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ABSTRACT 

Any non-Walsh Hadamard matrix obtained by methods of RS E4 A. C. Paley , 

including all but six orders less than 200, plus infinitely many higher orders, 

can be converted easily to one sharing at least for desirable properties with 

standard forms of Walsh matrices: symmetry, the same number of lls as j 

-lqs on the principal diagonal (zero trace), all l’s in the 0th row and 0th column - 

(normal form), and the same number of lqs as -1’s in every row and column 

except the 0th row and 0th column. - 

To widen the applicability of (non-Walsh) Hadamard matrices to practical 

problems, unify their notation, simplify communication among engineers using 

them, and promote further research, the matrices thus converted are proposed 

as tentative standard forms for engineering purposes, comparable to standard 

forms of Walsh matrices. 

*Work supported by the Department of Energy. 
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I. INTRODUCTION 

Fo,r engineering purposes three standard forms of the Walsh matrix W (of 

order 2” , where v is a positive integer) have been proposed [l] and are widely 

used. 

Although known forms of the more general Hadamard matrix H (of order 

4/J # 2”s where ~1 is a positive integer) have been classified as being symmetric 

or skew-symmetric, or as having a constant principal diagonal [26], no 

standard form of H for engineering purposes has yet been proposed. 

Paley established and tabulated methods for constructing H of all orders 

less than or equal to 200, except six then unknown orders (92,116,156,172, 

184 and 188) [141, all of which have since been discovered and constructed by 

other methods [4,5,9,22]. 

We can show that each Paley matrix H either is already of a form, or sim- 

. - ply by one or two elementary matrix operations can be converted to a form, 

that shares at least the following four properties with the standard forms of W: 

lo H is symmetric, 

2. It has the same number of l’s as -1’s on its principal diagonal (and con- 

sequently zero trace). 

3. All elements in its 0th row and 0th column are 1 (and thus it is of so-called - 

normal form [ 2 ] )0 

4. It has the same number of l’s as -1% in every row and every column except 

the 0th row and 0th column. 

Adoption of this form as a tentative standard for engineering purposes 

would widen the applicability of (non-Walsh) Hadamard matrices to practical 

problems, unify their notation, simplify communication among engineers using 
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them, and promote further research. 

C&the four properties listed, Paley’s illustrative matrices of order 12 

(Fig. 1) and 28 [ 161 possess only 3 and 4. In either case, however, the sub- 

matrix obtained by deleting the 0th row and 0th column of the.complete matrix - - 
is symmetric with respect to its own secondary diagonal, and the number of 

-l’s on this secondary diagonal is just one greater than the number of 1’s. 

Consequently, since all elements in the $h row and cth column of the complete 

matrix are 1, if the sequence of all the rows (columns) of the complete matrix 

except the 0th row (column) is reversed, the resulting matrix (Fig. 2) possesses 

all four properties. 

Thus our task is to demonstrate the generality of these features of the 

Paley matrices, and to examine its ramifications. 

Although not trivial, property 4 is superfluous in the sense that it is a di- 

. - rect consequence of property 3 and the orthogonality of the matrix. Therefore 

it will be sufficient herein to show that the modified Paley matrix possesses 

properties 1 to 3. 
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11. NOTATION 

To avoid confusion we shall employ Paley’s notation insofar as feasible. 

However, it will not suffice to refer merely to his U-matrix, because we shall 

alter it by means of elementary matrix operations and matrix products, and we 

shall also refer often to the submatrix discussed in Section I. To distinguish 

clearly among the different forms, let: 

A and B denote Paley matrices, A. 
bj 

and B. 
bj 

their respective elements, 

and A’ and B’ the submatrices obtained by deleting the 0th row and 0th - - 

column of A and B respectively; 

A and 5 denote new matrices obtained by reversing the sequence of all but 

the 0th row (column) of A and B respectively, and A. 
bj 

and B.. their 
l,j 

respective elements; 

% denote another new matrix obtained by multiplying the lth row and lth 

column of A by -1; 

A denote either A or A where it is not necessary to distinguish between 

them because of specified common properties, and i 
Li 

its elements; 

i denote a new matrix obtained by multiplying the lth row and lth column - - 

of A by -1; 

x denote a new matrix obtained as a Kronecker product of a Walsh matrix 

W and A, and x another new matrix obtained as a Kronecker product of a 

Walsh matrix W and either x or A. 

Other notation herein will be either identically the same as Paley’s or else 

clearly defined in the text. 



-5- 

III, PALEY ‘S LEMMA 1 

Pdey’s lemma 1 is simply a demonstration of the now well-known Kron- 

ecker product [3,11,19,27], also called direct product [19] and tensor prod- 

uct [lo], and of the.construction of Walsh matrices of all orders. For our pur- 

pose herein it is not of interest by itself, but it can be used in combination with 

his lemmas 2 to 4 to generate (non-Walsh) Hadamard matrices of higher orders. 

IV. PALEY’S LEMMA 2 

In this case 

m =4/A =p+l; p z 3(mod 4) (1) 

where p is any prime number satisfying the constraint, in which the congruency 

symbol implies that the remainder of p/4 is 3. 

The elements of Paley’s matrix A are 

A i,O =A 0,j = 1; 05ilp, OLj (p (2) 

A. 
l,j 

= x(j-i); lliLp, lljr_p, i $j 

A i,i = -1; llilp 

where x denotes the Legendre symbol [ 12,241: 

(3) 

(4) 

. . 
x (j-i) = y = 11 -1 I if j-i is a quadratic residue ] 

nonresidue { of P 

i 1 1 i Y = -1 if (j-i) kl I+j l(mod P) 

where Cp (p) is the Euler totient function 1231 0 

Although A possesses property 3 of Section I by (2), it does not possess 

property 2, since by (2) and (4) all elements on the principal diagonal except 

Ao,O are identical, 

C-J) 
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Nor does it possess property 1, for we can show easily that A is not sym- 

metris. It is well-known [ 25,231 that if 

p E 3(mod 4) (6) 

as specified by (l.), then 
- 

xl-f@)1 = -xlf@)l (7) 

where f(p) denotes simply the argument of x in functional form. In the sub- 

matrix A? (defined in Section II) the element symmetrically opposite A. 
l,j 

with 

respect to the principal diagonal of A’ (and of A) is A j 
, 
iV By (3) and (7), 

A. 
3,i 

= x (i-j) = x [-(j-i)] = -x (j-i) = -Ai j (8) , 

Thus A’ is skew-symmetric, and consequently A is not symmetric. 

However, in A the element symmetrically opposite A. 
bj 

with respect to the 

secondary diagonal of A is A p-j ,p-i” In A’ the element symmetrically opposite 

A. 
bj 

with respect to the secondary diagonal of A’ must be one row below and 

one column to the right of A p-j ,p-i’ and is therefore Ap-j+l ,p-i+l” BY (3 ) and t 7, 

A p-j+1 , p-i+1 = x [(p-it-l) - (p-j+I)] = x (j-i) = Ai j 
> (9) 

Thus A’ is symmetric with respect to its own secondary diagonal. Cons+ 

quently if the sequence of all but the 0th row (column) of A is reversed, the new 

matrix a is symmetric with respect to its principal diagonal, and thereby pos- 

sesses property 1. 

The elements on the secondary diagonal of A’ are A. i ,p+l-i” By (3), 

A. i ,p+l-i = x [(p+l-i) - i] (10) 

Since the order of A is p+l, that of A’ is pO Since p, a prime number, is al- 

ways odd, so is the number of elements on the secondary diagonal of A’, one of 

which must be also on the principal diagonal of A. With this one exception, 
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then, for every element defined by (lo), there is another element A p+l-i,i 

- (i.e. ,Ane with the row and column indices simply interchanged), By (3), (7), 

. than the number of l’s, But by (2), 

and (lo), 

A = x [i - @+1-i)], = -x [@+1-i) - i] = 
p+l-i,i . 

By the foregoing reasoning and (4), the excepted element 

Ap$l,p;l = -l 

-A. l,p+l-i _ (11) 

is 

(12) 

Thus the number of -1’s on the secondary diagonal of A’ is just one greater 

Ao,O = 1 (13) 

Consequently if the sequence of all but the 0th row (column) of A is reversed, 

the new matrix x has the same number of l’s as -1’s on its principal diagonal, 

and thereby possesses property 2. 

Finally, by (2), all elements in the 0th row and I)_th column of A are 1. Re- 

versing the sequence of all but the 0th row (column) of A alters neither its 0th - 

row nor 0th column, Consequently the new matrix x is of normal form, and 

thereby possesses property 3. 

In this case 

V. PALEY’S LEMMA 3 

m = 4/J = Zk@,l) ; k = 1, p z l(mod 4) (14) 

where k is (in general) a positive integer, and p is any prime num-ber satisfying 

the constraint, in which the congruency symbol implies that the remainder of 

p/4 is 1, 

Paley first obtains a matrix B of order p+l, whose elements (corresponding 

to, but not exactly the same as, (2) - (4)) are 
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B i,O = BO,j = 1; llizp, l(j<p (15) 

B. 
l,j = x(j-i); lLi(p, l(jIp, i +j (16) 

B. i,i = 0; O<i<p - - (17) 

where x again denotes the Legendre symbol [12,24]. He shows that &, whose 

order is a multiple of 2, but not of 4, is orthogonal. It is not a Hadamard ma- 

trix, though, because some of its elements are 0. By definition, each element 

of a Hadamard matrix is either 1 or -1. He then proves that the substitutions 

(18) 
-1 

c-13 - 1 -1 
,-I 1 1 

LOI - [ -: 1: 1 
(19) 

(20) 

result in a Hadamard matrix A of order Z(p-tl), a multiple of 4. 

In this case we have two options. The matrix B is already symmetric, for 

it is well known [ 25,281 that if 

p r l(mod 4) (21) 

as specified by (14), then, contrary to (7), 

x 1-WI = x Cf@)l (22) 

and by (15), (16), and (22), 

B. 
3J s 

= Bi j; OLigh 05&P (23) 

Alternatively, hodever, by exactly the same reasoning as in Section IV, in 

the submatrix B’ (defined in Section II) the element symmetrically opposite B. l,j 
with respect to the secondary diagonal of B1 is B p-j+1 ,p-i+l’ BY (16) and W, 

exactly as in (9), 

B p-j+1 , p-i+1 = x [ (p-i+l) - (p-j+l)] = x (j-i) = Bi j (24) , 
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Thus Bf is symmetric with respect to its own secondary diagonal. Conse- 

quently if the sequence of all but the gth row (column) of B is reversed, the new SI 

matrix B is symmetric with respect to its principal diagonal. 

By the substitutions (18) - (20), either a Paley matrix A of order 2(p+l) 
* 

can be obtained from B, or a new matrix A of order 2@+1) can be obtained from 

B, Although A and A are not identical, we can show that both possess all of the 

desired properties, and in the remainder of this section i (defined in Section 

II) represents either A or A. 

Since the substitution matrices (18) - (20) are all symmetric, i is sym- 

metric with respect to its principal diagonal, and thereby possesses property 1. 

Since each of these substitution matrices has the same number of l’s as 

-1’s on its principal diagonal, i does so also, and thereby possesses property 

2. 

Property 3 does not occur spontaneously in this case, but can be realized 

by an additional elementary matrix operation. From (15) and (18) we can de- 

duce that in f; 

4 0 
=;i 

0,j = ’ ; 2Lilp, 2zjzp , 

and from (17) and (20) that 

i, o = 1 (26) , 

but that 

Al,0 = A%1 = -I 

Multiplication of both the Ith row and Ith column by -1 removes this discrep- 

ancy, resulting in a new matrix 2 (defined in Section II) that does possess 

property 3. However, we must now verify that d still possesses properties 1 

and 2. 
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Since the ordinal number of the row and that of the column multiplied by -1 
A 

are idgntical, the symmetry of i is preserved, so ff still possesses property 1. 
* 

Since Al, 1 is multiplied by -1 twice in the process, its sign is not changed, 

so the equality of the number of l’s and -1’s on the principal diagonal is pre- 
- 

served, and 2 still possesses property 2, 

Thus i possesses all of the desired properties. 

VI. PALEY’S LEMMA 4 

In this case 

m = 4/J = 2k(ph + 1) ; k = 0, ph z 3(mod 4) (28) 

where k is (in general) a nonnegative integer, h is a positive integer, and p is 

any prime number satisfying the constraint, in which the congruency symbol 

implies that the remainder of ph/4 is 3. 

The elements of Paley’s matrix A are , 
A i,O =A h h o,j = 1; Oli(p , OLjlp (29) 

A. 
l,j = X(5j - 5,) ; 1 li (ph, 15j Lph, i fj (30) 

A. i,i = -1; lLicph (31) 

where the 5’s in (30) denote not numerals, but polynomials, and x denotes not 

the Legendre symbol, but the quadratic characters of a finite Galois field [S, 

X,20,29] 

GF[tq(x)] = GF(ph)[modp,mod P(x)]; q = 1,2,... ,ph (32) 

where x is a real variable, F [s,(x)] is a set of ph polynomials, conveniently 

written in matrix form as 

t,(x)] = [aq,r] 0 xr] ; q =1,2,... ,ph ; r =h-l,h-2,... ,O (33) 

in which the ph-by-h coefficient matrix [a! 
w 

] is simply a conventional pinary 
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table listing all ph possible combinations of the integers 

- %,r 
= O,l,.,. ,p-1 (34) 

taken h at a time, and P(x) is an irreducible polynomial of degree h, which by 

definition cannot be divided without a remainder by any polynomial of degree 

less than h but greater than 0 [ 211. Irreducible polynomials have been tabu- 

lated for all values of p 5 31 and h 5 9 for which ph < 1000 [ 7,8 1. 

In (32) some engineers and mathematicians write [mod p, mod P(x)] more 

compactly as [ modd p , P(x)] 0 

As indicated by Paley, the t,(x) are called the marks of the field. Some 

engineers and mathematicians call them elements instead of marks [6,13,2O, 

291, but we avoid this terminology herein to prevent confusion with the ele- 

ments of matrices. The first p marks in any field defined by (33) are constants 

(polynomials of degree 0), whose values are specified by (34), called the inte- 
. - 

gral marks of the field. 

In the theory of Galois fields it is shown that every difference 5 
j -hin 

(30) is uniquely equal to some other field mark, say 5, (1 5 v 2 ph), and sub- 

ject to the constraint 

P(x) = 0 (35) 

reduces to a unique power of x, say xw (1 2 w ( ph), so analogous to (5), 

X ttj-ti) = X (5,) = X txw) 

if xw is a quadratic i residue t of GF(ph) (36) 
lnonresidue 1 

By definition 

x(x”) = (-t/ifxw[s/y2; ye GF(ph) (37) 

where y is a real variable. To satisfy the equality 
W 2 x =y (38) 
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in (37), and to be a field mark as specified by the constraint in (37), it is nec- 

ess ary-that 
; 

y =x (39) 
ti 

be an integral power of x. Since x2 (w even) is either a mark, or congruent to 

a mark, of GF (ph), while x iz (w odd) is not, then 

; w = 1,2,000,ph-1 (40) 

As in Section IV, although A possesses property 3 of Section I by (29), it 

does not possess property 2, since by (29) and (31) all elements on the prin- 

cipal diagonal except A0 o are identical. 
, 

Nor does it possess property 1, for we can show easily that A is not sym- 

metric D Corresponding to (6) and (7), if 

ph 2 3(mod 4) (41) 

. - as specified by (28), then 

x [-Wh)l = -x mJh)l (42) 

where f(ph) denotes simply the argument of x in functional form. In the sub- 

matrix A’ (defined in Section II) the element symmetrically opposite A. l,j 
with 

respect to the principal diagonal of A’ (and of A) is A j 
, 
i0 By (30) and (42), 

A. 
33 = X (t;i-t;j) = X [-(5 j-~i)l = -X (~ j-5i) = -Ai j I (43) 

Thus A’ is skew-symmetric, and consequently A is not symmetric. 

However, in A the element symmetrically opposite A. 
l,j 

with respect to the 

secondary diagonal of A is A 
p -j,ph-i’ 

h In A’ the element symmetrically oppo- 

site A. 
bj 

with respect to the secondary diagonal of A* must be one row below and 

one column to the right of A 
p -j,ph-i’ 

h and is therefore A 
ph-j+l ,ph-i+l’ 

BY (30X 

Ah p -j+l ,ph-i+l 
= x(5 

ph-i+l 
-t 1 

ph-j+l 
(44) 
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Considering the modular nature of GF(ph), we can readily deduce from (33) that 

for anL value of q, 

<Ph = lq + 5 h 
; q =1,2 ,*00, Ph 

P q+l 

Then by (45), with q replaced by i or j as required, we can rewrite (44) as 

Ah p -j+l, ph-i+l 
= X [(~ h - 5,) - (5 h - ~j)I = X (5j - 5i> = A. (46) 

P P 1, j 

Thus A’ is symmetric with respect to its own secondary diagonal. Consequently 

if the sequence of all but the 0th row (column) of A is reversed, the new matrix 

A is symmetric with respect to its principal diagonal, and thereby possesses 

property 1. 

The elements on the secondary diagonal of A1 are A h 0 By (30), 
i,p +1-i 

A h = x6 (47) 
i,p +1-i ph+l-i 

-5,) . 

Since the order of A is ph+l , that of A’ is phO Since p, .a prime number, is al- 

ways odd, so is the number of elements on the secondary diagonal of A’, one of 

which must be also on the principal diagonal of A, With this one exception, 

then, for every element defined by (47), there is another element A h 
p +l-i,i 

(Le. , one with the row and column indices simply interchanged)., By (30), 

(42), and (47), 

Ah = 
p +l-i,i 

x(ti-t h 1 = -x (t 
p +1-i ph+l-i 

- 5,) = -A 
i ,ph+l-i 

(48) 

By the foregoing reasoning and (31), the excepted element is 

Ah 
= 

p+lph+l 
-1 

2 ’ 2 

(49) 

Thus the number of -1’s on the secondary diagonal of A’ is just one greater 
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than the number of 1’s. But by (29), 

4. Ao,O = 1 
Consequently if the sequence of all but the sh row (column) of A is reversed, 

the new matrix x has the same number of l’s as--l’s on its principal diagonal, 

and thereby possesses property 2. 

Finally, by (29), all elements in the 0th row and 0th column of A are 1, 

Reversing the sequence of all but the $h row (column) of A alters neither its 

0th row nor 0th column. - Consequently the new matrix A is of normal form, and 

thereby possesses property 3. 

VII. COMBINATION OF PALEY’S LEMMAS 3 AND 4. 

Under his lemma 4 Paley does not explain what to do if, instead of (28), 

m = 4/J = 2k(ph + 1) ; k =0, ph gl(mod4) (51) 

In this case we can employ somewhat the same method as under his lemma 3. 

First we obtain a matrix B of order ph + 1, whose elements (corresponding 

to, but not exactly the same as, (29) - (31)) are 

B h h 
i,O = Bo,j = 1; lli(p , 1Ljlp 

B. 
bj = X(tj -5i); l(i(ph 3 lljlph, i fj 

B. i,i = 0; Olicph 

(53) 

where again, as in Section VI, the [ ‘s denote the marks, and x the quadratic 

characters, of a finite Galois field as defined by (32) - (40). We can then prove 

by Paley’s methods [ 181 or others (see Appendix) that B, whose order is a 

multiple of 2 but not of 4, is orthogonal, although not a Hadamard matrix, and 

that the substitutions (18) - (20) result in a Hadamard matrix of order 2(ph+l), 

a multiple of 4. 
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As in Section V, in this case again we have two options, The matrix B is 

alreae symmetric o Corresponding to (21) and (22), if 

ph r l(mod 4) (55) 

as specified by (51), then contrary ‘to (42), 

xl-f(Ph)l = x mph)1 

and by (52), (53), and (56), 

B. 
J,i 

= B. .; 
1, J 

05 ic ph, Olj(Ph 

Alternatively, however, by exactly the same reasoning as in Section IV, in 

the submatrix B’ (defined in Section II) the element symmetrically opposite B. 
l,j 

with respect to the secondary diagonal of B’ is B 
ph-j+l, ph-i+l 

0 By (53)s 

Bh p -j+l , ph-i+l 
= x(5 

ph-i+l 
-‘th ) (58) 

p -j+l 
. - Then, as in Section VI, by (45) with q replaced by i or j as required, we can re- 

write (58) as 

Bh p -j+l ,ph-i+l 
= XL (6Y h- 5,) - (6 h - 5j)l = X (5j - 5,) = Bi,j f5’) 

P P 

corresponding to (46). Thus B’ is symmetric with respect to its own secondary 

diagonal, Consequently if the sequence of all but the !th row (column) of B is 

reversed, the new matrix B is symmetric with respect to its principal diagonal, 

and thereby possesses property 1. 

Then, as in Section V, by the substitutions (18) - (20), either a Paley ma- 

trix A of order 2(ph+l) can be obtained from B, or a new matrix 71 of order 

2(ph+l) can be obtained from B. Although A and A are not identical, we can 

show that both possess all of the desired properties, and in the remainder of 

this section fi (defined in Section II) represents either A or A. 
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Since the substitution matrices (18) - (20) are all symmetric, i is sym- 

metrio^with respect to its principal diagonal, and thereby possesses property 

1. 

Since each of these substitution matrices has the same number of l’s as 

-1’s on its principal diagonal, i does so also, and thereby possesses property 

2. 

As in Section V, property 3 does not occur spontaneously in this case, but 

can be realized by an additional elementary matrix operation. From (18) and 

(52) we can deduce that in i, 

Ai0 * = AO,j = l;2(i(ph, 2 zj (ph , 

and from (20) and (54) that 
A 
Ao,O = 1 

(60) 

(61) 

but that 
. 

Al o = i. 1 = -1 (62) , , 

corresponding to (25) - (27). Multiplication of both the lth row and lth column - 

by -1 removes this discrepancy, resulting in a new matrix fr that does possess 

property 3, and that also, as in Section V, still possesses properties 1 and 2. 

VIII, OTHER VALUES OF THE PARAMETERS 

In Section V, if the constraint in (14) is changed so that 

k>l (63) 

the modification implies an application of Paley’s lemma 1 to the matrix i of 

order 2@+1), to obtain another new matrix 

ix=wxi (64) 

of order Zk(+l), where x denotes a Kronecker product, and W is a Walsh ma- 

trix of order 2 k-l 0 
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Also in Section V, if the constraint in (14) is changed so that 

CI k>l, - p s 3(mod 4) (65) 

the modification implies an application of Paley’s lemma 1 to the matrix A of 

order p+l obtained’in Section IV, to obtain another new matrix 

x = wx;;i (66) 

of order Zk@+l), where W is of order 2k0 

In Section VI, if the constraint in (28) is changed so that 

kL1 (67) 

the modification implies an application of Paley’s lemma 1 to the matrix A of 

h order p +l, to obtain a second new matrix 

Ti = wx7i 

of order Xk(ph+l), where W is of order gkO 

(68) 

Finally, in Section VII, if the constraint in (51) is changed so that 

kll (69) 

the modification implies an application of Paley’s lemma 1 to the matrix i of 

order 2(ph+l), to obtain another new matrix 

&wx$ (70) 

of order Zk(ph+l), where W is of order 2 k-l 0 

In each of these cases W is of the type Paley uses for illustration[ 171, one 

of natural or Hadamard ordering in the terminology of standard forms of Walsh 

matrices [l] 0 

Observe carefully that whenever a row (column) sequence reversal is in- 

volved, we must perform this operation before forming the Kronecker product. 

We know from the fundamental nature of the Kronecker product that 2 in (64) 

and (70), and x in (66) and (68), possess all of the desired properties listed in 

Section I. But if we form the Kronecker product of W and A of Section IV or VI, 
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or that of W and B of Section V or VII, we know again from the fundamental nature 

of the Krcnecker product, or can easily verify by an example, that neither of the 

submatrices obtained by deleting the 0th row and 0th column of W x A or W x B - 

can ever be fully symmetric with respect to its own secondary diagonal, and there- 

fore can never fulfill one of the essential conditions upon which our method is 

based. For a specific example, compute the Kronecker product of W of order 2 

and Paley’s matrix of order 12 (Fig. l), and examine the submatrix obtained by 

deleting the cth row and 0th column of the product matrix of order 24. 

This precaution if not necessary in the cases where the already symmetric 

matrix B is used withour row (column) sequence reversal. 

IX. SUMMARY AND CONCLUSIONS 

Any Hadamard matrix obtained by Paley% lemmas 2 to 4 can be converted 

easily to one possessing the four desirable properties listed in Section I, which 

it then shares with the three standard forms of Walsh matrices defined and il- 

lustrated in [ll. 

Paley matrices of most orders are not constructed uniquely, however. Table 

I is an updating and extension of Paley% Table I [15], indicating the Paley lemma 

or lemmas, in the order of their application if a combination of them is required, 

by which each Paley matrix can be constructed. In this table p + 1 implies direct 

construction of an A matrix, 2(p + 1) implies construction of a B matrix and the 

substitutions (18 - 20), and [. . . ] x 2k implies a Kronecker product of order 2k. 

We have neither discussed nor utilized Paley*s lemma 5, simply because it 

is unnecessary for any matrix of practicable size. Paley obviously did not 

utilize it in compiling his own Table I, for none of the equations in that table is 

of the form defined by his lemma 5. 
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TABLE I 

Paley Matrices Convertible to Proposed Standard Forms 

Lemma 2 Lemma 3 Lemma 4 Lemmas 3 & 4 

-Order m=f(p + 1) m=f [2@ + 1)l m=f(ph f 1) m=f [2(ph + 1)l 

m p g J(mod 4) p z l(mod 4) ph E 3(mod 4) ph g l(mod 4) 

12 

20 

24 

28 

36 

40 

44 

48 

52 

56 

60 

68 

72 

76 

80 

a4 

88 

96 

100 

104 

.11+ 1 

19 + 1 

23+ 1 

[IlC 11x2 

[19 + 11x2 

43+1 

47 + 1 

[23 + 11x2 

[ll+ 1]x22 

2( 5 + 1) 

‘2 2(3 + 1) 

[ 2( 5 + 1)1x2 

2(13 + 1) 33+ 1 

2(17 + 1) 

[2(32 + 1)1x2 

[2( 5 + 1)]x22 

2(52 + 1) 

[ 2(13 + 1)1x2 [33 + 11x2 

59+ 1 2(29 + 1) 

67 + 1 

71 + 1 [ 2(17 + l)] x2 

2(37 + 1) 

79 + 1 

[ 19 + 1]x22 

83-k 1 2(41 + 1) 

[43 + 11x2 

[47 + 11x2 [2( 5 + 1)]~2~ 

[23 + 11~2~ 

[ 11 +’ l] x23 

103 + 

[2 (32 + l)] ~2~ 

2(72 + 1) 

[2(52 + 1)1X2 



108 

112 

120 

124 

132 

136 

140 

144 

148 

152 

160 

164 

168 

176 

180 

192 

196 

200 

107 + 1 2(53 + 1) 

[ 2(13 + 1)]~2~ [ 33 + 1]x22 

[59 + 11x2 [ 2(29 + l)] x2 

2(61 + 1) 

131+ 1 

[67 + 11x2* 

139 + 1 

[71+ 11x2 

151+ 1 

[79+ 11x2 

[ 19 + 1)]x23 

163 + 1 

167 + 1 

183 + 11x2 

143 + 1]x22 

179 + 1 

191+ 1 

[47 + 1]x22 

[23 + 11~2~ 

[11+ 1]x24 

[ 2(17 + l)] ~2~ 

2(73 + 1) 

[ 2(37 + l)]x2 

[ 2(41 + l)] x2 

2(89 + 1) 

[ 2( 5 + l)] x24 

199 + 1 

2(97 + 1) 

[ 2(72 + l)] x2 

-2o- 

TABLE I 

(Cont’d) 

CI 
Lemma 2 Lemma 3 Lemma 4 Lemmas 3&4 

m=f(p + 1) m=f 2(p + 1) m=f(ph + 1) m=f 2(ph + 1) 

Order 
m p J(mod 4) p l(mod 4) ph 3(qod 4) ph l(mod 4) 

- 

[ 2(32 + l)] ~2~ 

2(34 + 1) 

*In Paley’s original table [ 141 this entry was incorrect, duplicating there the 
correct entry for m = 152. 
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Although the more general Hadamard matrices H (of order 4,~ # 2’ ) differ 

markedly from the Walsh matrices in properties other than those listed in Sec- 

tion I, adoption of the form proposed herein as a tentative standard for engi- 

neering purposes will encourage a more widespread and uniform application of - 

them, facilitate a clearer understanding of them, and promote further investi- 

gation of them. 

t 

As shown in Sections V and VII, in the case of lemma 3 or a combination of 

lemmas 3 and 4, the matrix B is already symmetric, thus making the row 

(column) sequence reversal optional, and leading to two possible desired forms. 

Perhaps both forms should be adopted as tentative standards for engineering 

purposes, just as more than one standard form of Walsh matrix has been de- 

fined [l]* 

Undoubtedly by appropriate changes of variables Paley’s formulas could be 

modified for more direct construction of the desired form, eliminating the 

necessity of first constructing the Paley matrix and then applying the appro- 

priate elementary matrix operations D 

Other areas for fruitful research are possible additional properties com- 

mon among and/or unique to the converted matrices, properties of their row 

(column) vectors, and whether the more recently discovered types of non-Walsh 

Hadamard matrices also can be converted to the desired form. 
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APPENDIX 

1. Proof of orthogonality of matrix B in Section VII 

For any two rows il and i2 other than the 0th row, 

~ Bil,j Bi2,j = Bil’O Bi2,0 +‘~Bil, j Bi2:j ’ 

j=O j=l 

15 il ( ph, $iz(ph, il # i2 (A-1) 

By substituting (52) and (53), we can rewrite (A-l) as 

h h 

5 Bil, j Bi2, j = IL + 5 X(tj-5-i (A-2) 

j=O j=l 1 

Subtracting and adding 5. 
r1 

in the argument of the second x in the summation, we 

can rewrite (A-2) as 

f? Bil, j Bi2, j 

h 

= l+ ~, X(tj-t* )X(5j-~i +5’ 
j=O j=l r1 1 

qti ) (A-3) 
2 

Since the difference (or sum) of any two marks of a finite Galois field is uniquely 

equal or congruent to some other mark of the field, and since tj varies over all 

the marks (1~ j 5 p 5 , we can let 

5j - 5-i = Fj 
1 

5. 
ll 

- 1i2= 5, 

where (T is a constant, and rewrite (A-3) as 

h 

,j Bi2,j = IL + 5 X(Zj)X(ij+5,) 

j=l 

(A-4) 

(A-5) 

(A-6) 

By the constraint in (A-l), 

il # i2 (A-7) 
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so in (A-5) 

5il + tj, (A-8) - 2 

and consequently 

t,#o - (A-9) 

It is shown in [ 261 that if f, is nonzero, as in (A-9), then the summation on the 

right side of (A-6) reduces to -1, from which it follows that 

iBil J Bi2,j 
= l-l= 0; il#i2 

j-0 

(A- 10) 

Now, if il denotes the 0th row and i2 denotes any other row, then, corres- 

ponding to (A-l), 

Ph 

j=O 
0,j Bi2.j 

=B 0,O Bi2,0 +C B0,jBi2,j -.2- ;l<i <ph (A-11) 

j=l 

By substituting (52) and (54), we can rewrite (A-11) as 

j=O 
O,j Bi2J 

= { Bi2, j 
j=l 

(A-12) 

By substituting (53) and (54) and recognizing that x (0) is not defined, we can re- 

write (A-12) as 

i2-1 
Ph 

0,jBi2,j = c X (tj-ti ) + Bi 
2 2yi2 

+ C X(5j-f;i ) (A-13) 

j=O j=l j=i,+l 2 

By (54)) the second term on the right side vanishes. Then by substituting (A-4)) 

we can rewrite (A-13) as 

Ph 
i2-1 

Ph 

c 
B 0, j Bi2, j = c X (ij) + c X (Fj) 

j=O j=l j=i2+1 

(A-14) 
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Since p, a prime number, is always odd, so is ph, so the two summations on 

the right side, taken together, contain an even number of terms, exactly half of 
h 

which are quadratic residues and half of which are quadratic nonresidues, 

whose quadratic characters are, by (36), 1 and -1 respectively. It follows that 

(A-14) reduces to 

Ph 

c 
B 

j=O 
O,j Bi2J 

= Ph-1 Ph-1 = 0 
2 2 

Consequently, by (A-10) and (A-15), B is orthogonal, Q. E. D. 

(A- 15) 

2. Proof of orthogonality of matrix A in Section VII 

Consider anytworowsR. andR. 
ll 

(i ,i = O,l,...,$;i,#i.,) ofB. 
l2 1 2 

Since B is orthogonal, with each element either 1 or -1, except on its principal 

diagonal, where each element is 0, then R. and R. must contain the same 
ll l2 

number of pairs of like elements (both 1 or both -1) as of unlike elements (one 

1 and the other -1) in the columns in which R. and R. do not intersect the 
ll l2 

principal diagonal. In any two of these columns, one containing a like pair and 

the other an unlike pair of elements, the result of the substitutions (18) and (19) 

is an orthogonal submatrix of order 4 of A. 

Thus we need consider further only the two columns C. and C. (j , j = 1, 
Jl J2 1 2 

2 , . . . , ph; j, # j,) of B in which R. and R. 
ll i2 

do intersect the principal diagonal. 

For this purpose we can write 

R.= . . . . . 0 . . . . . B. 
1. il, j, * ” ’ * (A- 16) 
1, 

R. = 
l2 

. ..*. B. 
12, j, 

. . . . ,O . . . . . (A-17) 

In these two columns the result of substituting (18) - (20) is again a sub- 

matrix of order 4 of A, which, however, may or may not be orthogonal. By 
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making the substitutions we can readily verify that it is orthogonal if 

B. = B. = lor-1 (A-18) -’ -cI x1, j, 12, j, 

but not if 

B... =-B. 
12, j, 

= 1 or--l 
ll’J2 

- (A-19) 

Thus A is orthogonal if and only if (A-18) is an identity. By (53), 

B. 
11, j, = x(5. -5. ); il#j, 

J2 l1 

B. 
12, j, = ~(4. -5. ); i2#jl 

Jl l2 

(A-20) 

(A-2 1) 

But by (A-16), (A-17)) and (54)) the elements of R. and R. on the principal 
ll l2 

diagonal of B are 

B. 
llJl 

=B. =0 
11, il 

(A-22) 

B. 
12, j, 

=B. =0 
12, i2 

(A-23) 

from which it follows that 

j, = il (A-24) 

j, = i2 

Therefore we can rewrite (A-20) and (A-21) as 

B. 
lly j, 

= B. 
+ i2 = x(5- - 5. ); il # i2 

l2 5 
(A-26) 

B. 
12, j, 

= B. 
12, il = x(5- - t* 

ll l2 
) 

= XL-E. 12 - 5i1)l; i2 # il 

Finally, by (55) and (56), we can rewrite (A-27) as 

(A-27) 

B. 
12, j, = xc5 I2 - 5il) = Bj, 

sj2 
(A-28) 

thus verifying that (A-18) is an identity, and consequently that A is orthogonal, 

Q.E.D. 


