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ABSTRACT 

Theoretical attempts to understand hadrons in terms of confined quark con- 

stituents lead naturally to the study of quantum field theory with methods that 

can be applied when strong interactions are present. In this paper nonperturba- 

tive, variational techniques are developed and applied to calculating the ground 

state and low lying collective excitations (lfkinks*‘) of theories rendered finite on 

a discrete lattice. Particular application is made to a scalar theory with a self- 

coupling of the form A( $2 - f2) 2 in two dimensions. Working in configuration space 

we reduce the theory to coupled Schrddinger problems and establish the conditions 

for the variational solution to exhibit a phase transition between ground states 

with <4> = 0 and those exhibiting a spontaneously broken symmetry such that 

<+> # 0. The phase transition is a second-order one in a simple trial state con- 

structed in a single-site product basis. Low lying excitations are constructed 

that are analogues of the classical “kink” solutions. The single-site basis is also 

generalized to form “blocks” of coupled lattice sites and general properties of a 

block formalism are explored. The usual renormalization limit of cut-off - r , 
k 

or lattice spacing - 0, is also studied as well as the relation of our approach to 

the conventional renormalizaiion program. 

(Submitted to Phys. Rev. D.) 
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1. INTRODUCTION AND OUTLINE 

The idea of quarks as fundamental constituents of matter continues to be 

remarkably successful in describing and predicting observed properties of had- 

rons, and so the challenge of incorporating these ideas within a calculable dy- 

namical theory continues to grow in importance. This is a difficult challenge 

since one has to harmonize the fact that quarks behave as if they have a light 

mass and are bound together by relatively soft forces with the fact that single 

isolated quarks have never been observed. 

Attempts to meet this challenge fall into two categories. There are those 

schemes which attempt to develop a calculable theory of confined quarks by 

starting from fundamentally new theoretical concepts, ’ and there are those 

schemes which seek to work within the more conservative framework of con- 

ventional local quantum field theory, 2,3 recognizing from the outset that weak 

coupling perturbation calculations will be quite hopeless (at least for discus- 

sions of spectra). 

In this paper we develop non-perturbative, variational techniques which can 

be applied to calculating the ground state and low-lying excitations of a class of 

quantum field theories that are rendered finite in terms of a cut-off. Our par- 

ticular focus is on a scalar r$4 theory in one space-one time dimension. The 

methods developed for this application are more general, however, as will be evi- 

dent, and the introdu&ion of a lattice equivalent to a cut-off field theory as well as 

the general variational techniques that we utilize are not limited to two dimensions. 

The virtue of doing this particular 2-dimensional example, besides its simplicity, 

is that the classical strong coupling version of this theory possesses a soliton-like 
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“kink” solution of low mass. Moreover, there is an exactly conserved “charge” 

which distinguishes this state from the vacuum state and so one might expect that 

he existence of this extended state will survive quantization. Hence this rela- 

tively simple model might be expected to possess a rich structure which cannot 

be adequately discussed by perturbative techniques. Our physical interest in 

this application as derived from the study of the “SLAC-bag model” is to see if 

the naive semi-classical ideas survive once we go beyond the “tree approxima- 

tion” and include quantum fluctuation corrections ignored in earlier studies. The 

results obtained for this test case lead us to hope that these methods will prove 

useful in the study of more general classes of theories including in particular 

“asymptotically free gauge theories, ” although we have not given this question 

careful study to date. 

The outline of our paper is as follows: 

We consider the Lagrangian 

L= 9dx 

(1.1) 

review the semi-classical analysis, and study its cut-off quantum field theory 

version-which in o& formulation is equivalent to a discrete lattice theory-by 

carrying through detailed vayiational calculations. 

. 
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Upper bounds on the energies of the ground state and “ki.nkft states are con- 

structed using different trial forms. One approach is in terms of a momentum 

space basis and is equivalent to an “average field” or Hartree-Fock approxima- 

tion. However, we find that when the parameters of Eq. (1.1) are in the strong 

coupling region, i.e., small f for fixed mass fl f, the variational solution con- 

structed by this approximation exhibits a behavior that violates a rigorous the- 
4 orem due to Simon and Griffiths. The specific disease encountered is that the 

theory exhibits “tricritical behavior. If The resulting phase transition between 

ground states with <$> = 0 and ground states with a spontaneously broken sym- 

metry such that <$> # 0 is a first order one. Chapter 2 contains a detailed 

discussion of this problem. 

A second approach to the variational calculation is in terms of configuration 

space trial states. The development of this technique, and its particular applica- 

tion in terms of a single-site product basis to reduce the quantum field theory to a 

set of effective one-degree of freedom Schrodinger problems, is given in Chapter 

3. The equivalence of a cut-off field theory and of field theory on a discrete lat- 

tice is also explored. Working in this single-site basis for calculating upper bounds 

on the ground state energy, we avoid the tricritical disease. Regions of coupling 

parameters such that these bounds are better (i. e., lower) than those obtained by 

the momentum space method are explored. As the coupling parameters are 

changed there occursa second order phase transition from the <$I > = 0 ground 

state to a spontaneously broken ground state with <#I> # 0. In particular, we 

exhibit an explicit solution for a limited range of parameters for which the ana- 

logue of the semi-classical “kink” is found to be a low-lying excitation. Further 

numerical analysis and improvements in the energy upper bound, due to “config- 

uration mixing” of low-lying excitations with the ground state, are also discussed. 
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In Chapter 4, we discuss the problem of taking the renormalization limit 

(cut-off -+ 00, or lattice spacing + 0 ) and defining a finite version of our cut- 

off field theory. First we investigate the relation of our approach with more 

conventional methods5 applied in the renormalization program of quantum field 

theories . Then we extend our lattice formalism by setting up a systematic pro- 

cedure for generalizing beyond a single-site basis to forming “blocks” of coupled 

lattice sites. Using the block wave function formalism, we extend the region of 

the parameters A and f in Eq. (1.1) to which our procedure can be expected to 

apply. We also show why the momentum basis fails, leading to tricritical be- 

havior . Finally we indicate how the “block formalism” provides a framework for 

developing resummation techniques which allow us to discuss the multiplicative 

renormalization of the Hamiltonian. These methods are reminiscent of the re- 

normalization group methods of Wilson and Kadanoff. 6 This last section of 

Chapter 4 is more descriptive than actually substantiated by detailed calculations. 

Detailed discussion of the application of these methods to theories including 

fermions and/or gauge fields is deferred to forthcoming papers. In Chapter 5, 

however, we summarize the preliminary results we have obtained for the case of 

a theory of a fermion coupled linearly to the scalar field. We also indicate what 

we consider to be the most interesting problems which should be explored in the 

immediate future. 

Four appendices are included with specific calculational details. 
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11. e4 THEORY 

In this chapter we review the semi-classical analysis of the theory spec- 

Gfied by the Lagrangian (1.1) restricted to 1 space and 1 time dimension. We 

then study the quantum field theory based upon (1.1) by means of a “momentum 

space” variational calculation. 

The purpose of the semi-classical discussion is to exhibit the “kink” state 

and show that it is a low mass configuration only in the strong coupling regime 

of the theory. Hence if this behavior is to survive quantization, we must face 

the strong coupling quantum field theory problem when we go beyond the semi- 

classical fftree-approximation.” 

The purpose of the “momentum space” variational calculation is to exhibit 

a practical method for going beyond perturbation theory. It is an explicit example 

of what it means to choose a trial ground state of a field theory and it exhibits 

general features as well as limitations of the method. 

Since we wish to avoid any iterative weak coupling expansions the implementa- 

tion of an order-by-order Feynman graph renormalization procedure is not avail- 

able to us, Thus, for the time being, we work with a cutoff version of the field 

theory and postpone the question of renormalization until Chapter 4. This cutoff 

can be introduced by cutting off the Fourier expansion of the field amplitudes at a 

maximum momentum or by formulating the theory on a lattice. Eventually we 

will explore both possibilities and their relationship, However, in this chapter, 

we exploit the first possibility. As implemented, the “momentum space” calcula- 

tion proves to have the serio:s defect of incorrectly predicting that the theory 

exhibits “tricritical behavior” in the strong coupling limit. This is a prediction 

known rigorously to be false for this particular model. 4 This chapter closes 

with an explanation of the nature of this difficulty, which we show how to avoid 
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in Chapter 3 by using lattice methods, and in Chapter 4 by modifying the mo- 

mentum method. 

A. Semi-Classical Discussion 

The Hamiltonian corresponding to (1.1) is 

. 
with f2 P 0 and ?r E $ the canonical field momentum: 

[ x(x, t),$(x’, t), = 1 -i b(x-x’) . (2.2) 

Ignoring the quantum aspects of the theory, we drop the momentum x in 

(2.1) and treat e(x) as a static classical field: $ -+ g(x) = $cl (x). Evidently 

the ground state energy of the positive definite classical Hamiltonian 

HoI = / dx [+@$ + A(g2 -f212 1 

vanishes for a constant field 

g(o) = ff 

(2.3) 

(2.4) 

Equation (2.4) describes the doubly degenerate ground state. The general solu- 

tion of (2.3) satisfies the non-linear Euler-Lagrange equation 

2 
- - 4Ag(g2 -f2) = 0 
dx2 

e 

and substituting any solution of (2.5) in (2.3) gives the classical energy E(g). 
c 

The only time-independent solutions of (2.5) that give a finite value for the 

energy Hcl in addition to (2.4) are the one-parameter family of f’kinks”7 

g*(x,xo) = *ftanh af(x-x0) (2.6) 
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Substituting (2.6) in (2.3) yields the classical energy 

Ekink 
(2.7) 

We readily demonstrate that the kink describes a stable configuration even 

though its energy (2.7) lies above the ground state value of E” = 0 for the con- 

stant configuration (2.4) by constructing a conserved “charge” from the current 

jJx) = EpV -$$- ; p, v = 0, 1 
V 

E 
/iv= -v/J; EOl = 1 

Evidently 

ajp/ axp = 0 

and so 

QZ 
s 

dxjO(x) = s dx $$ = $J(Y)) - $(-co) 

is a time-independent quantity. The conserved “charge” (2.9) vanishes for the 

vacuum state (2.4) since g ( co) = g ( - cc ); for the kink (2.6), however, Q kink= 

*2f # 0. Hence the kink is stable. 

The usual way to construct the quantum analogue of the kink is by expanding 

in a power series of l%e fluctuations about the classical solution 

@ (x9 x0) = g(x) + &(x, x0) (2.10) 

However, such an expansion converges, if it indeed converges at all, only in 

the weak coupling regime whereas the semi-classical treatment indicates that 

the strong coupling regime is the one of interest to us. To make this point, 



-9- 

introduce (2.10) into (2.1) so as to obtain 

H= jdx\j+($$” + A(g2 -f2)2[ 

+ jb x2+ p (g)2 + $$P(4h(3g2 -f2))] 

. + 1 4h gcp3 + hq4 
}I 

: (2.11) 

where we have used (2.5) to eliminate the terms linear in $’ . The usual weak 

coupling approach to (2.1) is to expand C/I about the constant g = f f corresponding 

to the minimum in the classical energy. The quadratic terms in (2.11) lead to 

normal mode motion for oscillators of mass 

“f = JKf. (2.12) I 

Since the classical kink energy is given by (2.7), we expect the kink to be a 

better approximation to the low-lying energy states of the theory than the per- 

turbative result only if 

Ekink cc m f 

or 

f2 << 1 . * 

(2.13) 

(2.14) 

The condition (2.13) correswnds to strong coupling according to (2.11) since, 

for fixed oscillator mass (2.12), it is equivalent to the conditions 

A >> rn: and A f ;9 m,2 (2.15) 
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In this regime the non-linear cubic and quartic corrections in (2.11) will be 

large and their higher order contributions important. 

B. Iterative Quantum Mechanical Procedure 

A systematic application of the standard iterative techniques of renormal- 

izable quantum field theory shows directly the importance of developing a strong 

coupling approach for this regime of parameters. Returning to (2. ll), we al- 

ready have computed the classical energy difference between a kink solution 

(2.6) in the Q = 2f sector and the classical ground state energy of the constant 

g(x) = f in the Q = 0 sector. It is given by (2.7); i. e. , 

[Ekti-EP]classical = f d% f3 . (2.16) 

In order to evaluate the lowest order quantum mechanical energy difference 

between the “kink” and no kink solutions, we must also include the zero point 

energies due to quantum fluctuations computed from(2.11). In particular, these 

vacuum fluctuations are different in the two sectors for different values of g(x) 

and this difference must be computed for us to know the true excitation energy 

of the kink state with Q = 2f relative to the Q = 0 ground state. 

An equivalent way of describing these corrections is as the sum over the 

loop corrections to the tree approximation. To lowest order the one loop cor- 

rection to the zero po,i”t energies due to quantum fluctuations is calculated by 

neglecting the cubic and quartic terms in (2.11). In particular, we must cal- 

culate the shift in the sum o&r the spectrum of zero point energies for small 

oscillations about the kink solution (2.6) for g (x), relative to the oscillations 

about the constant g(x) = f. This difference was computed by Dashen, Hasslacher, 

and Neveu. 3 For the constant solution, the sum over the zero point energies is 
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given formally by 

(2.17) 

which expresses the sum over plane wave solutions with mass m = f J8h f as 

in (2.12). For the kink solution we expand the field in normal modes 

$‘(x, t) = C ’ 
ndT- 

(u,(x, t) an + ui(x, t) a:) (2.18) 

4 (x9 t) E 7r = -i xfi (Unan - uia1;) 

II I aa+= ’ n’ n’ n;n’ 

with un forming a complete basis of solutions to the Schrijdinger equation de- 

rived from (2.11): 

’ d2 -- 
1 dx2 

4h (3g2 -f2) un=Etun . 1 (2.19) 

As shown by Dashen, Hasslacher, and Neveu (2.19) can be solved in terms of 

known functions when g is given by the kink (2.6)) and the shift of zero point 

energy from (2.17) c’an be evaluated after performing a simple mass renormal- 

ization. They found 
c 

aEQoMo = $ 
Cc En - On )= (++f T (2.20) 

n 

i.e., the kink energy is shifted down by an amount of the order of mf itself as 
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a result of the quantum excitations being drawn into the potential well at the 

kinkboundary. The moral to be drawn from (2.20) is that the shift in the fluc- 

tuation energy in the l-loop approximation is a very large one, much larger 

than the classical kink energy itself, which as shown in (2.16) is smaller by the 

factor f2 << 1. Evidently then an expansion in fluctuations about the “soliton” 

solutions of the classical problem does not define a reliable iterative procedure 

for our purposes and we are faced inescapably with the challenge of strong 

coupling theory. 

C. Cut-Off Field Theory: A Variational Calculation 

In quantum field theory (2.1) leads formally to two kinds of infinities. The first 

is associated with the infinite extent (length or volume) of the system and the 

second is associated with the arbitrarily high momentum modes in the theory. In 

order to define a theory in which H is finite at each step, without resorting to in- 

finite subtractions or renormalization prescriptions, we shall consider the field 

theory in a box of finite volume, V, and we shall terminate all momentum ex- 

pansions of the fields at a finite maximum cutoff, km=. Eventually we will study 

limiting behavior for V -+ cc and kmax arbitrarily large, but at each step we 

have a well defined quantum mechanical problem. Although this cutoff procedure 

costs us Poincare invariance, we believe that we can ignore such violations when 

studying questions involving low-lying excitations, such as the existence of “bags” 

or coherent excitations, which are presumably built out of the long wavelength 

structure of the theory. 

Formally the volume cutoff is introduced by integrating (2.1) over the range 

A notation applicable for an arbitrary number (p = 1, 2, 3, . . .) of spatial 
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dimensions is 

(2.21) 

and 

-- ; 5x. 2% for j= {l, . ..p).. v = Lp 
J 

The Fourier expansion is written 

c 

i&ax+ - ik* x 
qft) = e “tg; r(k) = $ d’xe *+‘rr(x) 

k 

ei”lf, 
/ 

ik. x 
@(k+); @($) = $ d’xe- + ‘q(z) (2.22) 

k 

where 

k, = (kl, . . . . , kp) , kj =$-n 
j 

nj=O, *l, ..D , *N ; k max =?N 

and 

[ 

*(kl> . . . , kp), $w,, *-- , -lp) 1 = -i bs,;/V 

This gives for (2.1) 
t 

k max 
H= 

c [ 
~cpt--~ + +k2 - 2Af2 #I (5) $ (-5) 

k= -I’,= I, (2.23) 
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The most obvious and simplest approach to a calculation of the ground state 

of (2,23) is to work in momentum space introducing for each mode k: 

+ 
[ I a$’ ac = d k,k’ 

j-9 

(2024) 

where the a! 
8 k are arbitrary parameters to be varied. For the trial state, we 

introduce a displaced Gaussian packet for each mode by defining 

I S -ic V7r(%=O) 

ak;C’ze ’ loa! > 
k 

where 

aok 10,: > = Oforalls 
k + 4 

The variation parameter c provides a constant displacement of the field 

@(x)(Sa ; c> = e-icVn(k=o) (r$(xJ +c) 10 > D 
k “Ir,. 

For the ground state energy, we compute from (2.23) 

and require m 

(2025) 

(2.26) 

(2.27) 

(2.28) 
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to determine the extrema. We find in this way 

-27rN 
The 4 sums extend over the interval L 

2nN 
skjsL for each com- 

ponent k. D 
J 

The extremum conditions give 

a8 -(o! ,C) = 0: 
dc _Ir^ 

4Acc2-f2+T 
1 1 = 0 

A&I- 2 
aa, - 

(cYk,c)=o: o!& 

where we have introduced the definition 

According to (2.31) we can write 

in terms of a variational mass parameter 

2 
aO E 4h T (ao) - f2 + 3c2 ( 1 

. 

(2.30) 

(2.31) 

(2.32) 

(2.33) 

(2.34) 
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Evidently we could have defined the c;rk introduced in (2.24) in terms of (2.33) 
--b 

and varied over the single mass parameter a! o for all Fourier components. 

‘Henceforth we shall proceed in this way. In terms of a0 and of the notation 

introduced for the sum 

+k -max 

the energy density can be simplified to 

l c&q- -$tr+T(3c2-f2) cm,4 = E 
k 

( 1 
2 

+$T2+Af2-c2 0 

Equations (2.30) and (2.34) have two possible solutions 

2 

(9 ao + f2 c=o and - 
4h 

=T(cr,) 

2 

(ii) c2 aO 
=f2 -7 (cK,) > 0 and -sh + f2 = 7 (ao) D 

(2.35) 

(2.36) 

(2.37) 

(2.38) 

Equation (2.35) shows that in the limit of large o. > kmax = 2 TN/L, T decreases 

as l/o0 for any number of dimensions. For finite volume V, T(~T,) diverges at 

aO = 0 due to the k+ = 0 term in the sum (2.35). Its rate of growth as a0 - 0 

can be computed by replacing the sum by an integral 

(kmax) 

1. 
c 

1 -- 
V dp k 

5 wp 
(2.39) 
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Figures 1 and 2 show that there is always a solution of (2.37) for c = 0 but that (2.38) 

will have two, one, or no solutions depending on values of f2 and A. In order 

‘to determine which of these roots corresponds to local minima or maxima of 

&MO’ c) we must also compute the second derivatives and calculate the trace 

and the determinant of the coefficients 

II a2 8 a2 Q 

II dcYO ac 
iYC 

2 

(2.40) 

and determine whether it is positive at the roots (2.37) or (2.38) indicating a 

local minimum, or negative for a local maximum. The straightforward dif- 

ferentiation is displayed in Appendix A. We find that the extremum (2.37) at 

c = 0 is always a local minimum. However, for the extremum (2.38) with 

c # 0 the condition for a local minimum is 

(2.41) 

These solutions are shown in Fig. 2. 

What is the physical content of these results? In order to extract this most 

simply, we return to (2.36) and study E as a function of c for various values 

of the parameters f and A 0’ In particular we vary f2 for fixed h 0 The extre- 

mum value a! = 0 o. (c) is determined from (2.34) which has a unique solution 

for every value of c since the left-hand side is monotonically increasing and the 

right-hand side is monotonically decreasing as a function of Q! 0’ Figure 3 
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shows & a! (c) c for different values of f2 and shows the same general be- 
(0 4 

havior found in Fig. 2. In particular, there is always a local minimum at c = 0. 

As f2 increases, for fixed A, two local minima appear at fc f 0. In one-plus- 

one dimensions, i.e., p = 1, one f’ d m s numerically that for the choice of the di- 

mensionless parameter h /fI2 N 1 these minima appear when f2 - 1. For large 

enough f2 the minima at c # 0 cross the one at c = 0. A numerical comparison 

of the energies of the c = 0 and c # 0 minima for h /A2 = 1 and a range of values 

for f are given in Table I. We conclude that they then become degenerate ground 

states of the theory, with <$J> = i-c or -c, respectively, because the overlap 

between them vanishes in the V - co limit; i.e., 
2 

<Sak; -cl Sak;+c> = <Ocx I” 
-2ic Vr(k=O) o 

I > 
o!k 

= e-(yOv ’ (2 42) 0 
k 

Thus either one of them, or any linear combination, is a satisfactory choice of 

a ground state of the theory if the variational calculation is any good. A specific 

choice of ground state is forced upon us if we add a small external source. As- 

suming that we always choose the one at +c whenever the one at zero lies higher, 

Fig. 3 shows that as we vary A and f the lowest eigenstate of the theory will 

jump discontinuously (iO e. , a first-order phase transition) from a state such that 

<+> =c N f to <$> = 0 at some critical values of the coupling parameters. 

As intriguing as this behavior might seem, it can be shown that this form 
P 

of & 
( 
a0 (c), c 

1 
is a disease of the variational choice (2.26) for the form of the 

ground state 0 This behavior of & violates our intuition which suggests that 

< C#I> should approach zero continuously, with the discontinuous change occurring 

in the rate of change of < r#~ > , i. e., its slope, in analogy to the observed be- 

havior of spontaneous magnetization as a function of temperature. In addition, 
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there is a much more serious problem, namely, that the behavior implied by 

(2.36) violates a rigorous theorem proved by Simon and Griffiths. 4 
To explain 

‘the problem, let us add a linear source term to (2.1) of the form 

H’ = -J 
I 

dV$ = -JV$(k=O) (2.43) 

which, following (2.26)) adds the term - Jc to the energy density (2.29) 0 Since 

the added contribution is independent of oo, the extremum value cro = a0 (c) is 

the same as (2.34). Therefore, 

~‘(olotc)s c) = + <s c;rk;C F+J4 scYk;c> (2.44) 

= ~o(ao(c),c) - Jc 0 

8’ is shown in Fig. 4 which is tilted by the linear term - Jc relative to Fig. 3. 

In the region of weak coupling, when the ground state lies at < C$I > = c f 0 

in the absence of a source term, the added contribution breaks the degeneracy 

between fc. Which of these states lies lower depends on the sign of J, and as 

one goes through J = 0, there is a sudden jump from one minimum to the other. 

This behavior is similar to what is known for a ferromagnetic medium in an ap- 

plied magnetic field below the curie temperature. However, in the strong cou- 

pling region of f2 < ^fir, we see that a finite source strength J > Jcrit (A) can 

tilt the energy curves sufficiently so that the ground state becomes the mini- 

mum which develops frdm the solution with c # 0 when J = 0. As illustrated, 

a ground state developing from the c = 0 root when J < Jcrit (A) jumps discontin- 

uously to one developing from c # 0 when J > Jcrit (A). 

It is this behavior that is forbidden by the Simon-Griffiths theorem which 
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proves that the particular theory described by Hamiltonian (2.1) plus (2.43) in 

lx+ It dimension leads to a ground state expectation value for <r$ > that is a 

‘monotonic, analytic function of J for finite J f: 0. Evidently the trial ground 

state is too crude for a study in this region, leading to an impossible shape for 

E (@,Wr ) c and to a first-order phase transition. Actually, the crux of the 

difficulty lies in the local minimum in E ( o. (c), c 1 at c = 0 which is entirely 

spurious, as we shall show in the’following chapter. In Chapter 4 we construct 

a modification of the “momentum basis” calculation which removes this diffi- 

culty and discuss its origin. 

Although the Simon-Griffiths theorem is specific to this model in lx + It 

dimension, this result suggests that these simple methods are inadequate for 

studying the strong coupling region where the tri-critical behavior sets in and 

phase transitions may occur. Unfortunately, it is precisely this region, with 

0 < f2 < 1, that the semi-classical analysis suggests we must study in order 

for the kink to be a low lying state (see Eq. (2.13)) 0 Note that if this calculation 

were valid, the “kink” could never exist as a low lying state since by the time 

the vacuum expectation value <+> decreases to the order of 1, it jumps dis- 

continuously to zero. Thus, there is no region where < $> is small but differ- 

ent from zero which is a necessary condition for the existence of a low mass kink. 

The reason we so thoroughly discussed this incorrect momentum space cal- 

culation is that it is the most straightforward application of the idea of doing a 

variational calculation for the ground state of a field theory. It also points out a 
c 

virtue of this simple theory as a test case, namely, there exists an exact theorem 

due to Simon and Griffiths which provides a non-trivial constraint on the trial 

state one uses for the variational calculation. We conclude this section with 

three remarks : 
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(ii) 
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For weak coupling where g(c) is given by Fig. 3a, there is no contra- 

diction to any known theorem. Moreover, in this region there are rea- 

sons to believe that the momentum space calculation correctly represents 

the ground state energy. 

The momentum space calculation is just one example of a Hartree-Fock 

type calculation. In Appendix B we derive the general Hartree-Fock ap- 

proximation from a more general variational calculation. This means, 

of course, that the Hartree-Fock calculation, which includes part of the 

two-loop contribution (the normal ordering part), gives an upper bound 

on the ground state energy. 

(iii) The momentum space calculation will be of importance to us when we 

discuss the renormalization limit in Chapter 4. 
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III. e4-FIELD THEORY ON A LATTICE 

In this chapter we reformulate the cutoff theory discussed in Chapter 2 in 

‘terms of an equivalent lattice field theory which provides a natural language 

for constructing a new class of variational ground states. These are trial states 

expressed as products of wave functions at each of the individual lattice sites. 

A further extension of this approach to include trial states correlating neighbor- 

ing sites is presented in Chapter ‘4. 

The principal lessons to be learned from this analysis are: 

(i) For a limited range of h and f, the “single site” wave functions pro- 

duce lower ground state energies than the elementary “momentum 

space” wave functions studied in Chapter 2. 

(ii) Within this range of parameters, we are able to use this variational 

procedure to study the region in which < +> << 1. We show that the 

phase transition from the <c#‘> # 0 to the <r$> = 0 phase is, in fact, 

second order and that one has no difficulties with the theorem of Simon 

and Griffiths. 

(iii) Because we can get to a solution with <$> << 1 by appropriate choices 

of the parameters A and f, we are able to argue that “kink” states of 

arbitrarily low mass exist (no matter how large we choose the cutoff 

mass) and the mass of these states is much lower than the single par- 

ticle masses suggested by the perturbation expansion. 
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A. Field Theory on a Finite Lattice 

Introducing a maximum momentum cut-off kmax in (2.22.)) we developed 

‘a convenient language for working in zspace with a finite number of degrees of 

freedom. If we now want to work in coordinate space, the analogous procedure 

is to replace the space continuum p by a discrete lattice of linear dimension L 

and minimum spacing k defined so that there are 2N + 1 points on a side: 

L=(2N+l)/A ; V=LP (I (3.1) 

The correspondence between languages is as defined in (2.22) 

2wn 
kp=+ ; k =m 

max L 

where n = 0, *l, 0 *. f N now labels the lattice sites. The continuous coordinate 
P 

x is replaced by a discrete lattice site label j such that for each component --W 

JP 
. = 0, il, .o 0 *N. 

The volume integral in (2.1) becomes 

/ dp,- v-i-- AP c j 
and the fields at the lattice sites are defined by 

+k max 

n(x) - ‘II. =t 
ikO j/A 

’ 
J c e + -+ n(k); n(k)= 

k = -km= (ZN+l)’ 

(3.3) 

+k max 
@(x)-Gj= c eiF@$(k); Q,(k) = ’ c ,j,-‘k,.p 

k= -km= (ZN+l)’ j 
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where the x(k) and $ (k) are the same as introduced in (2.22) and satisfy the 

commutation relations: 

It follows that 

I- L+ +I 7 ’ @jl = -i A’ bj jl 
-4’ 4 

(3.5) 

(3.6) 

All of these transcriptions are entirely straightforward. The gradient oper- 

ator in (2,l) is usually transcribed as a difference operator, 

(3.7) 

Although this form is perfectly all right in the limit A + 00, it leads to unde- 

sirable difficulties with the introduction of fermions for finite A * Since we are 

developing a formalism for very large but finite A, we choose an alternative 

definition that has the two desirable properties 

(i) For a free field theory it leads to an energy spectrum in accord with 

the relativistic form of the energy-momentum relation for all 

(ii) It automatically avoids doubling the fermion degree of freedom which 

results from (3.7) (see Kogut and Susskind, Ref D 2) O 

In terms of the program of this paper, these properties are not essential 

and we could just as -well work with the familiar definition (3.7). However, for 

future applications (i. e. , to Cgauge 

Lorentz transformation properties 

important and therefore we always 

viz. for 

theories with fermions, and to a study of 

of the lattice theory), these properties are 

adopt the following definition of the gradient: 

f1 = C ei’lA f (kJ 

4 
(3.3) 



I 
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we define 

6 
VfS - 

-c 

ik* j/A 

-4 
ike” f(k) 

k 

(3.9) 

Note that (3.9) introduces long-range 

neighbors. The kinetic term in (2.1) 

I dpx f ( V +)2 
c 

1 
z 

j 

lattice correlations beyond the nearest 

now becomes 

(3.10) 

L h2 @. ~.,W~--jr) 
*P u 2 

j, j’ 
_?,L - 

--e---C 

where 
+k 4ma.x 

is a sum of correlation terms in each dimension of the lattice. In particular, r 

forp= 1,’ 

For p > 1, we get a sum of such correlation terms in each dimension. 
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One important result is that with this definition of the gradient, the cutoff 

and lattice versions of free field theory are isomorphic, i. e. , by (3 0 4) and (3.10) 

(3.13) 

which is the familiar result for a cutoff Hamiltonian, and the commutators are 

the same as (3.5). Moreover (3.13) leads to an energy spectrum of the form 

dzy?- rather than one of the form p2 + 4 A2 sin2 (k /2 A ) which would 

emerge from the prescription (3.7), and hence we have a relativistic form of 

the energy-momentum relation for all k 5 km=. Note that these results also 
\ 

apply to the case of a free fermion theory. 

There is a difference between the cutoff and lattice versions of the field 

theory for the quartic term of (2.1) 0 This arises from the fact that in the cut- 

off theory by (2.22) 

/ 
d4x c#I~(x) = V 

% 

i.e., we must satisf;r a true d -function condition &l+k.2 +-lf: 3+% 4 = 0. However, 

for the lattice theory by (3.4) 
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and the factor in brackets is a periodic d -function which equals unity for 

= 0 modulo 27r, for each component. Hence (3.15) conserves 

momentum in the Hamiltonian only up to “Umklapps” in the language of solid 

state physics. For quadratic terms, as in (3.13)) in which the 5 are equal and 

opposite and limited by &rnaxUmklappscannot occur. In (3.15), however, as 

in all terms of higher than quadratic power in the fields, it is possible to have 

an Umklapp if two or more of the .momenta are of order of the reciprocal lattice 

spacing, i.e., for k - (22GFl) = km%. Therefore, the difference between 

(3.14) and (3.15) can be expected to alter the high momentum or short distance 

behavior of H but have little or no effect on the low momentum structure; viz., 

the mean field strength < $I > in the ground states and low lying coherent excita- 

tions D For simplicity, we choose to work with (3.15) and analyze the Hamiltonian. 

Hz1 AP 
Resealing to dimensionless variables, we introduce 

it1 - P) 

xj+ 
?A 

9 

‘j 

~ $(l+p) 

9 4 c -c, 

Together with 

ho 3 AflP-3 
2 

fO 
E f2 A(l-P) 

(3.16) 

(3.17) 

(3.18) 
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this gives 

H= A L,2 
2 j 

+ L 

j + 
2 (Yg + hojxy $)“j 

-+ l 

(3.19) 

Although all subsequent discussions will be based upon (3.19), for complete- 

ness we observe that with the definition of the gradient in (3,9) there is a way to 

define the Hamiltonian so that the lattice theory is entirely equivalent to the cut- 

off theory and there are no Umklapps. 10 This is accomplished by defining 

+L/2 
2 

H= + @-+= + A 

-L/2 

L/2 

F= -+ 
/ 

dP x [n 04 yP w + v e+(x) ~ W] 
-L/2 

(3.20) 

where 

k --8. 

ik. (x- j )/A 
(2;+1)P e - - - 

i 
(3.21) 

c 



. 
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Substituting (3.21) into (3.20)) we get . 

lr2 
j 

H= 1 ci 
= -2hf2$+f 2 + 5 

1 
--W 

41 l c Q-12) @& @j2 
j&J 

(3.22) 

+ c X j ( -1 -2 2’ I1 -L3’ i1 
. . . 

f 1’.&-‘~3’~4 

where the function 

can be calculated in a straightforward manner. All of the results and discus- 

sions based on the local Hamiltonian (3.19) csul be obtained also from the Hamil- 

tonian (3.22) with minor numerical modifications as can be readily shown. 

Finally we note that the interpolating field defined by (3.21) satisfies non- 

local equal time commutation relations for finite N, i. e., 

[n (9, $(y)] = +- C e 
i&s (5 -JJ 

k, 
(3.23) 

leading to a factor 

. 
I sin (.nA (x - y)) 

r - (,h^, 1) sin (nA(x - y)/L’N+l) 1 
for each dimension p0 11 

B. Variational Calculation with a Single Site Basis 

Our trial state will be constructed in terms of a single site basis intro- 

duced in terms of creation and annihilation .operators for each lattice site, i.e., 



(3.24) 

The “vacuum” at site j is defined by 

Repeated application of a a;‘,~ to form 
+ 

(3.25) 

(3.26) 

(3.27) 

permits us to build a complete set of product states spanning the Hilbert space: 

I 

n-N’ 

0..00 , 
nN> = ii I”j) 

j=-N 

(3.28) 

Our general trial state will be assumed to have the form 

IS>= yiGj> 

F 
where 

= go “Lj lnj> 
j- 

(3.29) 
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Using (3.19) and the fact that 

<$'j I Gj'> = dj, j’ 

we find for the energy in this basis 

(3.30) 

+iJG D(~l-~2)<~llx~l~~l><~21~21~2> 
L1-V2 I 

I 
where the diagonal terms with2 1 =L2 have been separated in the expression 

for the gradient. 

Assuming that the ground state is translationally invariant, we adopt the 

same 
I > % 

for each site j ; i. e. , in (3.29) cJ = cn. , independent of j. 
4 

Equation (230) then simplifies further since 
nj 

J 

independent of j. We can now use the identity, apparent from (3. ll), that 

c D(& -J2) = 0 (3.31) 
11 t 

so that 

c D(,& -i2) L - c D(z) = -(2N+1)PD(OJ 

il+& 1 

and (3.30) becomes in this example 



- 32 - 

Eo($)= <1c, IHI@> =(2N+1)PA <&+yx2+ hO(x2-f;)2”’ 
- I 

4 - +(o) <fiI~Iti>~ I (3.32) 

Our problem now becomes one of varying the trial state ($> so as to minimize 

E. ($I). Observe that (3.32) contains two kinds of terms: the first is the expec- 

tation value of a positive definite Schrodinger Hamiltonian; and the second is the 

square of the expectation value of the mean field strength < II, 1 x 1 Ic/ > . This 

suggests choosing < I+!J Ix II/I> as one of the variational parameters in any trial 

wave function. For example, a very simple choice is 1 $J> G e- ipc 10 > , 

where IO > satisfies (3.26) with ‘a’ a variational parameter. Then we have 

< $I 1 x 1 I,LJ > = c as the second parameter. This procedure is discussed in de- 

tail in Appendix C. We shall follow here, however, a more general procedure 

by first introducing a Lagrange multiplier, so that we can carry out the variation 

to minimize the energy with < @Ix Ifi > held f ixed, and then finding the lowest 

value to E. (#) by varying,over all values of <fi Ix I+ > 0 To do this, define: 

G (J) = 5 f 2 vx2+ Ao(x2-f$-Jx (3.33) 

and let 

I--(J) = <Goi E (4 1 Go> (3.34) 

be its ground state eigenvalue. Evidently 

w = - <~)~~xl~~,> EE -x(J) (3.35) 

for a normalized eigenstate l2 I@,> 0. Referring back to (3.32) and defining 

1 
A(2N+ 1)’ 

E(J) = T(J) + Jx(Jl - i D(0)x2(J) = r??(J) (3.36) 
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the problem of minimizing <$I I H I @> for the ground state energy is reduced 

to finding the value of J such that 

(3.37) 

Finding Q(J) for arbitrary values of J is a formidable problem and can 

only be done numerically. Fortunately, however, for our purposes we only need 

to know C?(J) for small J. This is because we are interested in exploring the 

region of “small kink mass” and the semi-classical discussion of Section 2 told 

us that this corresponded to having < Q IxI@ > c 1. 

If J = 0, the Schrodinger problem defined by (3.33) has a symmetrical po- 

tential and so x(J = 0) = 0. Since the term - Jx is an analytic perturbation on 

z (J = 0) , we know that for small J 

x(J)=clJ(1+c3J2+c5J4+ (10.0000. 1 (3.38) 

If Q(J) minimizes for arbitrarily small values of Jf 0, then we ,will also have a 

solution satisfying x(J) << 1 as desired. What we are looking for, then, is a 

regime of parameters h 0 and f 0 in which the solution fulfills these criteria. 

To demonstrate that such a region can be found, we perform a simple var- 
I 

iational calculation. Observe first that (3.35) and (3.38) tell us that 

1 2 1 
r(J) =r(O) - plJ - zc1c3J 

4 + .0000 (3.39) 

and so we can write (8.36) 

1 
Q(J) = I-V) + 2c1 1-clD(0) J2+c1c3 

I 
;- clD(0) 1 J4+ 0.0 (3.40) 

For J << 1, (3.38) can be inverted 

c3 3 J(x)= LX-~. +... 
1 c1 

(3.41) 
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and so we can express (3.40) as a function of x(J): i.e., 

c3 1 
4 

+qJ)) = T(O) -&x2- &+v) x4 f**- 
1 c1 

(3.42) 

where 

rl =-l+clD(0) (3.43) 

Since cl is always positive according to (3.33) and (3.38)) this will minimize 

for small x if 

0 Cr7<<1 and c3< 0 (3.44) 

with the minimum, x 
C’ 

occurring at ’ 

x2 g ye; 
C c3 

(l-47?) (3.45) 

Hence we have xz << 1 if 

v; 
- -cc 1 
I”31 

(3.46) 

It now only remains for us to show that there exists a range of A, and f. 

for which these conditions on cl and c3 are satisfied. To do this by analytic 

methods, we introduce a two-parameter trial state I ~5 > of the form of a 

displaced Gaussian formed from (3.24) and (3.26) t 

Ifi,> = e-i 00 P lo> ; <~,lxl~,> = <x> c 
(3.47) 

Taking the expectation value of (3.33) in this state and henceforth restricting 

ourselves to two dimensions, we find that 
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<~opi(J)I~o> = rocJ)=f +* + 
(3.48) 

3<x> -fi 

a! -J<x>. 

Differentiating (3.48) with respect to <x> and Q! gives the extrema as functions 

of J. Expanding in a power series for small J, using (3.38) for <x> and intro- 

ducing 

a!(J) =cuo ( l+a2J2+ .oo.e) (3.49) 

we find directly 

and 

2 
@O - D(O) 3 

4A0 
+ f; = - 

2a0 

(3.50) 

(3.51) 

In order to satisfy the condition q << 1, we see from (3.43) and (3.50) that 

@O (3.52) 

By (3.51) and (3.52) A, and fb must then satisfy the constraint equation 

(3.53) 

Furthermore, in order to have c3 < 0, it is necessary that CL!: > 6 A o in 
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(3.50). For q <I 1 this becomes 

A, < +(W))3’2 [I - ;q + .oe.] (3.54) 

Since both of these conditions can be satisfied simultaneously, it is clear that 

we have established the desired result. Namely, we have 0 < xc << 1 when, by 

(3.53): 

f; > f2 = 3 - 
33/2 

cr 2%/m N-- 
- = 0.83 2n (3.55) 

and by (3.54): 

7r3 - 1.0 
18 fi 

(3.56) 

With this choice of parameters’, we find a reasonable second-order phase trans- 

ition whose onset is characterized according to (3.45) and (3.53) by 

(3.57) 

The inequalities will be altered quantitatively by a more elaborate trial 

wave function but the general conclusions about the nature of the transition re- 

main essentially unchanged. 

Notice that throughout this analysis the term proportional to D (0), which 

contains the effects ofksite-site recoupling in (3.32), plays an important role in 

eliminating tricritical behavio,r. Had D(0) been zero, G(J) in (3.40) would 

have had the form 

E(J) = T(o) + fcl J2 + ;c1c3J4+ O.-O 

Since cl > 0, we could only have obtained a minimum with <x> # 0 if both 
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c3 - < 0 and if the coefficient of the next higher term in 8(J) of order J6 was 

positive. However, there would again be a local minimum at <x> = 0 leading 

to the tricritical disease encountered in the momentum space calculation. The 

interesting question of “what happened to the analogue of the D(0) term in the 

momentum space calculation?” will be addressed in detail in Chapter 4. 

To summarize, the main achievement of this calculation is that we have 

found that xc in (3.45) can be made arbitrarily small by appropriate choice of 

ho and fi without a spurious minimum at <x> = 0. This is in contrast with the 

first order phase transition found in the momentum basis between the <$> = 0 and 

< @> = c # 0 phases in Section 2-C. We have thus developed a variation proce- 

dure free of the tricritical disease and found that the spontaneous symmetry 

breaking of the ground state from the <x> = 0 phase to <x> # 0 can be established 

in accord with general principles. The possibility of finding a non-vanishing 

value of xc that is arbitrarily small is of crucial importance for the study of 

low-lying “kink” solutions to this theory. 

However, before discussing the “kink” solution, it is also important to com- 

pare the present bound, (3.42)) on the ground state energy with that obtained in 

(2.36) using the momentum basis. Although we have found that the trial state 

(3.47) removes the tricritical disease, we must also compare energy bounds in 

order to establish whether the site basis approach as implemented here is a 

better variational approximation. In particular, we are interested in this com- 

parison for parameters satisfying (3.53) and (3.54). Unfortunately a numerical 

evaluation of (2.36) shows that, in the range of A, s 1, as required in (3.56), 

the momentum calculation produces a lower bound in the energy than the single 

site calculation. However, this numerical constraint to A, s 1 is only an arti- 

fact of our crude trial wave function, and one can do better. 
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Restricting ourselves to a single site basis as in (3.29)) we can numerically 

diagonalize the Hamiltonian to better than one part in lo4 accuracy. 13 The re- 

sults of this computer calculation show that if ho = 3, the single site wave function 

gives a lower ground state energy than the momentum basis for all values of xc 

such that 0 5 xc << 1. Moreover, this calculation does not predict tricritical 

behavior. A numerical comparison of single site and momentum basis results 

for A0 = 3 and .8059 s f. <, .8075 is summarized in Table II. To recapitulate, 

we have developed techniques for a variational calculation free of illegal behavior 

and applicable in the strong coupling regime <x> << 1. Many avenues are open 

for improving both qualitative and quantitative predictions. One way would be to 

abandon the single site basis approximation in (3.29) and build a procedure using 

blocks of neighboring lattice sites. This technique and its value for extending the 

realm of coupling parameters for which we can construct ground states will be 

discussed in the next chapter, along with the relation of our m.ethod to renormal- 

ization theory. 

C. Calculation of an Upper Bound on the Kink Mass 

In order to compare with the semi-classical results of Section 2A for a kink- 

like solution in lx + It dimension, we now introduce a trial form that exhibits a 

dependence on the individual lattice sites j. We again work in a single site basis 

(3.29) and compute an upper bound on the energy for the single-kink sector rela- 

tive to the energy in the vacuum sector. Furthermore, if we can establish the 

accuracy of the ground state energy, we can interpret our result as an upper bound 

on the ffsingle-kink mass” and compare with the classical results of (2.6) and (2.7), 

To carry out this calculation, it is simplest to modify (3.30) by adding and 

subtracting the diagonal term j, = j, in the double sum, writing 
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Ekink = @ kinklH’ ‘kink > =A 

(3.58) 

+ +D(O) x ( 

The double sum in the last term is essentially the classical gradient term in 

the energy expression (2.3), with the matrix element of the field replacing its 

classical strength. This is the only term coupling different lattice sites and 

therefore we can minimize the kink energy simply by imitating our procedure 

for the vacuum state, introducing a Lagrange multiplier J(j) for each site and 

performing the variation subject to the condition that 

<xj> z <@jlxjl +j> 

is held fixed. This state will automatically be orthogonal to the vacuum in the 

limit (2N+ l)- oo since the choice of a functional form for < xj > as illustrated 

in Fig. 5 leads to Q p 0 for the conserved %harge” (2.9). 

In analogy with (3.33) and (3.36), we introduce 

ifi (JW) = &) c ,(xy - fi)’ -J(j) xj 
,’ J 1 

and define c 

(3.59) 

r(J(j)) = <tiktiIHi b&&> =& c 5 (J(j)) 
j 
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where fj (J(j)) is the same function calculated in (3.39). The variational upper 

bound on the energy of the kink state is then computed by finding the local min- 

ima with respect to J(j) of 

(2N& %i*=&Fij C /rj (J(j)) + J(j) <Xj> - ED <Xj>” ~ 
j 

‘&ij L iD(jl - j2)<xjl><xj2> 
j,, j, 

(3.60) 

Since our goal here is to display an upper bound on the energy of a kink state 

that is low lying, in the sense of the semi-classical energy (2.7)) we now make 

a simplifying if crude approximation to estimate the kink energy, and in partic- 

ular to show its dependence on the parameters in the theory. 

It is apparent that, except for an interval of finite length on the lattice, the 

value of < x(j) > must be arbitrarily close to f x c’ where xc is the extremum 

determined by (3.45) for small J and <x>. Otherwise, the excitation energy of 

the kink would be proportional to the total length of the lattice, L = (2N + 1)/A , 

akin to the classical result that unless g(x) makes the transition from -f to +f 

within a finite interval in (2.6), the total kink energy (2.3) would diverge as 
+m 

/ 
dx. Let us introduce as a parameter in the variational calculation the width, 

-00 
D, of the interval ovei which x(j) changes from -xc to +xc. We parameterize 

D in terms of the lattice sites by 

D = ( 2j,+l)/h (3,61) 

where 

<xj> =+xc for j > j, 

= -x 
C 

for j < -j, 
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Using (3.61), we can write for the difference between the energy of the kink 

and vacuum states (recognizing r(-J) = r(J) ) 

6 

'0 

Eka (J) - E. (Jc) = A ;I: /r’(JCi)) + JO<Xj>-~DO<Xj>2} 

j- -j0 

(3.62) 

(V,+ 1)’ 
(2N+l) 0 c E (J ) + A C $D(jl-j2) <Xjl> <Xj,> 

. . 
Jl’J2 

The last term represents the “kinetic” energy due to the change of <xj > in the 

transition region and is equal to 

A c . . 
JfJ2 

iD(jl-j2) <“j,> <xj2> 
X2 

= *(2jo+1) (2j c+lj2 
AXE 

= Dn 

0 
(3.63) 

This is evaluated by a linear approximation to <xj > between -j, and j,. Equa- 

tion (3.63) is just the classical expression for the kinetic energy. Assuming 

that the ground state energy has been evaluated accurately, we overestimate the 

energy difference in (3.62) if we simply set J(j) = 0 in the transition region for 

calculating the difference of the first two terms. Using (3.42) and (3.61) this 

difference gives, to leading order in xz << 1, e 

( 2 j, -I- 1) A r(O) - 
(2j0+ 1) 
- Eo(Jc) =DA2G x2 

c (2N+l) 1 c 
(3.64) 

Adding (3.63) and (3.64), we have 

Ekink (3.65) 



which is minimized at 

1 
(DA) = (2 c,/Qjl” 
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to give 

Ekink(J) - EO(Jc) = 2xc l 
(3.66) 

The constants can be expressed using (3.45) and (3.50) in terms of the coupling 

parameters. Using (3.56) and (3.18), we find 

D- 
( 
2 A1/2 

0 xc ) 
-l A--l - (2 Al/2 xcJ-1 

Eke (J) - E. (Jc) M 4 d’2 x; (I + o (xc)) (3.67) 

Equation (3.67) is the main result of this section. Assuming, as we re- 

marked earlier, that the ground state energy has been evaluated accurately, 

the one-kink energy is, aside from unimportant numerical factors, a resealed 

version of the semi-classical result for the kink mass - Jh f3 in (2.7) D Thus 

(3.67) shows that the effect of the quantum corrections has been simply to rescale 

the classical field strength f to xc '<*jlxj I@j> for sites outside of the kink 

region. No matter how large the cut-off A is made in (3.67)) we are free to 

choose xc small enough so that the kink mass 

mkink - 4 hf2 A p3 c (3.68) 

is a finite and small mass. What we still face, of course, is the challenge 

an accurate calculation for the ground state by going beyond the single site 

lattice basis, but our principal point is now evident: in the spontaneously 

of 
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broken theory for’ small values of <x > we find low-lying kink configurations in 

the quantum theory of (2.1) formulated on a lattice. Moreover, there is no 

reason to believe that this result is an artifact of having introduced a lattice 

since the kink represents a structure which extends over many lattice sites. 

In particular, the kink extends over a number of lattice sites given by 

t 
‘2jo+l) - DA- 
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IV. CONNECTION TO RENORMALIZED FIELD THEORY - 
THE BLOCK FORMALISM 

‘ In the previous chapters we discussed two different attempts based on vari- 

ational techniques for calculating bounds on the masses of the ground state and 

of the “kink” state for a lattice (or cutoff) field theory with a ho(x 2-fi)2 self- 

interaction. We saw that a calculation using a simple “momentum space” basis 

for describing the ground state is adequate in the weak coupling regime (f2>>1). 

For strong coupling (f2~ 1), however, we encountered tricritical behavior and 

saw that such a calculation predicts a first order phase transition (i.e. , the 

vacuum expectation value OT> jumped discontinuously from <x > N 1 to <x> = 0). 

On the other hand, in the strong coupling region we found a limited range of param- 

eters for which a “configuration space’* basis provides a more appropriate descrip- 

tion, The single site calculation carried out in Chapter 3 exhibited a reasonable 

second order phase transition with <x> - A(fi - f2 p, cr as shown in (3.57). 

Moreover, this calculation allowed us to explore the region of coupling param- 

eters in which <x> is arbitrarily small and therefore to establish the existence 

of the kink configuration as a low lying state. 

Numerical studies also showed that for the region of parameters A0 N 3, 

f2 o < 1, the single site basis produced lower upper bounds on the energy than the 

momentum basis calculation all the.way down to <x> = 0. Unfortunately, for 

hoc 1, i.e., A< A2, the “momentum space” calculation, although manifestly r 

incorrect, produced lower upper bounds on the ground state energy than the 

“single site” basis, We face ,” therefore, the question of “why does the momen- 

turn basis win for A0 < 1’7” and “how can we extend our techniques to allow us to 

explore larger regions of A0 and f. without encountering forbidden behavior?” 

It turns out that the answers to these questions are intimately related to the 
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general question of renormalization of this theory which we must now address. 

We proceed as follows: 

I-. First we discuss the general problem of taking the lattice spacing to zero - 

Le,, A - 03, and defining a finite version of our Hamiltonian in order to es- 

tablish contact with the usual renormalization procedure. This analysis 

shows simply why, for ho << 1, the “single site ” calculation must lose to the 

“momentum space” one. 

2. Next we introduce a more general class of wave functions which correlate a 

finite number of neighboring sites to one another. We call these *‘block 

wave functions” and describe how they can provide a systematic way of ex- 

tending the regions of parameters ho and fi over which we can find bounds 

on the ground state energies which are lower than those obtained in the mo- 

mentum basis 0 

3. Next we develop a straightforward and practical scheme for working with 

the block wave functions 0 It is a “hybrid” method which uses a k-space mo- 

mentum basis for performing the variational calculation within each of the 

individual blocks that are introduced using the site basis. With this tech- 

nique we can explore the range of values of ho and $ all the way into the 

usual renormalization region, with Lo - 0 and $ - Q) in IX+ It dimensions. 

As applied to this model, this te.chnique has the virtue that it is capable of 

calculating exactly the parts of the ground and excited state energies which 

diverge as the cutoff A - co, while at the same time completely avoiding tri- 

critical behavior. The hbbrid calculation also shows why the momentum 

space calculation failed. 

4. Finally we introduce scaling arguments and outline a procedure that indi- 

cates how the block formalism may give us a framework to improve further 
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upon these calculations. These arguments are reminiscent of the resum- 

mation technique and renormalization group ideas of Wilson and Kadanoff, 6 

A. On the Connection to Conventional Renormalization Theory 

Our cutoff theory was defined in terms of the Hamiltonian density 

,&&utoff = $2(x) + +#g2(x) + A(cp2(x) - f2)2 (4.1) 

We now seek a way to redefine Zso that it will be finite even as A - 03. As is 

well-known, the only divergences in the #I 4 theory in l-space l-time dimension 

are those 

quadratic 
4 $ term, 

associated with normal ordering. ’ Normal ordering the first two 

“free field” terms in (40 1) gives a term proportional to A2 while the 

as illustrated by the Feynman graphs of Fig. 6, contributes terms 
9 

proportional to Ln A and !nen”A. Hence, once we define the Hamiltonian density 

N(Tiiutoff ) to be normal ordered with respect to an arbitrary mass, and require 

the coefficient of every term to be finite in the limit A - 00, the resulting Ham- 

iltonian will define a finite theory, To carry out the normal ordering we intro- 

duce a momentum basis 

G(x) = Jb eiqxQ(s) 
(4.2) 

n(x) = dx elqX7r(q) 

anddefine aq and ai by 

t 
J 
olq(lr2) 

i n(q) = 2L (a-q - “g’, 
6 

where 

and h2 is arbitrary. We can then write the terms in (4.1) in normal ordered form 
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+2@J = N 2(@2@J) +<G2> 
lJ P2 

q”(x) = N 2(q54(x)) + 6Q2> 2 
/J P2 

(4.3) 

n2w = N ,(r2(x)) + <x2@)> 
I-1 P2 

In the infinite volume limit, with km= = nA, we find by straightforward calcula- 

tion 

(4.4) 

<p#g2> ;.& 
v2 

= <7r2> 
P2 

- jA2<+2> 
P2 

An important observation at this point is that from the point of view of ren- 

dering the theory finite, normal ordering with respect to one arbitrary mass p2 

is as good as normal ordering with respect to any other mass. The difference 

is given by finite terms in the limit A - CO, as can be readily verified from (4.1) 

and (4.4). The Hamiltonian (4- 1) can now be written 

tiutoff = N 2(+r2 + +@)2 c!- h$~~) + (-2hf2 + 6h<e2> 2)N ,(q2) 
P P P 

-I-< ‘+Pg 2 
2 - 2hf2$2> 2 + 31 I 

P I 
<t#12> 

P2 i 

(49 5) 



- 48 - 

Defining a “mass” 

2 m E - 4 If2 + 12h <@2> 
l-J2 

(40 6) 

we have 

;,ptoff = N 2 (+ n2 + i(V$)’ + +m2$2 + hQ4) + const (p2, Lf2), (4.7) 
P 

which represents, up to a divergent c-number term, a finite normal ordered 

Hamiltonian, provided m2 and h are finite in the limit A - co, If we now intro- 

duce the dimensionless units as used earlier in (3,18), h and m2 may be chosen 

to be finite as A - 00 if and only if the dimensionless parameter ho vanishes as 

-0 as A-co (4.8) 

and, in (4.6), 

f2 = f”o EZ 3<$2> 
P2 

---c Qn(A) as A --L 03 (40 9) 

In other words, if we wish to study lattice theories corresponding to convention- 

ally renormalizable theories we have to look at the region where ho << 1 and 

6 >> 1. These conditions insure that the dimensional parameters h and m2 are 

small with respect to the cutoff A. Clearly this is not the range we have been 

considering. Indeed, the single site basis gave a lower upper bound on the 

ground state energy than the momentum space calculation only when the coupling 

parameters were in the range A0 - 3, f2 - 1. We emphasize, however, that, 

even though the corresponding lattice Hamiltonian does not define a finite theory 

for this case in the limit A - 00, this example is of interest in itself. In part 

titular, it possesses low mass “collective” or “quasi-classical extended” states 

as we saw in (3.68) for any arbitrarily large finite value of A. 
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Now we are in a position to answer the questions raised at the introduction 

to this chapter, Le. , why does the “single-site” calculation eventually lose to 

$he momentum basis calculation as ho gets smaller (- 1/A2). The point is that 

the normal ordering divergences of the theory, which in lx + It dimensions are 

the 9 divergences, are exhibited exactly by the momentum space calculation 

as seen by comparing the quadratic (A’) as well as the logarithmic (QnA and 

Qn2A) terms in (4.4) and (4.5) with (2.35 ) and (2.36) and observing the similarity 

of (2.37) with (4.6). 
, 

Hence we can write for the ground state energy density calculated in the 

momentum basis 

%om = AoA2 + B6QnA + C6Qn2A + &finitm (4- 10) 

where the coefficients Ao, Bo, and Co are exactly what they should be for the 

true ground state energy of ,:ye dutoff ; in particular in terms of a cutoff 

k max =rA, A inite o = 7r/4, which follows directly from (4- 4) and (40 5). CJ Omom is 

larger than the true A-independent part of the ground state energy density since 

the variational procedure gives an upper bound. As far as the single site calcu- 

lation is concerned the energy density Go(J) by (3.33), (3.36), and (3.48) 

has only a A2 divergence and we can write 

& single-site = 0 Ai A2 + &si?ni$e site 

In particular for A0 - 0 we can use (3.51) and (3.48) to evaluate the coefficient 
t 

A;, which is larger than the corresponding one in the momentum basis calcula- 

tion : c 

Ab = &Qjj = i& = $ A0 > A00 

It is clear therefore that holding h and f2 fixed and taking A - 00 eventually we 

must have 
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d? single-site - &mom = (A; - Ao)A2 - B&n(A) - C$n2 (A) 

+ d inite 
single-site 

_ ggz) +ljAoA2,i4di2) 

The reason the single site calculation with ho - 3, fi - 1 produced a lower bound 

on the energy than the momentum space one is that, for these parameters, the 

bare mass is comparable to the cutoff, and the cutoff independent part of the en- 

ergy density, i.e. , the term we have called E fin ,is comparable to the ones of order 

A2 , In(A), and 1n2(A). Since in this region & finite 
single-site < d$iE, the single- 

site calculation wins o This of course tells us that when the finite part of the mo- 

mentum space energy gets smaller than the divergent parts the momentum basis 

will win. Therefore if we wish to extend our variational calculations in a site 

basis into the region of coupling parameters with ho<< 1 and f2 >> 1 and at the 

same time obtain lower bounds’ on the energy than the momentum space approach, 

we must construct a class of trial functions that reproduce with arbitrarily high 

accuracy the coefficients Ao, Bo, and Co of the terms that diverge as A -L 03, 

Only then can we claim that the comparison of the ground state energy density in 

these trial states with the calculation in the momentum basis involved finite parts 

alone. Of course, we also demand that this class of trial states does not produce 

any disease like the tricritical behavior found in the momentum space calculation. 

It is the purpose of the next section to indicate a way toward accomplishing these 

goals o t 

B. Block Wave Function 

The block wave function formalism is a generalization of the single-site ap- 

proach used in Chapter III which allows the correlation of a finite number of 

neighboring lattice sites to one another. It has the advantage of enlarging the 

space of variational trial states while still reducing the problem to a Schrtiinger 
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one with a finite number of degrees of freedom. Our starting point is to assume 

that the lattice is subdivided into B blocks, B = (2b+l) of length Lb = (2Q+l)/A 

@ee Fig. 7). The total length of the lattice will, therefore, be L = BLb,, The 

points on the lattice can be labeled either by {j} ={ -N,N} , L = (2N+l)/A, as 

used thus far, or alternatively we can introduce j’ and (Y such that j’ = { -Q,Q} 

and {a} ={-b,b} so that every j can be uniquely written as j = j’ + Ebb; Q 

labels the block we are in while j * labels the points within the block, and Lb = 

ALb. Adopting this notation we introduce a trial state as product of block states 

(4.13) 

I$@)> is a general trial state in the space of states generated by applying arbi- 

trary polynomials in a+(j’ + ICY) to the state II IO 
‘1 J 

j,+z 
b 

ac> (defined in Eq. (3.26)) 

for CI fixed, and j’ varying over {-Q ,Q} 0 

Taking the expectation value of the Hamiltonian (3.19) in this trial state we 

obtain 

9 
trial [H I @trial, = A ;” <~@)I TQ 

ct =-b j * g-Q + ~oqy+aE ) - $I2 
b I I 

1 1 

+z 
D(ji - j*)x .’ 2 (~l+“L-b)x($+al;b) hj(a!)> + A c c +f.ii-j~+‘bt”l-a2)) 

t al#Q2 ji,.ig 

(40 14) 

Since we are interested in the ground state we assume that all of the I$@)> are 

constructed in an identical way, This construction preserves invariance under 
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the translation from one block to another. To calculate the energy density we 

can suppress the a! label, since summing over Q produces B identical terms. 

This reduces our problem to finding the state which minimizes the following 

Schrbdinger problem with Lb degrees of freedom,, 

eff 1 
+Q ,p2 

s-v = A(2N+l) <$,HI$> = u/I+ c ,+o(~; 
b j=-Q 

$D(j 
‘r 

-j )x. x. 
1 2 J1 J2 

I J$> A- & ,f D(jl-j2)c;1)o;2>} 
Lb j,,j,=-Ql 

1 
+2N+1 (40 15) 

where we have used the fact that <x j+cyL > = CC.> and introduced the notation 
J 

c wj (a <Xj>)2 ZX c 
“19’y2 

D(j,-j, + Lb(~1-~2))<xjl~~xj2> (4.16) 

j,J, 

As in the single site case the terms proportional to <xj>2 complicate the 

minimization problem and so we introduce the Lagrange multipliers Jj and solve 

first for the ground state of 

+ ho(x;-f;)2-Jjxj (4.17) 

for arbitrary J., 
J 

with’ <xj> held constant. Defining 

II’ 7 ground state eigenvalue of (a( 

and noting as before (see 3.35) 

8.r =A->= 1 
-3. J Lb j rX(Jj) 

b 
(4.18) 
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our problem reduces to minimizing the function 

Q 

&(Jj)= I’(Jj) +& c Jjx(Jj) + 1 c fr (Vaj>)2 2N+l 
b j=-Q a,j 

11 --- 
2iI c 

b j,,j, 
Dcil-j2)X(Jj,)X(Jj,) (4.19) 

with respect to the Lb parameters J.. 
J 

In principle an exact solution for the ground state of g(J) will give a lower 

value for the upper bound on the ground state energy than given by the single site 

basis. Therefore this will yield a better bound than the momentum basis calcu- 

lation for a large range of parameters ho and fi* 

C. Hybrid Calculation 

In practice the general solution for the ground state of the cb-degree of 

freedom Schrijdinger problem is difficult to obtain, In particular each <xj> and 

Jj will be a function of j due to end effects on each block. However, the (xj> 

will for most lattice sites become independent of j as zb - to. In other words 

for the large $, limit we expect that the difference 

I-Q 
1 <x.> - ,- 

J Lb c 
<xj> = x(Jj) - x’ (4,20) 

j Z-Q 

will go to zero like l/q f or most of the rb>>l sites within each block, With 

this in mind we minimize <z/ I i?(Jj) I J, 
+Q 

> only over states such that 2 =& c <x.> 
Lb j=-Q J 

is held fixed, and construct &(Jj) by replacing x(Jj) by 2. One accomplishes this 

technically by introducing a single Lagrange multiplier J to replace the indi- 

vidual Jj in (4-17): 
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+ i 2 
j,, j,= -Q 

D(jl-j2)XjlXj2 -J% $ xj 
j Q 

Defining next 

r ( J) = ground state eigenvalue of { k (J)t 

we have 

-%=$tQ<xj>-z(J) 

j 

We then construct 

Aw x tJ)2 E”(J) = I-(J) + Jz (J) - 2 

(4.21) 

(4.22) 

(4.23) 

(4.24) 

where we have obtained (4.24) from (4.19) by replacing <x(Jj)>- by x(J) and 

using the fact that (4.16) vanishes according to (3.31); i.e., 

A (“b) is defined by 

+Q 

A(ib)$ c D(j,--j,) 
j,, j,=-Q 

(4.25) 

(4.26) 

and has the important property that 
14 for Lb >> 1, 
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A ( 5)~ 0 as l/Lb (4.27) 

It is of crucial importance to what follows that although A Lb 
( > 

decreases with 

increasing Lb according to (4.27)) at no stage is it actually zero. 

Following a procedure similar to the single-site calculation, we note that 

the term J 
Lb= 

xj is, for small J and finite Lb, an analytic perturbation of 

@J=O); soweexpandx(J)as 

X(J) = clJ li-c3 J2+c5J4+ oooooo 

Repeating the steps leading to (3.40), with A Lb 
( ) 

replacing D(0) there, we find 

&X 
b 

(J) = T(O) +$cl (1 -c~A(~))J~+~~c~(;-c~A(~~)) J4+ 00.0 

(4.28) 

Minimizing with respect to J yields (see 3.43 and 3.45) for xc << 1, 

x: S cf (cl A(I;)) - l)/lc31 

when (c.lA(cb) - I) > 0; otherwise xc = 0. 

(4.29) 

Note that we would incorrectly predict tricritical behavior, as in the 

momentum space calculation, if we take the limit Lb --c 00 so 

that A x, 
( ) 

- 0 without paying attention to what happens to the product c A 
1 (%I* 

In this limit, the sign of the coefficient of J2 in (4.28) is positive independent of 

ho and fo; hence for all coupling strengths, J = 0 becomes a local minimum and 

we run into the tricritical “disease.” However, the sign of the J2 term in E(J) 

does, in fact, depend on the parameters ho and fo, as we found earlier in the 

calculation of Section 3B for the single-site basis. Care is required in taking 

the z, --L 00 limit in such a way that clA( Zb) is held fixed. We show how to 

do this in detail in Appendix D by bounding the energy eigenvalue (4.28) by means 
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of a momentum space calculation within each of the individual blocks; that is, 

we use the method of Chapter 3 but keeping x, finite. We find that, as A and 

‘Lb - 03, we can take h 0 -+ 0 and f2 o -+ 00 in such a way that xc is held fixed 

and arbitrarily small. In particular, h 0 - 0 as l/Eb and fi - cc asJInX b’ 
so that this limiting procedure also renders H cut- off. m (4.7) finite if we make 

the association of Lb with the square of the cutoff; i.e., z, cc A2 in (4.8) and 

(4.9). 

As -% d 00 the variational energy found by this hybrid method of a block 

basis, and within each block a momentum basis, converges to the momentum 

space answer from above. Hence as shown in Appendix D, the block 

basis provides us with a technique of calculating which does not produce math- 

ematically forbidden or unphysical behavior and at the same time yields bounds 

on energies that are as good as those obtained from the flawed (by tricritical 

behavior) momentum space calculation. Our hope, which we shall try to moti- 

vate in the next section, is that a more detailed use of the block formalism will 

enable us to do even better for the ground state energy. 

D. Extending the Applicability of the Block Formalism; a Scaling Argument 

We conclude this chapter by formulating a procedure for systematically 

improving on the variational calculation for the energies of low lying states. 

The nature of our approximation in the site basis can be stated as follows: 

An accurate treatmed of the “potential terms” involving fields at the same lat- 

tice site, viz. A 
( 
X2 - f 2 2 

0 j 1 , . 1s possible, but the gradient terms coupling dif- 

ferent sites are approximated only crudely. In the single site basis the corre- 

lation between different sites is retained only in the fluctuations about the 

average field, i. e. , the term + D(0) ( <x2> - <x>2 ) , plus the classical 

derivative term for the kink energy in (3.58) s With a generalization to the block 
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basis for studying the ground state energy we have included the correlations be- 

tween sites within the individual blocks, but not between different blocks. Evi- 

dently the block procedure improves as the block size %, increases. It is, there- 

fore, of interest to determine how big the effect of the gradient terms is, how the 

accuracy of representing them improves with increasing z, , and how large a val- 

ue of Lb is needed for reasonable accuracy as a function of the parameters A0 

Note first that when the gradient terms are totally ignored, the Hamiltonian 

(3.19) becomes a sum of 1 degree of freedom operators at each site j, and the 

spectrum of eigenstates at each site is identical. The eigenstates of H are then 

characterized by specifying the different individual levels of excitation populated 

at each site. Barring additional degeneracies arising for specific values of A9 

and f2, the first excited state will be (2 N+ 1)-fold degenerate corresponding to 

having the first excited level at any one of the lattice sites. When the gradient 

terms are included in H, their effect is to lift this degeneracy; they also mix 

these states in general with the ground state and with the more highly excited 

spectrum. It is when these gradient-induced splittings are small relative to the 

spacing between the single site excited states that the site basis is expected to 

provide a reasonable picture of the true ground state. 

This feature can be displayed simply in the exactly soluble example of the 

quadratic Hamiltonian with positive mass: 

‘O=fT I$+ 1($ +‘(“))xf 1 +j z2 5 xjl xj2]t (4.30) 

1 

where we use dimensionless canonical variables and measure energy in units 

of the cutoff A O Ho is completely diagonalized in the momentum basis with 
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ground state energy 

There is a gap of mass p to the first excited (single particle) state, i.e., 

ex ex El -E. = /J 

(4.31) 

(4.32) 

and the splittings among the excited single particle states are expressed by 

E:(n) - Er = with n = 0, f 1, . . . f N (4.33) 

The “single site” variational basis as in Chapter III gives a ground state energy 

l-site = A2 L 
EO 2 

4 D(0) -I- p2/ A2 

and a gap to the first excited state of 

E1 - site 
1 

_ E1 - site = 
0 

d p2+ A2D(0) 

(4,34) 

(4.35) 

?r2 
where D (0) = -3 in the N --cc0 limit (see (3.12) ). The site calculation gives a 

result for the ground state energy and for the first gap whose accuracy is meas- 

ured approximately by the ratio 

- (A2 D P)h2) 

The quantity II p2 + A2 D (0) measures the gap to the mean energy of the (2N+ 1) 

degenerate l-particle excitations of (4.30) and the gradient introduces splittings 

(4.36) 

among these individual levels of order ;t: ( 
total splitting being - p2+ A2 -/.J 1 0 

l/p 
2 2 

L EL, with the ) 
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Clearly the one-site basis gives an accurate result when (A2D(0)/p2) < 1, 

in which case the ground state energy is accurate to better than 3% and the gaps 

between higher excitations in the site basis are large compared with the splittings 

among the degenerate one-particle levels and hence are relatively unimportant. 

The ratio 

R = [Splittings among degenerate excitations at individual sites] 
[Interval between excitation energies of single site spectrum] (4.37) 

is a measure of how well the gradient is approximated by the single-site basis. 

WhenR << 1, the single-site basis is expected to be a very good approximation. 

However, if this ratio is not small, we require a more accurate treatment of 

the gradient terms. 

This suggests using the formalism of the block functions, and working in 

a momentum basis within the individual blocks. In this way we lift the degeneracy 

among Lb single-s ite levels within a block and produce more accurate upper bounds 

on the ground state energy. Couplings between the different blocks are introduced 

via the remaining terms of the gradient operator, but these couplings will induce 

smaller splittings since the “typical” separation between lattice sites in two dif- 

ferent blocks is Lb > 1 and the coupling strength between them is proportional to 

D(j - j’) - ’ 1 
(jt- j1)2 -z” l b 

An iterative procedure based on working with larger and larger blocks formed by 

combining smaller block units and including site-site coupling via the gradient 

terms offers the promise of a calculable and convergent procedure for a broad 

range of ratios R. 
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Returning once again to simple exactly soluble Hamiltonian Ho in (4.30), 

we can illustrate the rapid convergence to the exact energies as the block size 

grows. It is easy to carry out the hybrid calculation if the lattice is divided 

into blocks that contain two sites each, and within which we use a momentum 

basis. The ground state energy becomes 

E;-site= A2 L. i id-+ 4-1 (4.38) 

and the gap to the first excited state is 

E2-site _ E2-site 
1 

o = j/~#iiGiiF (4.39) 

Comparing with (4.35) for the one-site result, the two-site basis is seen to 

converge for smaller values of /.L2. 

More generally we can abstract from these observations the following 

scaling argument for illustrating the value of the block formalism in extending 

the regime of parameters over which the site basis can be applied. First we 

regroup the terms in (3.19), using (3.10) and the notation of the preceding 

section; i.e., the lattice is divided into B = 2b + 1 blocks each of length Lb = Z+ 1 

and we carry out the sum j= jr+o!-$ with {j’l = {-&I!} and {LY} = {-b,b}: 

+I 2 fT;b(c’I - @2)] xj; (5) xjB (“2) 

ji+ ji 

(4.40) 
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where we have adopted the notation xjr (a) = x(jl + CI! -$). Resealing the fields 

according to the canonical transformation 

‘ 
p -, q 1’2 p 

x - q2 x 
(4.41) 

and using (3.12) so that for Q! 1 + o2 

D(cbjOll-02)) = cb-2D(orl-~2) (4.42) 

we obtain 

H = $ (kg + uo) (4.43) 

where 

~[;P+,++$ (-4Aof2+D(0)) x;,(a)+f;;~,x;(a)+ xbhof4] 

(4.44) 

xji (a1) xji (“2) 

c 
A0 in (4.44) defines a theory of an interacting -\-component field xj, with 

a large coupling constant X0-< and a mass matrix 

M2 
jiiib 

= Lb2 b(j; - ji) -4h0f2 fiji jb] 
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This mass matrix can, of course, be diagonalized by an orthogonal transforma- 

tion mixing the different components of xj,(a) only within the individual blocks a. 

In general, the mixing only couples a finite number of neighboring field compo- 

nents as L 
b 

grows large since the “long-range order” in D(j; - ji) decreases 

in coupling strength as j’ - ( 1 jg-” according to (3.12). Moreover, it is impor- 

tant to notice in (4.44) that the block-block interaction in X0 is given by the gradient 

term which has no powers of -5 in it. Therefore X0, for large -$,, is almost local 

within individual blocks. Furthermore, the “potential” *no contains no powers of 

z,. We conjecture, therefore, a good starting point to calculate the ground state’ 

energy for large enough z, is in terms of X0 and a trial ground state constructed 

in a single-site basis. As we argued earlier, this approximation gives a good 

bound on the ground state energy whenzl ho > zi; i, e., the potential term is 

greater than the gradient term. For increasing Lb > 1, this allows us to enter 

the regime of small ho with this method, so long as we satisfy A0 > l/x,. 

This block basis resummation argument is similar to our block basis cal- 

culation of the preceding section; in both cases, the problem is reduced essen- 

tially to an f;, degree of freedom Schriidinger problem. Of course, for large 

zb, this is still a very complicated problem to actually solve and therefore we 

would like to do the regrouping into blocks in stages, with each step a small 

and readily computable problem. At each step we group the degrees of freedom 

into blocks of small Length (with perhaps Lb equal 2 or 3), and introduce block 

degrees of freedom. Within each block, we want to lift the degeneracies in the 

single-site problem as already discussed. Although this could be accomplished 

in a r- basis for the exactly soluble quadratic Hamiltonian, as we illustrated, 

in the general strongly coupled e4 theory, a more accurate treatment of the 

single-site problem is required. We have not carried out a detailed analysis of 
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this general problem, but in concluding this chapter we sketch a procedure which 

offers the promise of systematically improving the ground state description. 

6 Let us return to (4.40) which we group now into two terms, H = Ho + V, 

where Ho contains the single block terms and V contains all of the block-block 

c oupl ing : 

H=Ho+ V 

(4.45) 

This grouping differs from (4.43) and (4.44) which included some of the block- 

block coupling in R. as defined. Stage one of our procedure is to construct a 

good variational basis and accurate energy eigenvalues for the low-lying states 

of Ho(~) for a single block CY. We do this by choosing a small block size con- 

taining, for example, three sites only so that G = 3. The variational calcula- 

tion is performed by expanding in an orthonormal basis 

xj* (a) = C untj’) xn taY) 
n 

(4.46) 

Pj’ ta) = C unW P,(a) ; if L =3, 
b en 

j’ = -1, 0, 1 

where xn(o) and pn (a) are cbnjugate operators = - i 6n nI and , 
the basis functions satisfy 

c untj)untj’) = L 
n JJ 
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We perform the variational calculation for the “best” un(j’, by minimizing Ho(@) 

in a trial ground state containing the first n = 1, 2, .0e.a o excitations in the 

‘u,(j’) eigenspectrum; see Appendix B for the general formalism. The cutoff at 

n = 
max a depends on one’s strength in solving the -\ degree of freedom prob- 

lem defined by HO(o). Having thus constructed a trial basis, we rewrite H in 

terms of the truncated set of n = 1, 0 0 0 D 0 c solutions u,(j’) and the 2 Lb x o op- 

erators X~(QI) and p,(a). 

As a second stage we now form new blocks, or “super blocks, ** each con- 

taining again three (or more generally-s) adjacent blocks of the first stage de- 

composition. The terms in the newly constructed H are again regrouped into 

two terms 

jj = Ho+V 

where 

contains single *I super-block” terms and 

contains all of the coupling between different super-blocks. The summation 

indices are o! = o’ 4 5 @ with (Y’ = -1, 0, 1 when, for example, Lb = 3. The 

number set c 

labels the different super-blocks. We again expand the canonical operators as 
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in (4.46) 

Xn(“) = xn Q’ , (P) = c ~mt~‘)xn,m (P) 
m 

p,(a) = x ~m(of)Pn,m(P) ; if Lb=3 
m 

a’ = -1, 0, 1 

and repeat the process as before. This gives a rewrite of the original H in 

terms of the ( ) 2 Z,O 2 operators x n, rn(@ and pn, m (/3). The process may be 

repeated p times until the desired super-block length $ = 3’ is achieved. In 

this way, a set of fields x 
nl’ l O- nP 

mdp 
nP 

will be constructed that n , 1 00. 
in principle are free of degeneracies in their frequencies and include a reasonable 

2 
approximation to the non-linear effects contained in the h 0 xj ( ) 

2-f; potential. 

Beyond a point in the calculation more traditional iterative techniques are then 

expected to apply following the scaling argument constructed in (4.44) O This at 

least is the hope. 

As outlined in this section, we have a procedure reminiscent of the techniques 

described by Wilson and Kadanoff’ for extending the region of coupling parameters 

for which our site basis variational methods can be applied. What remains to be 

provided is its implementation and substantiation as a rapidly converging, practical 

and systematic procedure. 
t 
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V. REMAINING PROBLEMS 

Our primary physical motivation in developing the non- perturbative varia- 

tional techniques described in this paper is to understand “quark confinement” 

in the context of a Local canonical quantum field theory with strong couplings. 

According to the current folklore, this implies solving a non- abelian gauge the- 

ory of interacting fermion quarks and vector mesons. We have not yet applied 

the techniques used in this paper to this model and therefore have no idea whether 

or not there occur lfspontaneous breakdown** of continuous symmetries and low- 

lying coherent variational states that represent confined color singlets. From a 

more fundamental point of view the non- linear self- coupled scalar field intro- 

duced in (1.1) may be nothing more than a phenomenological crutch in terms of 

which to exhibit the mechanism of spontaneous symmetry breaking. The non- 

vanishing vacuum expectation value <$> may in reality be products of fermion 

fields; viz. , <Fe> o-f- <(F rJ2> in the sense described in the earlier 

studies of Nambu and Jona- Lasinio. 15 

We have made a preliminary investigation based on the variational methods 

of this paper of the theory of a fermion field interacting linearly with the scalar 

field of (1.1) in lx + 1 t dimension. Results achieved thus far indicate that the 

fermion gives up a finite fraction ( - l/2) of its mass when confined to the po- 

tential well it forms in the scalar field configuration in the ground state. The 

complete canceling of mass achieved in the classical kink state does not occur 

when the quantum fluctuations are included. These results will be described in 

a subsequent paper now in preparation. 

In a fundamental way, we are of course limited by the very nature of our 

variational approach to establishing upper bounds only on the energy values. 

This makes it particularly important to know how accurate are our ground state 
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calculations since we wish to identify the difference of bounds on the energies 

of the ground state and of the low- lying kink states as excitation energies. For- 

tunately for the specific $4 model studied in this paper, new methods have been 

found by R. Pearson and R. Blankenbecler 
16 which yield lower bounds on the 

energy. Thus the convergence of lower and upper bounds can be studied and the 

accuracy of the ground state energy assessed. 
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APPENDIX A 

In Chapter 2 we stated the results of the variational analysis of the mo- 

mentum space calculation which lead to the tricritical behavior in the strong 

coupling regime. Here we shall elaborate a little more on this analysis. 

In Eq. (2.36 ) we have derived the expression for the energy density 

+q (3c 2-f2) f&V,) + 4h(c2-f2)2 

where 

T(a,) = 3 c 2v( *) 
The variation with respect to two and c gives at the extremum 

W@% - 2 3 ( af I[ -a; + 4A(f - f2 + 3c23 1 = 0 
0 acro 

y = 161~ (F-f2+ c2) = 0 (A. 4) 

(A- 1) 

(A. 4 

(A. 3) 

The analysis for the maxima and minima demands knowing all of the second 

derivatives 

azf , (A.5) 

where by (A. 3) the second term vanishes, 
c 

h = 16h(r+3c2-f2) 
ac2 

(A. 6) 

(A. 7) 
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Direct differentiation shows that YZ$ is absolutely negative. Returning to 
0 

Eqs. (A. 3) and (A. 4) we see that c=O is always a solution. Then o. is deter- 

mined from 

2 
aO -&- f2 = T(o!,) 

which always has one positive solution (see Fig. 1 ). The determinant of the 

matrix of second derivatives at this root is 

= det 

Hence c=O corresponds always to a local minimum. For f2<0 this is the 9 
n 

solution. However for f'>O there may be another solution according to (A. 6) 

(A. 9) 

(A. 10) 

Next we can calculat: the determinant of the matrix of second derivatives at this 

root and get the condition for, it being positive 

(A. 11) 
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2 

The equality sign holds at the point of tangency of the two curves: - 8~ -k f2 and 
aO 

f(o,) (see in this respect Eq. (A. 10) and Fig. 2b ). 

L Once f2 becomes positive enough so that Eq. (A. 10) has two solutions 

(Fig. 2~)) the solution which satisfies Eq. (A. 11) corresponds to a local minimum 

while the other corresponds to a local maximum. As drawn in Fig. (2c), point 2 

is the local minimum and point 1 is the maximum 
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APPENDIX B 

HARTREE-FOCK VARIATIONAL CALCULATION 

In this appendix we review the general Hartree-Fock approximation as a 

variational calculation. We use the discrete lattice notation of Chapter III, 

starting from the Hamiltonian 

2 
H=x r2tj) +,$ tWtj))2 + UW)2 - f2) 

j 1 
The degrees of freedom G(j) and r(j) can be expanded in terms of a complete set 

of eigenfunctions {u,) of any Schrijdinger problem. In the Hartree-Fock approach 

the “best Schrodinger problem” is determined self consistently as follows. We expand 

e(j) = g .* (u,(j) an + u:(j) ai) 
n 

Q! m 
in(j) = C n 0 ( n 2v 

u;Etj) ai - u,(j) an > 

+ [ 1 aa =6 nm n,m 

The unqs form a complete orthonormal set 

Cuitj) u,(j) = V6, m 

j 

, 

Cu,tY) u,(j) = V6jj, 
n 

The variational wave function is 

z i C WI g(j) 

I$ 
trial . >=e 3 IO 

0 
n > 

(B. 2) 

(B. 4) 

where 

am ‘Ow = O 
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and 

< $ IW I@ = is(j) 

bi,, g and (u,) will be our variational parameters. It is now easy to compute the 

expectation value of the Hamiltonian in this trial state 

E=<t,biHl$~>=C 
u:(j) u,(j) Vu$) Vu,(j) 

j 4 (‘!n+$ C 4a 
n n 

+3h l 
( -c 

u;(j) u,(j) 2 u:(j) u,(j) 
4vn on ) + 2Wg2(j) -f2) + C 2a! 

n n 

+ + (Vg(j))2 + Ng2 -f2)2 
I 

(B. 5) 

Variation with respect to the (ynts and g gives 

C u:(j) [-ai - V2 + 4x(F -f2+3g2) j 1 u,(j) = 0 

[ -V2 + 4A(r-f2+g2) 
I 

g(j) = 0 

where 

(B-6) 

(B-7) 

(B. 7)’ 

The variation with respect to the basis functions {un\ has to be done a little more 

carefully due to the orthonormality of the un ‘s (Eq. (B. 3)). It is therefore nec- 

essary to introduce Lagrange multipbiers when varying over the unt s in r 

<7c, IH Ip - C gn m u:(j) u,(j) , 
In,rn ’ 

obtaining 4, 

Cl a26 nnm m 
-4angn,,)um(j) = (v2-4A(Lf2+3g2)) u,(j) 

(B-8) 

(B-9) 
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Multiplying Eq. (B. 9) by u:(j) and summing over j we get (using Eq. (B. 6)) 

4 CY: -4cr,6, n = --a!~ 
, 

(B. 10) 

8 
1 zz -* 

n,n 2 n 

The set of equations (B. 6) through (B. 10) is clearly very complicated. We can 

simplify the equations somewhat by looking at a particular set of solutions which 

are obtained if we specialize Eq. (B.6) to 

E -tY z - V2 + 4h(F- f2+ 3g2) 1 un(j) = 0 (B. 11) 

Clearly any solution to this equation is also a solution to Eq. (B. 6). Using this 

equation in Eq. (B. 9) we obtain 

8 n, m 
=&6, m (B. 12) 

, 

Therefore Eq. (B. 1l)is consistent with Eq. (B. 9 ). Equations (B. 7) and (B. 11) 

give a set of self consistent coupled’eigenvalue equations. The solution can be, 

in principle, obtained by an iterative process. Starting with a given r(j) we can 

solve Eq. (B. 7) for g(j) and then Eq. (B. 11) for the unts and ants which enable 

us to construct a new f(j) (Eq. (B. 7) ‘). Using these equations in the expression 

for the energy (Eq. (B. 5)) we find 

dY=+ = 8class+CL +9+c +c 
n2 n j ( u:(j) y&j) 

2 

Q! 
n n > t 

where 

8 ’ ‘x(+ (Vg(j)12 + M20) -f212> =- 
class V j 

(B. 13) 

(B. 14) 

For EO the set of equations reduces into the Dashen, Hasslacher and Neveu 

equations. Since f arises from the two loop normal ordering contribution, 



I 

- 74 - 

setting f to zero leaves us with the one loop approximation. It is important to 

note that including the simple normal ordering two loops contribution yields an 
‘ 
upper bound on the energy. Note also that the one loop approximation 6=0 is not 

a good starting point for iterations. It is well known that due to translation 

l/2 invariance Eq. (B. 11) with GO and g= f tanh (2h) f(x-x0) (which is a solution 

of Eq. (B. 7) for F=O) always has a zero eigenvalue cro=O which in turn will make 

the new f (Eq. (B. 7)‘) divergent. 

The momentum space calculation in Chapter 2 is a particular solution to the 

Hartree-Fock set of equations for constant g and7. 
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APPENDIX C 

A SIMPLE VARIATIONAL CALCULATION 

, In this appendix we present the details of a calculation for variationally 

minimizing Eo($) in (3.32) using the trial state 

I$> = ewipc lOa> tc- 1) 

where loo> satisfies (3.26) with a! a variational parameter. Instead of intro- 

ducing a Lagrange multiplier, the constant displacement c is introduced as a 

variational parameter: 

<$IHlz+b> zz E(o,c) 

= (VA) 

[ {, 

3 + 2(3c2-f$ + c2-f2 2 $ WY p+, - 
O 4cY2 2a! ( 11 0 4cY 

] 
tc. 2) 

To minimize E(a, c) with respect to the variational parameters Q! and c we must 

solve the equations 

and 

i!E = 0 = 4ch 
tk o[&+ cc2 -si] 

According to (C. 4) the extrema are either 

Case 1: c=O c 

Substituting c=O into (C. 3) yields 

tc. 3) 

(C-4) 

at c=O or c2 = f2 3 o-z7 

+!Btfi =& 
0 

tc. 5) 

which has a unique solution. In order to determine whether this is a local 

maximum, minimum or saddlepoint one must take the matrix of second 
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derivatives and evaluate it at c=O. Straightforward computation yields 

d2E I -I 
2 ZZ 

dcY2 c=o Q13 [ 
E.p+h bL.f2 

0 \2cY o)]+$[~] 

which by (C. 5) is just 

a23 
-I 

1 

aa2 c=o 
3A P-0 =-++ 

2a 2cz4 

In addition one finds 

a23 - a23 
eJ@ .c=o 

= o 
&xdc CEO 

tc. 6) 

tc- 7) 

W. 8) 

and 

$i_o=4+g -,f;]=[+D(O)l tc. 9) 

where CY~ is the solution to (C. 5). Hence, if o~i -D(O) is greater than zero the 

root at c=O is a local minimum; otherwise it is a saddlepoint. Referring to the 

discussion of (3.5 1), where the identical equation arises in our discussion in 

terms of Lagrange multipliers, we see that c=O is a local minimum only when 

f; < f& = 3 
2&z * 

(C. 10) 

Hence, as discussed in the text the term D(0) eliminates the problem of a local 

minimum occurring at c=O for o f2d cr . 

Case 2: c2=fi’-& (C. 11) 

In this event direct sub?titution into (C.3) yields 

(C. 13) 

which can have either two, one or zero solutions depending upon the values of 

fi and Ao. If fi is large enough, for fixed Ao, (C. 13) has two solutions 
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corresponding to the two intercepts in Fig. 2c. In order to determine which 

of these is a local minimum, we take the matrix of second derivatives, finding 
6 

3 c1!,- 
4%- 2a2 

(C. 14) 

is the condition for a local minimum. Graphically it is easy to convince one- 

self that only the root corresponding to the larger value of a! is a local minimum. 

We next want to determine whether this root can move smoothly toward 

2 c =Owhenf 2 2 
0 -+f cr so as to guarantee that the c=O root is not a minimum until 

Returning to Eq. (C. 13) it is easy to find the two roots in the two limits A -+ 00 

andA-0. 
0 

(C. 15) 

al 
M D”‘(O) 

We are interested in o1 which is the larger root corresponding to a local mini- 

mum. When A -co 0 c “=ft-+&-ft , whilefor ho+0 
1 

C2 = f2 - 3 0 29 c f”o-+- 2-2 0 * 
213 (0) fo+ fcr 

There exists, therefbre, a critical value h crsuch that the c#O minimum 

obtained from the root cul moves smoothly toward zero for fi - fh so long as 

‘0’ ‘cr ’ Since fi approaches f”, from above we already know that the c=O 

solution does not correspond to a minimum. Hence there is no tricritical 

behavior. It is easy to check that a=D 112 and f2=f2 
0 cr 

is always a solution of 
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(C. 13). Substituting this solution in the minimum condition (C. 14) we observe 

that this solution corresponds to the local minimum moving smoothly toward 

zero only for 

This is the same condition encountered in the analysis of Chapter 3. We have 

remarked there that we can relax this condition by allowing configuration mixing 

instead of using just a simple gaussian. 

If we drop the term proportional to D(0) in (3.32) and in the development fol- 

lowing Eq. (C. 2), we recognize that the problem being solved is simply that of 

the Schrodinger equation for the anharmonic oscillator. The familiar properties 

of the solution to that problem in both the weak and strong coupling limits can be 

traced simply in the above discussion, setting D(0) = 0 everywhere. 
I’I 
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APPENDlX D 

MOMENTUM BLOCK CALCULATION 

I6 this appendix we give a simple variational block calculation of the ground 

state energy where we use momentum space basis within the block itself. The 

block wave function variation formalism described in Chapter 4 leads to a 

Schrodinger problem as in (4.21) with a finite number of degrees of freedom 

ho (xf-f:jL - Jxj/+i c D(jl-j2)xj;j2 (D.l) 

jlJ2 1 
r(J) is defined as the lowest eigenvalue of E (J) , and we shall determine an 

upper bound on r (3) variationally by calculating in the momentum basis. An 

upper bound on the ground state energy will then be found as in (4.24) by mini- 

miz ing 

(Do 2) 

with respect to the Lagrange multiplier J. The discrete set of allowed momenta 

within one block is 

i 1 
k= -Q(j<Q 

(Da 3) 

Next we introduce creation and annihilation operators through the Fourier expansion 

Xk = C eikj 
k t2uk;jl,2 (a-k+a;) 

P. 4) 

and the state IO> = r[ IO(k)>, where 
k 

aklO>= 0 P-5) 
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For each fixed value J our variational wave function will be 

($rial, = e 
-i r (0)~!Lc 

IO> 

where the ukt s and c=<x> are the variational parameters. 

Using the notation 

r(‘dk’ c, = <$ 
trial ,H(J) l$trial, 

A = D(0) 

- 

f 2-c-L 
2xb k “k 

we calculate 

r(‘dk’ ‘) = ‘tc 2-f2)2+y c A@b) 2-Jc 
L 

-w k 
4+ 

4h(3c2-f2) + A 

L 

4wk 

l c z-- b j,fj, 

. j,-J, 
=-T tj,-j,) 

Wj ,-j,) 
e 

=x0 (c2-f,2)2 + y- c AQ 2- Jc 

P- 6) 

I 
@. 7) 
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Varying with respect to uk 
ar and determining the extremum - dw 

= 0 leads to 
k 

2 
Wk 

= x2(k)+A+4A 3c2 -f2+f 

Defining w E w (k= 0) we get therefore 

2 
“k 

= x2(k) - x2(o) + G2 

(Do 8) 

0.9) 

where w satisfy the integral equation 

i;j - 2 AqJ 
+ f2-3c2 = f (W) z 3c 

1 

4A0 
(D. 10) 

2Lb k -x2(O)) + w 
-2 l/2 1 

where we have used the fact that x2 (0) + A = A (-s) . 

Varying with respect to c implies at the extremum -ix= 0 
0 dc ’ 

A(% ) 
- f2 +f(;) + 4Ab = J 1 (D. 11) 

Equations (D.9) and (D. 10) are analogous to Eq. (2.30) and (2.31) in the pure 

momentum calculation and Eq. (C .3) and (C .4) in the single site calculation. 

ForJ=O, cJzo = <x> J=O 
= 0 due to the symmetry of the Hamiltonian. For 

small J we can follow the steps in the single site calculation and expand 

c(J) =clJ l+c2J2+ oao 1 
W(J) = w. C l’+ u2J2 + 000 1 

(D. 12) 
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Substituting these expansions into Eq. (D. 10) and (D. 11) and equating coefficient 

of the same powers of J, we find 
‘ 

1 
c1 =- 2 

OO 

-4A0 aT I I -- 
w. au 

- 1 
wO 

4A0 a? 

--I I 
_ y) aw y) 

+ 2 

where w o satisfies Eq. (D. 10) with J = 0 and c = 0: 

2 
wO - A t'b) 

4 Ao 
+ f2 = '(wo) 

(D. 13) 

(D. 14) 

In order for the ground state energy to have a minimum at small J different from 

zero, the coefficient of the j! term in the expansion of (D. 2) must be small and 

negative. Recalling Eq. (D. 2) and (D. 12) 

g(J) = r(O) + +cl (1 - A(xb) cl ) J2 
( 

3 
+ c1c3 4 - Nxb)cl 

> 
J4 + . . . 

(D. 15) 

this condition requires 

c s (-1 +A(q)cl)>O 

Using Eq. (D. 13) and (D. 14),$ we obtain 

(D. 16) 

c +L(f”- T two)) 
wO 

(D. 17) 

The minimization of 8 (J) with respect to J for E > 0 and c3 < 0 gives the 
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critical value Jc and therefore the expectation value of the field in the ground 

state 

c (Jc) = <xc) = 5 = (? -‘T (wo)) 

2+- 
wO I I z w. 

I c31 
4AodF -1 -v 
wO I I dw w 0 

In order for c3 to be negative 

4A 0 aT vv 
I I w. aw w. 

<l 

while, from (D. 14) and (D. 17) we see that c <CC 1 if either 

hO hO 
-T NN - <i 1 dr f2 tz f (w. = A1’2 (i$) 

wO Ati+ 

For large -?,b we can approximate 

&. ++-=& 

43 k Wk -T (k2+;;)l’2 + O(t) 

x2(k) - x2(o) = k2 + 0 & 

t ftwo) z & Qnt<+ /?ir] 

(D. 18) 

(D. 19) 

(D. 20) 

(D. 21) 

(D. 22) 

(D. 23) 
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Substituting Eq. (D. 23) into Eq. (D. 19) yields 

6 h<$A(G) 

while the substitution into Eq. (D. 18) gives 

c(Jc) E <Xc> = f ( 2 -2 (A1’2&))) 
2+ir 

6 ;r - 1 

(D. 24) 

(D. 25) 

where 

Note that for f 2 -$,1/2 (Lb,) and r held fixed, <xc> is constant. Of course as 

zb-- this means 

h l-0 N- 
53 ’ 

A(L) - i) 

This is precisely what is needed to define a finite Hamiltonian in the renormali- 

zation limit (see first section of Chapter 4 for details). 

It is easy to be convinced that in the limit -s - 00, r(0) converges to the 

momentum basis energy density (Eq. 2.36 ) for the case < x>= 0. Therefore, 

keeping r fixed and small, in accordance with Eq. (D. 25), so that the continuum 

momentum case is guaranteed to have its minimum at <x>= 0, the energy con- 

verges (from above) ‘in the limit -s - 00 to the momentum space result. Since 

r andf2- T ( A1’2(%l)) are held fixed we get the momentum space result still 

having <xc> #O, namely without encountering any unphysical tricritical behavior. 
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TABLE CAPTIONS 

I. A table of values of &(c) at its local minima, obtained from the momentum 
‘ 

space calculation for A0 = 1 and a range of values for f0’ The * indicates 

the region in which the c # 0 minimum crosses the c = 0 minimum and 

t indicates those values of f. for which only the c = 0 minimum exists. 

II. A table giving the single site energies and <x> for ho = 3 and a small range 

of fO’ The last column gives the values for the momentum space calcula- 

tion in this same region. (N. B. The momentum space calculation has al- 

ready gone through to the case where c = 0 is the unique minimum. ) This 

table shows that the single site calculation provides a better description of 

what is going on all the way through the region of interest, i.e. , <x> - 0. 
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TABLE1 

. . _ ~.. -_._ ..Tew 

ic =l 

fO dY(c 
min*) E”P- minfO) cfo 

1.5 4.1632 2.2251 1.3777 

1.4 3.3469 2.0837 1.2568 

1.3 2.6908 1.9408 1.1287 

102 2.1714 1.7952 o 9892 

1.1" 1.7704" 1.6446* .8258* 

1. o* 1.4712" l-4804* 05639" 

09-f 1.25887 --- t N-m t 

.8f- 1,118O-f --- t w-- -i- 

0 7t 1.0341-f --- P --- -t 

t TABLE II 

c Ag=3 

fO <x> 6mom(c =o) 

.8075 .073 l-71289 l-71432 

.8060 0018 lo70743 1.70866 

e 80594 .Oll 1.70721 1,7084 

080590 oOOO76 lo70708 1.7083 

08059025 0.0 1.70708 1.7083 
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FIGURE CAPTIONS 

1. Graphical solution to the momentum space variational calculation (Eq.(2.37)) 

for the case c = 0. 

2. Graphical solution to the momentum space variational calculation 
6 

(Eq. (2.38)): 

(a) no solution I 
ao - (b) tangency condition rA = -$$ 

0 
(c) two solutions: 

(1) maximum at c f 0 

(2) minimum at c f 0 

3. The ground state energy in the momentum space variational calculation as a 

function of the vacuum expectation value c for fixed h and different f2: 

(a) f2 > icr “weak coupling, TV c # 0 is the absolute minimum 

(b) f2 = ^f,, , the minima qt c = 0 and c # 0 are degenerate 

(c) f2 < Tcr “strong coupling, It c = 0 is the absolute minimum 

(d) f2 << zcr “super-strong coupling”, c = 0 is the only minimum 

4. The ground state energy in the momentum space variational calculation as a 

function of the vacuum expectation value c for fixed h and different f2 in the 

presence of an external source: 

(a) f2 > 2,. The minimum obtained from c f 0 of Fig. 3a is the absolute 

minimum 0 

(b) f2 = %r. The minimum obtained from c # 0 of Fig. 3b is the absolute 
r 

minimum. 

(c) f2 < Tcr. For strong enough J, the minimum obtained from c # 0 (Fig. 3c) 

can be made lower than the one obtained from c = 0 (Fig. 3c) D 
5. The %irW configuration. 

6. Feynman graphs giving rise to logarithmic divergence in the Hamiltonian: 

(a) Contribution to the vacuum energy (&IA) 

(b) Contribution to the vacuum energy @n2A ) 

(c) Contribution to the coefficient of the term N 2($2). @A) 
P 

7. Block lattice notation. 
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Example xxxxxx x x x 

N=4; j: -4 -3 -2 -1 0 1 2 3 4 
--- 

b =l; CY: -i 0 1 

II = 1; j’: -1 0 1 -1 0 1 -1 0 1 

AL = 2N-k1 = 9 

‘b = .&Lb = 21+1 = 3 

B = 2b+l = 3 2841A7 

Fig. 7 
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