produce of factors 15 : 

ti) 6ab for each internal quark leg 
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(ii) 6ij for each internal gluon 

(iii) (Ti)ab for each quark-quark-gluon vertex, 

and (iv) -iC ijk for each 3 gluon vertex. 16 

These can be ‘represented graphically as in Fig. 2. The lie algebra for the 

group SU(n), for example, can then be translated into diagrammatic identities, 

which in turn can be used to evaluate the group theoretic weights of the diagrams. 

We do not reproduce these identities here, the relevant ones for this calculation 

can be found in Figs. 2, 3, 14, and 16 of Ref. 15. Derivation of the group theory 

weights for the five diagrams of Fig. 1 can be found in Fig. 3. Thus Tl and T3 

have a factor 

(the l/ & comes from the normalization of the initial state), T2 and T4 have 

and T5 has 

L n(Ti)ab * 
Im 

But it is clear from the example of Section II that the sum of the momentum 

space weights of T 1+ T2 and T3 + T4 does not produce a quadratic divergence, 

thus in order to study any possible quadratic divergence we must evaluate Tl, 

T3 and T5 with the same group theory weight $n (Ti)ab. Moreover it can be 

easily shown that for any choice of initial colors the result is essentially the 

same; in order to evaluate the quadratically divergent terms one must evaluate 

Tl, T3 and T5 each with the same group theory factor, which in general however 

will not be $n (Ti)ab. The sum of these three terms does not produce a factor 

in the numerator which vanishes in the forward direction (cf. (2.3) in QED) 
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which would indicate that there is no quadratic divergence. 17 Thus to check 

whether this amplitude yields a quadratically divergent cross section we evalu- 

ated tcs cross section explicitly. 

Of course one must make a choice of an IR cutoff. Although dimensional 

regularization, or giving the gluon a small mass may be more generaily 

applicable; for this process it proves convenient to calculate the differential 

cross section do/$ 2 where p is the invariant mass of the quark-gluon pair. 

Provided p is not equal to m, the mass of the quark, this cross section is finite 

and gauge invariant, and is a measurable quantity. This is equivalent to cal- 

culating e dw ’ where w is the gluon’s energy in some defined frame. Any quad- 

ratic divergence in the total cross section then manifests itself as, a cubic 

divergence in do/a2 of the form (l/(p2-m2)“. We calculate the spin-averaged 

cross section, summed over the final color states. 

Let 

C = lim 3.i i,j=l,3,5 
ij p2 -m 2 d/J2 

(3.4) 

where doij/&2 is TiTT integrated over the three body phase space with the 

constraint that (~~+k)~=p~, and each C.. has the same group theoretic factor 
1J 

n(n2- 1) . We have evaluated the xi j and find: 

(a) K cl,= -16m202 (3.5) 

where K = (27r)5 and appears for all the cij, CT= s-2m2 and d+3 

is the infinitesimal three body phase space (except for factors of 2n which are 

included in K) 

d3p3 d3pq d3k 
d+3 = 2E32E4 2~ 

6 t4j 

( pl+p2 - (P3+p4+k) ) 
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These integrations can be performed and one finds 

- 
K&1= - 

4a2 AT2 1 

m2 N2-m2)” 

where h = J s(s-4m2), the usual triangle function. - 

(b) 2g37r2 CT+h K&3=Kx31=- - m2 !h u-h) (/m2)3 (3.7) 

Because the real gluon is so soft this contribution is not negligible compared 

to Cll, as happens for example if the gluon energy is fixed and s - 03 . 

(4 
4u2hT2 1 KC,,=-- 402 A31r2 

m2 @2-m2)3 - 3m6 (p2-~2)3 
(3.8) 

Since the constraint (p3+k)2 = p2 is obviously not symmetric in p3 and p4, 

there is no reason why x3, should equal cl,, and in fact it does not. 

td) KC,, = KC,, = + 
4rr2h7r2 1 16crm2r2 - c~+h 

m2 @2-m2)3 - Gu2-m2)3 Qnno_h 

+ 47T202rn2 1 
h k2-m2) 3 

/ 
d@ 36 (+) t(p3+k)2 - p2 i 

(PI-P~)~ [@2-P4)212 

(3.9) 

Although the last term on the right hand side of (3.9) is straightforward to 

evaluate, it will be cancelled in x5, so we leave it in the unintegrated form. 

Here we have the first example of radiation from an internal line contributing to 

the most infrared divergent term of the cross section. 

@I KC,, = KC,, = + 
4Q2h37r2 1 

3m6 &2-m2)3 

2h2Wr2 1 

3m2 
2 ,Qns+402 j 

w2-m ) - 
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Finally there is 

4A5T2 1 (fi” Kx55= - - 
24A02112 1 

3m6 @2-m2)3 m2 @2-m2)3 

+ 167r2A3 1 
m2 @2-m2)3 

+ 96m2q2 Qn ~ _ @+A 8m2 r2 

0*2-m2)3 CT-h 
cu2 -m2)3 

_ 

- t3c2 
d$3 ,(+) i(p3+k)2 -P”) [(Pl-p3)2 + @2-p4)2] 

kP2-P4)2]2 [(PlWP3)2]2 

Summing up the right hand sides of (3.6) - (3.11) and writing 

(3.11) 

one finds 

Kxzw8h112 (Go + 32m4) 1 

3m2 

80~~ (02+26m4) In/~+h : 

&2-m2)3 3m2 \Zil’ @2-m2)3 _ 

(3.12) 

(3.13) 

Thus the coefficient of l/b2 -m2)3 is obviously not zero. It is easy to check 

that the above expression is positive as required. For an arbitrary initial 

color configuration the result is identical except that the factor l/n(n2-1) in K 

is replaced by the appropriate factor for that configuration. Thus we have 

demonstrated that to this order in perturbation theory the single gluon cross 

section is “quadratically” divergent. 
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IV. CONCLUSIONS 

T&re are numerous situations one can envisage as being possible in a 

theory for quarks and gluons; e. g. , exact confinement of quarks, gluons and 

color, confinement of quarks and gluons but not of color, no confinement but 

inability to detect color, no confinement and ability to detect color, etc. 

If quarks are eventually seen, and these theories are found not to confine 

quarks and hence are still viable models for the strong interactions, then the 

results presented in Section III pose a serious problem. We would like to stress 

that this problem arises even when the colors of the initial quarks are aver- 

aged over, in this case the initial quarks are effectively neutral. Two questions 

immediately arise (independently of whether color can be observed or not): 

(i) Is the total cross section finite (except for the usual Coulomb infinity) to this 

order in perturbation theory, i . e. , are the quadratic divergences of (3.13) 

cancelled by interference terms in the elastic cross section? (ii) If one defines 

2 2 2 
/J by ~1 = (~1+~2-~4) 9 

dr then does the experimentally measured - behave like 

1 clu2 

b2-m2) 3 
as the energy resolution goes to zero for p2 close to m2? This 

question requires the study of all orders of perturbation theory, summing over 

real and virtual gluons. 

Perhaps when these two questions are studied, miraculously all unwanted 

quadratic divergences will cancel, but any cancellation mechanism will be far 

more complicated than the analogous one in QED. If the single bremsstrahlung 

cross section was indeed quadratically infinite, then we could have the novel 

phenomenon that two fermions could not only “focus” each other at arbitrarily 

large distances, but also radiate energy and hence decelerate. 

Since quarks, gluons and colored states have not been observed, the rele- 

vant question may be whether one can produce colored states starting from color 
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singlet states. The simplest process of this kind to study is e+e- --L y - anything. 

From the results and techniques of Kinoshita 12 in QED and Appelquist et al. 10,ll - 
-- - 

in notibelian theories, one strongly suspects that the vacuum polarization 

diagrams of Fig. 4 (and others obtained similarly from the diagrams of Fig. 1) 

are infrared finite, the singularities are suppressed by phase space. If one 
- 

calculates the imaginary part of the vacuum polarization by taking discontinuities 

across all the physical states, then individually they may diverge, but the diver- 

gences cancel in the sum. However even the contributions from particular 

intermediate states are not quadratically divergent. Thus to these orders in 

perturbation theory this reaction looks perfectly healthy, and there is no sign 

of confinement. It is reasonable that any mechanism (if one exists) which sup- 

presses the IR divergence in the quark inelastic scattering example of Section 

III, will also provide confinement in this process. It is an attractive specula- 

tion that the higher order diagrams will yield factors such as (1.1) so that only 

color singlet states can be produced. 

The problem of hadron-hadron scattering is much more difficult, since one 

does not know how to treat the binding. The analogous situation in QED is the 

scattering of neutral particles (e.g. , the scattering of positronium), the cross 

section for which is finite. In non-Abelian theories if the colored mesons are 

not degenerate in mass with the color-neutral mesons, the cross section for 

hadron-hadron scattering is presumably also finite, even though the exchanged 

gluons can couple not only to the quarks but also to the “gluon sea”. 

The “forwardf’ divergences in non-Abelian theories have been shown to be 

worse than in QED, and in these theories radiation from internal gluon lines does 

contribute to these divergences. Any attempt to understand confinement and the 

infrared behavior in NA theories must include a study of these divergences. If 

confinement is to be possible there must be differences from the situation in QED, 

and the calculation presented in this paper demonstrates that this is indeed the case. 
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FIGURE CAPTIONS 

1. (iJ -(iv) Th e f our diagrams which contribute to the bremsstrahlung of a 

single soft photon in electron-electron scattering. (i) - (v) The five dia- 

grams which. contribute to the bremsstrahlung of a single soft gluon in 

quark-quark scattering. 

Diagrammatic rules for the evaluation of the group theoretic weights for 

Feynman diagrams in non-Abelian theories. The thick lines represent the 

quarks and the thin lines represent the gluons. 

Evaluation of the group theoretic weights for the five diagrams of Fig. 1 

in a theory with SU(n) as the gauge group. 

4. Diagrams which contribute to the cross section for the process 

e+e- --c y -. hadrons. The dashed line represents the massive photon. 
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