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ABSTRACT 

The sine Gordon field in 3+1 dimensions is studied as an example 

of a quantum field theory with persistent self interactions. Exact, 

positive or negative frequency (solitary wave) solutions of the sine 

Gordon equation containing either annihilation or creation operators 

of the linear field theory are discussed. The sine Gordon solitary 

wave propagator closely resembles the solitary wave propagator of the 

A+4 theory. 
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1. INTRODUCTION 

Thz study of nonperturbative solutions of nonlinear field equations and their 

quantization is receiving considerable attention. 1 These theories are interesting 

as model field theories and in connection with various containment models. 2,3 
- 

In addition, several interesting results have been obtained in the study of poly- 

nomial field theories with persistent self interactions. 4,5,6 

The sine Gordon equation is a nonlinear field equation which is well known 

classically, with applications in solid state and optical phenomena. 7,s Recently, 

the quantization of sine Gordon fields in l+l dimensions has been studied. 9,10,11 

In this paper we consider the sine Gordon field in 3+1 dimensions as an additional 

example of a nonlinear theory describing a system with persistent.self interactions. 

. - 

As in polynomial theories previously discussed, 4 exact, particular solutions of 

the sine Gordon field equation exist which contain the coupling constant for all 

times rather than reducing to in or out fields for asymptotic times. 12 These 

solutions contain either creation or annihilation operators of the linear theory 

and reduce to particular solutions of the linear field equations for vanishing 

coupling constant. Thus, they describe a persistent self interaction. The solu- 

tions are similar to solitary waves of classical theories8 and will be referred to 

throughout this paper as solitary waves. 

In succeeding sections of this paper the solitary wave solutions of the sine 

Gordon theory are discussed and a solitary wave propagator is constructed. The 

construction of the solitary wave propagator relies on a correspondence between 

sine Gordon solitary waves and those of the k$4 theory. The solitary wave 

propagator of both theories has poles independent of the coupling constant at 

(2n+l)m, where m is the mass of the associated linear theory and n is an 

integer. 



-3- 

II. SOLITARY WAVE SOLUTIONS TO THE SINE GORDON EQUATION 

The sine Gordon equation may be written 

apdP $ + (m2/h) sin h$~ = 0 (1) 

where h is a self interaction coupling constant, m is the mass of the associated 

linear theory and h=c=l. Examining the series expansion of sin A@ in Eq. (1)) 

it is evident that the sine Gordon equation is a Klein Gordon equation modified by 

the addition of an infinite sequence of self interaction terms with a single coupling 

constant h. 
w 

Exact, particular solutions of Eq. (1) have been obtained by direct integra- 

tion. l2 These solutions, which are functions of h. i ( =koxo -c 3, are similar 

to solitary wave solutions of the nonlinear field equations of some polynomial field 

theories. 4,13 A pair of positive and negative frequency solitary wave solutions 

. - used in this paper are 

$f$$ = (2/A) sin-l 
f..$-f 6 + Aft);;;“)-] (2) 

In Eq. (2) A$) are the annihilation or creation operators of the linear theory, 

2 l/2 ko=W=(?+m ) , D is an arbitrary constant and V is the volume of the system. 

Using simple trigonometric identities the solutions in Eq. (2) may be 

written (see Appendix for details) 

[ A$) 
v v 

@SG (4 - - 5; 4 tan -1 
e+lksx -. 

2D(wV) l/2 1 
These solutions may also be obtained by direct integration of Eq. (1) (Appendix). 

Since the solutions are to reduce to solutions of the Klein Gordon equation for 
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. 
A=O, we take 

- D = 2/h 

. - 

so 

(4) 

(5) 

These solutions are not hermitian, whereas for a theory describing neutral 

systems hermiticity is usually required. However, in the linear theory the 

particular solutions corresponding 

provided 

to those in Eq. (5) have the property 

Ak)te-ii.g 
= (#pcx, = k 

(cdv)1’2 
(6) ’ 

(7) 

This same requirement insures that for the nonlinear theory 

Eq. (8) is adopted in place of hermiticity. 

The solutions in Eq. (5) may be written in a formal series 

(9) 

In this form it is evident that the solutions 4SGr x (*) (‘) h ave matrix elements which 

differ from those of an in or out field for asymptotic times. That is, by con- 

struction:4‘ l5 an in or out field has matrix elements only with one particle 

states for It I - 03, whereas the expression in Eq. (9) clearly has matrix ele- 

ments with many particle states. As shown elsewhere, 16 operators of this form 
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describe a system with a discrete mass spectrum independent of the coupling 

constant (see below, also). Furthermore, solitary wave fields such as those 4 

considered here are not unitary transformations of in or out fields 16 -hence the 

theory discussed here is not a canonical quantum field theory. 

III. SINE GORDON SOLITARY WAVE PROPAGATOR 

In the study of polynomial field theories with persistent self interactions a 

method of constructing solitary wave propagators has been developed. 4316 We 

will not repeat the arguments here. Instead, we observe that the field operators 

given in Eq. (9) closely resemble those of the polynomial field theories. Conse- 

quently, we interpret @SF w (V) x as operators which annihilate or create sine 

Gordon solitary waves at position % with quantum numbers E Choosing the 

commutator 

. - 

with 

= 27r v -l/3 - nk (11) 

the solitary wave propagator in momentum space becomes 

,;g$, = n-o (J-&fn Pn+W k2 - (2n+1)2 m2+ ie 1 -’ 

4-2nC-if 2 + (2n+1)2 m21n 
(12) 

(2n+ 1) 

Although we have omitted the detailed argument leading to this propagator it is 

worthwhile to emphasize that, as in the linear theory, the mathematical principle 

of superposition of solutions of a differential equation is unnecessary and not 

used. Instead, the construction depends upon the superposition principle of 

quantum theory-a principle which is independent of the form of field equations. 

As in previous theories, the solitary wave propagator is an asymptotic series. 
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Due to the presence of the term (2n+l)! the nth term diverges for fixed Ii I and 

increaAing n, while for n constant any term vanishes for large 1;: I. While the 

individual terms in the series contain different coefficients from the A+4 solitary 

wave propagator, the poles of the solitary wave propagators in both sine Gordon 

and A+4 theories occur for 

Iit I = (2n+l)m (13) 

Thus, as mentioned above, the sine Gordon solitary wave fields describe a many 

particle system with a mass spectrum independent of the coupling constant. 

Furthermore, the infinite sequence of interaction terms is, for persistent inter- 

actions, essentially equivalent to the AG4 persistent interactions. Thus, for 

example, potentials based on the solitary wave propagator will differ only in 

. - 

minor detail in the two theories. Consequently, the effects of sine Gordon soli- 

tary wave exchange in, for example, nucleon-nucleon scattering, should be 

similar to those in the he4 theory. These applications will be considered in more 

detail elsewhere . 
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APPENDIX 

Ilhthis appendix we give some of the details relating the forms of solutions 

of the sine Gordon equation. We first consider the connection between Eq. (2) 

and Eq. (3). Writing Eq. (2) as - 

. - 

2 -1 
sin (h G/2) = + 1 + $ ( 1 

where 

and using the trigonometric identity 

sin (A $/2) = 2 sin (h@/4) cos (A $/4) . 

one has 

for which 

and 

or 

2 -l/2 
sin (A $/4) = (e/2) ( ) l+ $ 

2 -l/2 
cm (A $/4) = ( 1 1+ f 

2 -l/2 
cos @h/4) = ($/2) 1+ g ( 1 

2 -l/2 
sin(h$/4) = l+ + ( 1 

(A. 1) 

(A. 2) 

(A. 3) 

(A- 4) 

(A. 5) 

(A. 6) 

(A. 7) 

(A. 8) 
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Solving for $I, Eq. (A. 5) and Eq. (A. 6) give 

(*) TiL.i 

c$ = (4/h) tan 
-lAT;,e 

2D( WV) “2 
while Eq. (A. 7) and Eq. .(A. 8) give 

(A. 9) 

(A. 10) 

Equation (A. 9) has been used in the text in Eq. (3). The solution given in (A. 10) 

is also a suitable form for a solitary wave field but will not be discussed in this 

paper. 

The sine Gordon equation may be integrated directly with the assumption 

that $= $(x), where 

-.&.;: G2#O) (A. 11) 

. - Writing “I =h (p/2 and using Eq. (A, 3), the sine Gordon equation becomes 

Multiplying by dT/dx and integrating one has 

(A. 12) 

(A. 13) 

where E is an arbitrary constant. For E=O, separation of Eq. (A. 3) leads to the 

integral 

csc 77 = Qn (tan 17/2) (A. 14) 

where x’ is a constant. Thus, recalling the definition of 7 one has 

+=;ta.n-l ce ( Cm2/k2)1’2 x) (A. 15) 

Finally, taking k2=m2 , for suitable choice of c Eq. (A. 9) or Eq. (2) is recovered. 
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