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ABSTRACT 

Classical, particular solutions of some massless, nonlinear, 

relativistic field equations are constructed. These solutions have 

shocklike singularities. 
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The field equations of several nonlinear relativistic field theories have 

simple classical solutions, both time-dependent and static. 192 The time- 

dependent solutions, characterized by a constant four-vector k 
CL’ 

can become 

singular for some values of the parameters in the theory. These singularities 

propagate with constant phase velocity ko/ Il?l O The fact that the singularity 

propagates is suggestive of shock waves, but the constant speed rules out this 

interpretation. In this paper time-dependent, singular particular solutions of 

two massless self-interacting field theories are given. The singularities of 

these solutions propagate with time-dependent velocities, therefore resembling 

shock waves O 3 There are no arbitrary four vectors in the solutions. 

Consider first the spin zero field theory with field equation (ii = c = 1) 

a/9 +4h@3 =o D (1) 

Restricting the functions $I to depend only on x,x’l(=y), Eq. (1) simplifies to 

i?JL + A(#/y)3 = 0 , - 
dY2 

(2) 

where 

$ ‘Y$o (3) 

A particular solution of Eq. (2) for timelike and spacelike separations, ob- 

tained by the method of base equations, 4 is 

$ = ay(l + ha2y/2)-l (4) 

where a is an arbitrary constant. This function is singular for 

r = (t2 + 2/ha2); (5) 

provided 

t2 > -2/Aa2 e - (6) 
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The speed of propagation of the singularity, obtained from Eq. (5), is 

V s = 2 = t(t2 + 2/ha2)-; (7) 

M 1 - l/ha2t2 

where the approximation is valid for large t. The cases h > 0 and A < 0 differ. 

For A > 0, Eq. (6) is valid for all times, consequently the singularity is present 

for all times. From Eq. (7) it is clear that the speed of propagation approaches 

the speed of light from below, For A < 0, however, the singularity does not de- 

velop until after a finite time t2 = I 2/Aa2 I 0 Furthermore, the propagation 

speed is initially infinite and subsequently slows down to light speed for large 

times. 6 For either sign of h the propagation speed approaches the speed of 

light as h increases or as the constant a, related to the initial value of +, in- 

creases. 

The second field theory considered is the self-interacting vector theory 

with field equation7 

= g2APAPAV 

Letting Al, = xVx or), one finds 

!z.x +3c.x = g2x3 
dY 2 YdY 

for which a particular solution, using ref. 4, is8 

- 
X = a(1 - g2a2y2/8)-1 

with a an arbitrary constant. The singularity occurs for 

r = [t2 *2J2/lgal]’ 

provided 0 < 8/g2a2, and propagates with speed 

(8) 

(9) 

(10) 

(11) 
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V 
S 

= t[t2 * 2J2/lgal]-t (12) 

As for the spin zero case, vs can be either greater or less than c. Again, 

the superluminal waves do not appear until after a finite time. The propagation 

speed approaches unity for strong coupling. For g2 < 0 the solution in Eq. (10) 

becomes singularity free. 

Both solutions given here contain only one parameter and, consequently, 

are applicable only to a limited class of initial value problems. However, with 

the known particular solutions it is possible to develop a perturbation theory 

which gives a two-parameter solution valid approximately when one of the pa- 

rameters is small. As an illustration consider the spinless case, A “natural” 

assumption is to write $1 x $, + eg, where zjo is the solution given in Eq. (2) 

and E is a small quantity. The resulting linear differential equation for g has 

regular singular points at y = 0, -2/Aa2. However, the series solution leads to 

a three-term recurrence relation. Consequently, we assume instead that 

2) = (2/Aa)z(l+ z + eg)-l M (2/ha)-l{z/(l+z) - Egz/(1+z)2} 

where 

(13) 

Z = Aa2 y/2 o (14) 

The differential equation satisfied by g is 

z(l+z)d2g/dz2 + 2(1-z)dg/dz + 2g = 0 . (15) 

This differential equation also has regular singular points at z = 0, -1, so the 

analytic behavior of the correction function is the same as for the “natural” * 

perturbation approach. The general solution of Eq. (15) is 

g = d(l-z) + b[ (l-zZQn z - (6~) 11 + 32 - z2/6] , (16) 

where d and b are arbitrary constants,, Consequently, the corrected $ is 

~,6~ = (2/Aa)z{ l+ed+z(l-ed)+eb[ (l-z)Qn z - (6~)~~ + 32 - z2/6])-l (17) 
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It now appears that there are too many arbitrary constants in the solution. 

However, if $I is “renormalized” so that #,(b=O) = $,, it is easy to see that 

this amounts to redefining the constant a. Since a is arbitrary, this does not 

change the solution, Thus, the corrected solution is 

q1 = (2/Wz (1 + z + E b[ (l-z)!n z - (6~) -1 + 32 - z’/S]}-’ (18) 

For z < 0 the logarithm may be written 3 dn z2 without changing the properties 

of $1’ In the vicinity of z = -1, ignoring the logarithm one finds the singularity 

at 

Z x -1 + 17 eb/6 . (19) 

The terms in fn z and z -1 would appear to cause $,(= $,/z) to vanish at z = 0. 

However, this result is questionable since eg is no longer small compared with 

l+z in the vicinity of z = 0. Thus, while the behavior of the corrected function 

can be estimated reliably in the vicinity of the original singularity, its behavior 

near the light cone must be determined in another manner. 

The effect of a mass term in the field equation can also be calculated for 

small mZ using the perturbation theory described above. The details of this and 

applications of the solutions will be published elsewhere. 9 
L 
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