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ABSTRACT 

We study the J=O bound states for a system of, three identical spin- 

less particles interacting in pairs through delta-shell potentials. The 

Efimov states are identified, and their wavefunctions obtained. We 

have found a new family of bound states, which occur for higher values 

of the attractive coupling strength. 
- 
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INTRODUCTION 

Efimov [I] and Amado and Noble [2] have shown that in a system of three 

particles the number of bound states increases indefinitely as the two body 

binding strength approaches the value which is just necessary to keep two par- 

ticles bound with zero binding energy. The condensation of energy levels can 

also be described as occurring as the binding energy approaches zero for a fixed 

two-body potential strength, which must have the right value just needed to bind 

two particles. The theorem was proved in the framework of n&relativistic 

quantum mechanics, and is a consequence of the fact that the trace of the kernel 

of the integral equation which determines the bound states diverges under the 

conditions mentioned above. 

The infinite number of three body bound states occurring for that specific 

value of the attractive coupling disappears rapidly as the coupling becomes more 

attractive. This remarkable result, which at first thought violates our physical L 

intuition, can be understood if we note that the system does not become totally 

unbounded, but rather is brought to a continuum of states formed by two particles 

more strongly bound to each other, and one free particle, The increase in the 

attractive strength of the interaction in this region causes a faster increase in 

the two body than in the three body binding energy, and as a result the stable 

configuration of the system belongs to the continuum of one bound pair and a third 

particle. 

Thus-in a very restricted region of values of the pair interaction strength 

there is a whole family with an infinite number of three body bound states. The 

effect exists only for states with zero total orbital angular momentum, L=O. 

The quantum number of all states thus formed are the same, namely Jp=O’ for 

spin zero particles and Jp=l/2+ for fermions. 
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Let G be the two particle coupling strength for some finite range potential 

form, and let GF(s) be the value of G required to form a two body bound state 

with binding energy -s. For simplicity, suppose that the two particle system 

has only one bound state, so that there is just one value of GF(s) for each value 

of s. The evolution of the three body bound states as the coupling strength 

varies is shown in Fig. 1, which is completely out of scale. 

Let a be a parameter indicating the typical range of the two body forces 

and let b be the S-wave scattering length measured in the same units. Call a! 

the dimensionless quantity 

cv =b/a (1) 

Let aN be the value of Q! corresponding to the value GN of the coupling strength 

for which the N-th bound state is formed, with zero binding energy. Then, for 

values of GN close to Go = GF (0)) two consecutive bound states are such that 

aN+l = aN eq h) (2) 

On the other hand, if the coupling strength is kept at the value Go = GF(0), the 

binding energies of consecutive bound states are related by 

(-s)N+l = (-S)N eq 6”) (3) 

Relations (2) and (3) were derived by Efimov [I] and in a different way by Amado 

and Noble [2]. 

The Efimov states were observed in a practical computation by Stelbovics 

and Dodd{31 of the bound states of three spinless particles interacting in pairs 

through separable Yamaguchi interactions. In the present work we perform a 

more complete study of the same kind, describing the binding energies and the 

wavefunctions for the bound states occurring in a three body system. 
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To define a problem, we study a system of three identical spinless particles 

interacting in pairs through spherically symmetric delta shell potentials. The 

Faddeev equations are separated in angular momentum states, and we study the 

completely symmetric bound state with zero total angular momentum. The 

delta shell potential gives separable scattering amplitude in momentum space, 

and we are thus lead to a single integral equation in only one variable. 

BINDING ENERGIES AND WAVEF UNCTIONS 

We choose a spherically symmetric potential of the simple form 

V(r) = h2 
m A 6(r- a) (4) 

to describe the interaction of each pair of particles in the system. We consider 

the case of three identical spinless particles of mass m. The off-shell scatter- 

ing amplitude in the angular momentum Q state can be factorized in the form 

where 

(5) 

with 

s = m a2E/li2 (7) 

The symbols j Q, IQ+~ and KQ+~ stand for the usual spherical Bessel and modified 
2 2 

Bessel and Hankel functions respectively. 

Let us define the dimensionless quantities 

G=ha 03) 

p = k&P, Q = bh)q (9) 

where P is the relative momentum of two particles in a pair, and q is the mo- 

mentum of the third particle with respect to the center-of-mass of the whole 
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system. Then the integral equation for the J=O bound states of the three-body 

system is 

~cl,tQ) = FQtQ) 5 Ja 
Q'=O 0 

Ma, (Q, Q') $Q, (Q’) dQ’ (10) 

even 

where 

FQtQ) = -(-$ (2e+1)(4G/~J3)/[1+GIQ+g((-S)1’2) KQ+$((-s)1’2)1 (11) 
and the index Q indicates the relative angular momentum for a pair of particles 

in the system. The functions MB, in the integrand are given by 

M&Q,Q’) = J 
t& +2Q)2/3 

tQ’-2Q) 2/3 
Aee,tQ,Q1P2) dPf2 

with 

$ttQ, Q’;Pt2) = (-I)~’ [p12c$t2 -;I-’ j,(u) jQ(Pr) P,,(P) x 

x 
f 
PQ(Y) P&r/) + 2 $J (n-m)! P,“(Y) PF@/) 

m=l (Q-t-m) ! 
1 

and where 

(13) 

with 

/3 = v/(2J3 P’Q’) 

y = (v-2Pr2)/(4uP’) 

q = - &I2 + 4Q2]/(4,f3 QP’) 

(14) 

(15) 

(16) 

u = (Pf2+Q12-Q 2 l/2 ) (17) 

and 

v = (Qt2+3Pf2-4Q2) 

The symbols PQ and Pfe” stand for the Legendre polynomials and associated 

(18) 

Legendre polynomials as usual. 
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According to Eq. (lo), the J=O wavefunction has contributions from states 

of all even values of the relative orbital angular momentum of a pair of particles. 

In our computations we have kept terms with Q=O and 6=2 and have noticed that the 

t=2 parts of the wavefunction are much smaller than the Q=O components, and 

give very small correction to the calculated energy levels. For example, the 

ground state with energy -s = 0.01 occurs for -G= 0.8234 if the calculation is 

performed with the Q=O contribution alone, and for -G= 0.8226 if the calculation 

keeps both Q=O and I!=2 contributions. These results justify neglecting the terms 

with angular momenta equal to or higher than four. All the essential features of 

the Efimov states are determined by the Q=O parts of the wavefunctions. 

From Eq. (11) we obtain for Q=O, 

Fe(Q) = -(4G/nJ3) 
[ 
l+G 1 - exp[-2(Q2-s) l/2] -I 

2(Q2-s) 1’2 1 (19) 
On the other hand, the coupling strength GF(s) which produces a two body bound 

state of binding energy -E = -h2s/m a2 . is determined by 

1+ GF(s) [l-exp(-2&fl/2& = 0 (20) 

This is the equation for the frontier line, shown in Fig. 1, of the region where 

the three body bound states can exist. In this region FO(Q) is a regular function 

of Q for every real value of Q. At points of the boundary line, FO(Q) as a func- 

tion of Q is singular at Q=O, behaving like (8/n&3)( fi/Q2). For values of G 

and s in the region of the three body bound states, the analytic structure of FO(Q) 

in the complex Q plane presents cuts along the positive and negative imaginary 

axis from f ifi to infinity, and two poles on the imaginary axis, symmetrically 

located with respect to the origin. As we approach the frontier line defined by 

G= GF (s) , the two imaginary poles approach the origin of the Q plane, giving 
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rise to the singularity in l/Q2 mentioned above. On the other hand, as s - 0 

the two branch points meet at the origin of the Q-plane. To understand better 

what happens with FO(Q) at zero binding energy we can fix s=O and leave G free, 

with IG I< IGO I. (In Fig. 1 we are then at the boundary line between regions I 

andID.) AsQ -0 we then have FO(Q) - (-4/~,/-3)G/(l+G). We here recognize 

the expression for the scattering length for the two-body potential, Eq. (4), 

which is aG/(l+G) andgoes to infinity as G--l. 

As for the low momentum behavior of MOO(Q, Q’) we have -1im Moo(Q, Q’)=O 
Q--o 

for arbitrary s and Qr, except for s=O and Q’=Q when we obtain lim MOO(Q, &I)= 
Q--o 

In 3. 

A quantity useful to describe the location of Efimov bound states in the 

s-G plane is 

Q(S) = -G/( IGF(s) I +G) (21) 

For each given value of s this quantity 01 (s) tends to infinity as the value of G 

approaches the frontier line GF (s) . For zero binding energy, ~(0) coincides 

with the absolute value of the scattering length divided by the interaction radius 

a. 

The binding energies of the bound states are obtained searching for the 

eigenvalues of Eq. (10) with the usual quadrature method, keeping only the Q=O 

and Q=2 contributions to the kernel and to the wavefunctions. The results of our 

numerical computations of the binding energies are shown in Figs. 2 and 3. 

Figure 2 exhibits clearly the Efimov effect, showing the regularity, established 

by Eq. (2), in the values of the scattering length o!(O) for the bound states in the 

limit of zero binding energy. The two lowest bound states are permanent, in 

the sense that they do not merge into the continuum as the coupling strength 
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increases, and it is interesting to remark that the coupling strengths which form 

these states at zero binding energies also follow Eq. (2). The same Fig. 2 

shows that the ratio of the binding energies with which bound states disappear in 

the continuum as the attractive interaction strength increases, obey Eq. (3). 

Only two of these Efimov states were followed quantitatively, due to the limita- 

tions in the accuracy of the numerical computations. 

As we increase the strength of the attractive interaction beyond G= Go, we 

are at first left with only two bound states. Our computations have shown for 

stronger couplings the existence of a set of three body bound states which begin 

their existence with binding energies different from zero, as they are not formed 

directly from three free particles. They arise from the two body continuum, 

through the capture of a third particle by the system of two bound particles. The 

first eight of these states are shown in Fig. 3, while Fig. 1, which is out of 

scale, shows only schematically their distribution in the s-G plane. 

In our computations we have identified these eight higher states, but there 

may be many more in number, and even the set may become infinite as IG I 

increases. Here we must remark that the two body problem for the same delta 

shell potential presents only one s-wave bound state, however strong the value 

of the attractive coupling may become. As G = ha is the product of the interaction 

strength by the shell radius, we see that the number of three body bound states 

increases with either the strength or the radius of the interaction. 

To describe the wavefunctions, let us define 

x,(Q) = $,(B)/[QF,tQ;l (22) 
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and neglect the contributions of the Q=2,4 . . . components to the integral 

equation, Eq. (10). Then x0(Q) satisfies 

x0(Q) = 4 ~wM,,(Q. &‘) Q’FO(Q’) X0(&‘) dQ’ (23) 

Let us study the behavior of x,(Q) for small values of Q. Differentiating Eq. (23) 

twice with respect to Q we obtain 

d2xo 2 dxo 1 
2 

w 
-+--=- 

J 
d MoO(Q,Q’) 

dQ2 Q dQ Q o dQ2 
Q’FOtQ’) x0(&‘) dQ’ 

Expanding M,,(Q,Q’) in powers of Q, and noting that 

Moo(O, Q’) = 0 

(24) 

and 

$JM~~(Q,Q’)~ # 0 
Q=O 

we obtain for small values of Q 

MOOtQ,Q’) = Q & MOo(Qt Q’) - i Q2 4 MOi(Q, &I) + O(Q3) (25) 
dQ 

Taking d2Moo(Q,Q’)/dQ2 from Eq. (25) into Eq. (24) we obtain the simple result 

that 

x;(Q) - constant 
Q--o 

and therefore x,(Q) is well behaved at Q=O. 

In Figs. 4 and 5 we plot x,(Q) for the four lowest bound states (the same 
* 

shown in Fig. 2) in the limit of very low binding energy. The eigenfunctions are 

normalized so that xO(Q)=l. Due to the very strong variations in the magnitudes 

and to the changes of sign of the wavefunctions as Q varies, peculiar logarithmic 

scales have been used in Figs. 4 and 5. The number of zeros of the wavefunctions 
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increase by one from a bound state to the next. We may observe from the 

figures the peculiar fact that the zeros of all wavefunctions seem to occur at the 

same values of Q. Thus, all four wavefunctions have a zero at Q=3. Then the 

functions labelled n=2,3, and 4 have a zero for Q=O. 2, while both n=3 and n=4 

wavefunctions change sign for &MO. 0 1. 

CONCLUDING REMARKS 

In the present work we have identified the Efimov states for a three body 

. . . 

problem defined in configuration space, and have verified the validity of the 

quantitative predictions regarding these states. To us this seems interesting in 

itself, as we have no acquaintance with a similar calculation. Of course the 

delta shell potential here used is singular, and thus may not be close to physical 

reality, but it allows a simple formulation of the three body bound state problem, 

and still is able to exhibit some geometric and physical features which may help 

the understanding of the Efimov effect and of other properties of the system. 

We have shown that the energy spectrum consists of levels of three different 

kinds, according to their behavior as a function of the coupling strength. First 

we have the two lowest bound states, which are created at values of the coupling 

strengths which are not high enough to maintain only two particles bound, and 

they remain always as three body bound states as the attractive coupling is 

further increased. 

The levels of second kind are the Efimov states. They exist only in a narrow 

range of values of the coupling strength, around the value where the two particle 

scattering length becomes infinite. 

We then have a new family of states, whose existence has not been observed 

before. We can describe them as formed from a bound pair and a free particle, 

through the capture of the single particle by the previously bound pair as the 
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coupling strength is increased. In our example this set of states does not co- 

exist with states of the Efimov kind, as they start to be formed for values of the 

coupling constant higher than the one for which the last Efimov state merges 

into the continuum. This behavior is sketched (out of scale) in Fig. 1. 

We have computed and drawn the momentum space wavefunctions at almost 

zero binding energies for the first four states which appear in the system as the 

attractive coupling is increased from zero. These states are the two permanent 

more fundamental states and the first two Efimov states. They are all formed 

at zero binding energies, by the sudden coalition of three particles. We have 

shown (Figs. 4, 5) that the momentum space structure of the wavefunctions for 

these four states tends to be concentrated at small values of the momentum. 

The highest energy levels present larger number of oscillations at smaller values 

of the momentum, which shows that these levels have a large structure in con- 

figuration space. This is in agreement with what is expected for Efimov bound 

states, as their existence is known to be the result of an effective long range two 

body interaction near the infinite value of the scattering length. 

The third family of states arises as a remarkable consequence of the three 

body dynamics, as they do not have counterparts in the two body system, where 

only one bound state exists, whatever strong may be the attractive interaction. 

In contrast to the Efimov states they are not formed as a consequence of a 

resonant character of the two body force. The structure of the wavefunctions 

for these states deserves a special study, as they may be essentially different 

from the states of the first two kinds. 

The very existence of this new family of states seems to us to be 

important for the description of nonrelativistic quantum mechanical systems of 

three and more particles, such as the systems of interest in nuclear physics. 
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These three particles states arising from the two body continuum with nonzero 

binding energies, have been identified in the particular example here treated, of 

the delta shell potential, but it is likely that they occur also for less singular 

potentials. 

Finally, we wish to point out that our model allows a complete exact 

(although in part essentially numerical) treatment of a nonrelativistic three body 

system. The wavefunctions are obtained in both regions interior and exterior to 

the interaction radius. In this sense it is an essentially different model as com- 

pared to the usual models of hard core potentials and to the boundary condition 

model [4], as it allows the construction of the wavefunction for the whole range 

of values of the distance between the particles. 
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1. 

2. 

FIGURE CAPTIONS 

States of three particles, shown in the plane of the binding energy -s against 

the strength G of the two particle interaction. The plot is completely out of 

scale. The cross hatched border lines separate the regions of the three 

body bound states (I) and of the continuum. The frontier line GF (s) is 

defined by the coupling strength which forms a two body bound state with 

binding energy -si -and separates the region of the plane where the three 

particle bound states are found from the region (II) where the states of two 

bound and one free particle are found. Below the horizontal axis is the con- 

tinuum (III) occupied by states of two bound and one free particle and by the 

states of three totally free particles. The lowest three body bound states 

are shown, out of scale. The first two of these states remain bound as the 

attractive strength is increased. An infinite number of states is formed as 

-G approaches -Go = -GF(0), according to Efimov theorem, and then 

disappears into the continuum, as they reach the frontier line. Our work 

has shown that as the coupling strength is further increased, other three 

body bound states are created, starting from the frontier line as shown in 

the figure. We cannot tell whether these states form a finite or an infinite 

set. 

Dependence of the binding energies of the four lowest three body bound states 

on the two particle potential strength. The vertical axis gives in logarithmic 

scale-a quantity s related to the binding energy by Eq. (7). The quantity Q 

in the horizontal axis is defined by Eq. (21). At the threshold, s -LO, the 

variable o coincides with the scattering length for the two particle system 

divided by the interaction radius. The horizontal distances between neigh- 

boring bound states tend to the same value 7rlog e= 1.36 as s +O, confirming 
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Efimov’s theorem. The third and fourth states tend to the right in the 

above diagram, approaching the region of the continuum consisting of a 

bound pair and a free particle. The vertical distances between two neigh- 

boring states which move towards the continuum approach the same value 

1.36, also in agreement with Efimov’s results. Other bound states, which 

according to Efimov are infinite in number, would occupy the lower right 

part of the figure. They have not been quantitatively determined, due to 

limitations of accuracy in the numerical computations. 

3. Dependence of the binding energies of the three particle bound states on the 

pair coupling strength. The horizontal axis uses in logarithmic scale the 

quantity Q! defined by Eq. (21). Only the two lowest bound states (curves 

labelled 1 and 2 above) remain always as three particle bound states as the 

coupling constant is increased. All other states which are formed for 

lG I < lGo 1 are broken up into states consisting of two bound plus one free 

particle, as the attractive strength is increased. This effect, which is 

shown in Fig . 1, is not seen above for scale reasons. As the coupling 

strength is further increased, new three particle bound states appear. The 

first eight of such states (curves labelled 3 to 10 above) which start with 

binding energies different from zero, are shown above, represented by the 

lines which come from a=~. These states are the same shown qualitatively 

in Fig. 1 as curves starting at the border line between regions I and II. 

4,5. Behavior of the function x(Q) defined as an eigenfunction of Eq. (23)) for 

the four lowest bound states. Q is a kinematical variable related by Eq. (9) 

to the magnitude of the momentum in the center-of-mass system. Due to 

the strong variations in the magnitudes and to the changes of sign of the 

wavefunctions as Q varies, and to the very different variations of amplitudes 

L 
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of the functions corresponding to the four bound states, we were forced to 

use rather peculiar scales for their plots. In Fig. 4 we use log (x+0.01) 

in the vertical axis and log (Q + 0.01) in the abcissas. In Fig. 5 the ordinates 

follow log ( 1x1 + 0.001) and in the horizontal axis we use log (Q+ 0.001). The 

functions corresponding to the four states have a number of zeros which 

increases by one from the bound state to the next. The curves show a very 

peculiar behavior, namely, that all curves tend to pass through zero for the 

same values of Q. Note that this is true also if we join the information 

contained in Figs. 4 and 5. 
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