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ABSTRACT 

A mathematical algorithm for three dimensional reconstructions 

in the positron camera is described. Fourier techniques have been 

adapted for use in analyzing the data from cameras with limited detec- 

tor configuration. Noise instabilities from random fluctuations in the 

data are discussed and treated. The technique is tested on a computer 

generated phantom and the results are presented. There is a discus- 

sion of how the effects of Compton scattering and detector response 

may be incorporated into the algorithm. On the basis of these inves- 

tigations, it is concluded that the method is feasible and practical for 

obtaining accurate reconstructions. 
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I. Introduction 

The use of radioactive tracers for diagnosis in medicine has enjoyed a long 

history. Radioactive isotopes which undergo positron beta decay seem to be an 

especially effective probe for detecting and locating medical disorders. 
- 

Typically, the radioisotope is injected into the patient’s blood stream, and 

then allowed to assume a quasi-equilibrium distribution in the tissue. A nucleus 

of the tracer can emit a low energy positron. (The energy maximum for com- 

monly used tracers is usually l-3 MeV. ) The positron passes through the tissue, 

eventually coming to rest and annihilating with an electron, producing two photons, 

which emerge back-to-back in the center-of-mass frame, each with an energy 

of about 0.5 1 MeV: 

e+ + e- --Y+y ’ (1.1) 

Positrons with an energy of 1 MeV, in tissue of typical densities, will usu- 

ally annihilate within 1 mm of the point of emission and the photons will be anti- 

parallel to within 10 milliradians (lJ. 

The photons may then escape from the patient’s body and fall onto a detector, 

commonly known as a positron camera. If the camera detects two photons in 

coincidence, then it may be inferred that a positron was emitted somewhere along 

the straight line defined by the detector loci. 

A number of positron cameras have been conceived and built. There are 

systems using arrays of sodium iodide crystals &3,4J, using multiwire pro- 

portional chambers with lead converters &6J, and using multiwire proportional 

chambers with liquid Xenon (7J. Therefore, the positron camera has been shown 

to be a feasible tool for medical diagnosis. A schematic diagram of a possible 

detector configuration is shown in Fig. 1. The camera is being used to image 

the radioisotope density distribution in a hypothetical phantom’s head. 
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For the purposes of this paper we shall assume that for each electron- 

positron annihilation event in Eq. (1.1) the two photons are antiparallel and are 

produced at the location of the emitter. Therefore, the data may be thought of 

as a set of straight lines imbedded in three space. For any given event, the 

exact location of the emitter along the line cannot be determined, modulo the 

constraint that it be somewhere inside the patient’s body. 

The great value of the positron camera lies in the fact that it is capable of 

measuring the density distribution of the tracer in three dimensions. For 

example, a brain tumor may absorb the radioisotope at a much greater rate than 

the surrounding tissue, and a positron camera could then determine the exact 

location of the tumor. Unfortunately the data gathered by such imaging devices 

does not correspond in a straightforward way to the density distribution. Meta- 

phorically, the camera is capable of photographing a patient’s internal organs, 

but the picture must be developed. Some mathematical analysis must be per- 

formed on the data before the density distribution can be specified. 

There is a rapidly growing literature on the mathematical techniques for 

three dimensional reconstructions (8J. There are a number of methods which 

may be applied to the particular case of the positron camera. Perhaps the 

simplest method is the technique of back projection. The volume to be studied 

is imagined to be divided into a series of parallel planes. Each event corre- 

sponds to a straight line, and the intersection points of that line with each of the 

planes is computed. The distribution of intersection points in each plane defines 

the back projection. An adaptation of this technique has already been used to 

show pictures obtained from human patients @. Although back projection is 

simple, it is not an attempt to obtain the true solution for the density distribu- 

tion. A tumor in one plane will always cast a shadow on all other planes, and, 
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conversely, background from all planes will cast shadows on the tumor planes. 

Thus variations in tracer density tend to be washed out. More sophisticated 

methods may be employed which are capable of finding the true solution and 

removing the shadow effect. In this paper we shall describe an algorithm for 

three dimensional reconstruction using Fourier techniques (9J, and report on 

our results when the technique is applied to a computer generated phantom. 

Section II describes how the data may be used to compute a scalar field for 

the radioisotope distribution. Section III describes the mathematical problem in 

terms of the scalar field and shows a solution to the problem in terms of con- 

tinuous Fourier transforms. Section IV discusses how to implement the solution 

for the computer by using discrete Fourier transforms on a lattice. Section V 

shows how noise in the data leads to instabilities in the solution, and Section VI 

describes a method for removing the instabilities. Section VII summarizes the 

algorithm. Section VIlI discusses the results of our methods when applied to a 

computer generated phantom. Section IX suggests a method for treating Compton 

scattering in the data. 

II. A Point Emitter Generates a Scalar Field 

Consider the idealized situation of a point emitter. The emitter will gen- 

erate a set of straight lines passing through the origin, each of which is randomly 

oriented in three space. In the limit where the number of straight lines becomes 

large, it is possible to define an associated scalar field which is a function only 

of position relative to the point emitter. Thus an emitter located at “CO generates 

a scalar field +,(F-?‘$. 

In fact, the scalar field can assume any one of a large number of forms. 

We shall give a number of examples. 



I 

-5 - 

Example A. 

Take a volume element located a distance IF-F’, I from the emitter, sub- 

tending a solid angle 6fi, with thickness 6r. (See Fig. 2a. ) The volume is: 

The probability that one of the lines generated by the emitter will pass through 

the volume element is 68/2n. The line falls inside the volume element along a 

segment of length 6r. Define a scalar field @O(F-TO) associated with the point 

emitter as the mean line length per unit volume per event for randomly oriented 

lines emanating from 70 which pass through a volume element located at FE;‘. Then, 

in the far field limit, IF-TO I >> 6r, 

~,(F-Fo) = 1 

27r S-F0 I2 
P-1) 

For a volume element of radius 6r located at 70, the scalar field can be 

easily calculated (see Fig. 2b): 

3 1 
@,(3 = z 

(W2 

Thus, the scalar field is nonsingular for a finite volume element, but depends 

strongly on the size of the volume element. An accurate parametrization is 

given by 

~,(~-Fo) = $ 1 

IF-F0 I 2 + a2 
(2.2) 

where a = 6r/&. Notice that as the dimension of the volume element vanishes, 

a-0, the scalar field assumes the asymptotic form of Eq. (2.1). 

Example B. 

Take an area element of area 6A oriented perpendicular to the z-axis, at 

a distance IT-F0 I from the emitter. (See Fig. 3. ) The probability that one of 
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the lines will pass through the area element is 

iSA cos B 

in the limit where IF-F0 I is much larger than the dimension of the area ele- 

ment, a. Here we can define the scalar field $(F-Fo) as the average number of 

lines per unit area per event for lines emitted from “to which pass through the 

oriented area element located at ;;I’. In the far field limit, IF-F0 I >> a, 

~o(F-~o) = case = (F-Fe) * ii 

27r F-F0 I2 2n IF-To I3 
(2.3) 

For an area element located at Fo, 

ip,@j = 1 . 
a2 

Thus an accurate parametrization is given by 

$,(F-To) = 1 
2~ IF-F0 12/cos 8 -t a2 

(2-J) 

As the dimension of the area element vanishes, a -0, the scalar field assumes 

the asymptotic form of Eq. (2.3). 

Examnle C. 

It is possible now to construct an entire class of scalar fields. Define 

$o(~-~o) as the scalar field computed in Example B multiplied by cosn 8, for 

any integer n. For IF-F0 I >> a, 

$bo(F-ro) s cosn+l 8 
27T IF-F0 I2 

An accurate parametrization is given by 

~,(s-Fo) = cosn e 
2~17-7~ I/cos 8 + a2 

P-5) 

P-6) 



I 

-7- 

Thus, we have seen that a point emitter can generate a number of scalar 

fields using appropriate definitions for how it is to be measured. Each scalar 

field is a function only of position relative to the point emitter, and independent 

of the position of the emitter itself. The spectrum of possibilities provides us 

with the luxury of choosing the particular scalar field which will optimize our 

reconstructions. Each example in this section illustrates a legitimate scalar 

field, but there may be advantages in choosing one over the others. Example A, 

which requires the integrated line length passing through a cube, is more diffi- 

cult to compute thanExamples B or C, which only measure the intersection of 

a line with a unit area. In Example C, different choices of the integer n corre- 

spond to a large range of possible shapes for the scalar field, some of which are 

much more sharply peaked than others. In Example C, the scalar fields all 

possess a singularity (either a zero or a pole depending on n) at O= r/2. 

III. The Reconstruction Problem is a Convolution 

Suppose we have chosen some definition for how the scalar field Go from a 

point emitter is to be measured. Then, an arbitrary distribution of radio- 

isotope described by a densityp will generate a scalar field I$ given by the con- 

volution, 

(p(?j = jd3r1$,(F-?) p(F) (3.1) 

The field e. appears as the Green’s function or transfer function for the integral 

equation. If there are enough events to provide good statistics, the data from 

the positron camera measures the field $. The problem is to solve Eq. (3.1) 

for the density distribution p, where both @ and $. are known. 

Any physically realizable density is integrable, and for an appropriately 

chosen definition, both I#J~ and $ are also integrable. Therefore, we may take 
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the Fourier transform of both sides of Eq. (3.1): 

*th = R6 +061 (3.4 

where 4,) + o, and R are the Fourier transforms of $, @,, and p respectively. 

The transform is defined as 

+bG) = / d3r e(F) exp (2nicF) (3.3) 

The solution of the problem is now very simple in momentum space 

RGJ = W~)h,@5 (3.4) 

The density distribution in configuration space can then be obtained by taking the 

inverse transform, 

p(F) = J d3p R($) exp (-2nigF) (3.5) 

Thus, the solution of the problem in its simplest form is quite straightforward, 

once it can be expressed as a convolution integral equation. 

However, the problem is never this simple in practice. Note that the con- 

volution integral in Eq. (3.1) is to be performed over all space. Therefore, a 

major complication arises if the detection apparatus does not subtend the full 4n 

radians of solid angle. For example, the detector may lie in two parallel planes 

on each side of the patient’s head as in Fig. 1. There will be no record of those 

events for which either of the two photons does not intersect the detector. Thus 

the scalar fields as described in Section II cannot be determined in a large region 

of space. 

There is an elegant way to circumvent this difficulty by simply redefining 

the scalar fields. Usually the region to be scanned is characterizable by well 

defined boundaries. In a brain scan, the observed radioisotope density distri- 

bution may be confined to the head area by arranging lead shielding to absorb 

any photons which originate below the patient’s neck. If the detectors are large 
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enough to extend beyond the boundaries of the head, then for each point 7 in the 

head there is a “local cone of detection”. Those back-to-back photons origin- 

ating from 7 which fall within the local cone will be detected. Those which fall 

outside the local cone will not be detected. The size of the local cone of detec- 

tion is clearly a function of position7. Define the “universal cone of detection” 

to be the smallest local cone of detection for all the points F;’ in the head. Any 

photons emitted within the universal cone will be detected, and the size of the 

universal cone is obviously independent of position. 

A schematic illustration is given by Fig. 4. The universal cones for the 

points F1 and F2 are indicated by the shaded areas. At point F2 the local cone 

is significantly larger than the universal cone, and the boundaries of the local 

cone are shown. At point Fl the universal and local cones are identical. 

Redefine the scalar field as follows. Consider only those events which fall 

within the universal cone. For the present, we shall disregard all the other 

events, which may in fact include a substantial fraction of the total number of 

events recorded by the detector. The scalar field is computed by any of the 

methods described in Section II, except that only those events which fall within 

the universal cone are used. The convolution equation will still hold, 

Cp(F) = /d3r’ $,(;-Fi)o(?) 

Here, the Green’s function q. is the scalar field of a point emitter restricted to 

the universal cone. 

Notice that if the detector consists of two parallel plates, for example, then 

the scalar field will vanish for large regions of configuration space. Define a 

polar coordinate system in which the z-axis is perpendicular to the plane of the 

detectors and passes through their center. The angle 0 is the angle between a 
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line and the z-axis. Then, the poles in the scalar fields described in Example C 

(for n < 0) will never appear since there can be no events oriented with 8 = 7r/2. 

. 

IV. Computation is Done on a Lattice 

Obviously, any numerical reconstruction of the density distribution of radio- 

isotope must be done by dividing space into a lattice of discrete points and then 

using discrete Fourier transforms to obtain the solution. The continuous inte- 

grals of Section III must be replaced by series representations with some finite 

cutoff. 

Divide the region of space in the vicinity of the density distribution into a 

three dimensional lattice, Nx by NY by NZ , with spacing between the lattice sites, 

6,, 6y’ 6,. 

The scalar field can be computed by placing a volume element or an area 

element at each of the lattice sites and then using any of the methods described 

in Section II. 

The discrete Fourier transform G of the field $ is expressed as a finite 

series, 

Ni-1 
*@) = V C G(7) exp(2ti$7) 

mi=O 
(4.1) 

where the cell volume V = 6x6y6z and the variables are placed on the lattice, 

ni=O, Ni-1 (4.2) 

F=m6 m6 m6 
( xx’ yy’ zz 1 

The inverse transform is 

cp(i?) =& 

Ni-1 

C G(c) exp (-27riG7) 
n.=O 

1 

(4.3) 
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where N = N N N x y z’ Of course, + and 4 are now both periodic, repeating in 

each dimension after each Ni lattice sites. 

The lattice spacing is determined chiefly by four considerations: (a) the 

resolution desired for the reconstruction, (b) the need to minimize “aliasing” 
- 

flo) in the Fourier transform, (c) the detector configuration, and (d) noise 

problems arising from the fact that only a finite number of events are detected. 

The problem of noise shall be addressed in the next section. 

In (a), it is clear that the lattice spacing must be smaller than the desired 

resolution for the reconstruction. 

In (b), aliasing is completely eliminated if the lattice spacings 6i satisfy the 

relations, 

& 2 P(m=), i = x,y,z 
i 

where p(max) are the magnitude of the largest momentum for which +G) is non- 

vanishing. If the conditions (4.4) are not satisfied, then portions of +(F) from 

adjacent periods will begin to interfere with each other, resulting in what is 

known as aliasing. In practice, it may be the case that a(F) does not have a 

limiting momentum, and the best that can be done is to choose the lattice spacing 

small enough to minimize the effects of aliasing. 

We have found that (c) the detector configuration is an important considera- 

tion in adjusting the relative size of the lattice in different dimensions. The 

ratio of lattice spacings 6x:6y:6z should be chosen to minimize the effect of edge 

effects at the boundaries of the universal cone. Clearly, edge effects become 

less important as the lattice spacings are made smaller. But for a given 

size for the unit cell in the lattice, the optimum choice for the ratio of lattice 

spacings would be that for which the boundaries of the universal cone are closely 
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approximated by major diagonal planes in the lattice. In the two dimensional 

example of Fig. 4, the optimal choice would be 

6 
y/ 

~3~ = tan (e/2) (4.5) 

where 0 is the opening angle in the universal cone. - 

Once the lattice spacing is fixed, the size of the array is determined by 

choices for N x, NY, NZ- The array dimensions are given by 

A, = Ni”i (4. f-5) 

For a periodic function, if Ai are chosen equal to the period of the function, then 

the discrete Fourier transform will be free of “leakage” (10). However, the 

field @ is of noncompact support and manifestly aperiodic. Leakage must occur. 

The problem may be minimized by choosing Ni large enough such that for some 

small e, 

(4.7) 

for lFi l>Ai. Here, one is actually choosing some finite cutoff on what is for- 

mally an infinite integral in the continuous Fourier transform. 

In our computer simulations, we have experimented with detectors arranged 

in two planes as in Fig. 1 where the opening angle 8 is such that tan (0 /2) e 1. 

We have found that for a given total number of lattice points, the reconstructions 

are best when the array dimension AZ (along the line perpendicular to the detec- 

tor planes) is considerably larger than Ax and Ay. Such a result is reasonable 

since the scalar field $J from some finite density p falls most slowly in the direc- 

tion of the detectors. In many cases it may be necessary to choose AZ to be 

larger than the distance between the detector planes. 

It is possible to improve on a simple truncation by multiplying the field $ 

by an appropriate “window functionl’ before computing the Fourier transform. 
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Window functions can reduce the leakage significantly, with the result that spur- 

ious oscillations in the solution p are significantly reduced. We have experi- 

mented with a variety of choices for the window function. In each case, the net 

effect is to make the cutoff in the Fourier transform relatively smooth. One 

example is known as the hanning function (11), 

w(x) = 0.5 + 0.5 cos (&Ax) , 05x< Ax (4.8) 

w(x) = 0 x<O and x>Ax . 

A second example, the hamming function (12)) provides somewhat better results, 

w(x) = 0.54 + 0.46 cos (&Ax) , Otx<Ax . (4.9) 

A third example, suggested by Blackman (13)) yields even better results, 

w(x) = 0.42 -!- 0.50 cos (xx/Ax) + 0.08 cos (27rx/Ax) (4.10) 

After some investigation, we have obtained the best results using window func- 

tions in the shape of a Gaussian (14) 

w(x) = exp (4. 11) 

with ox in the range 0.25 Ax to 0.40 Ax. The full window function in three dimen- 

sions must be, 

W(3 = w(x) W(Y) w(z) (4. 12) 

In our experience, the choice of window function makes a significant contribution 

to the quality of the reconstruction, and the Gaussian of Eq. (4. 11) worked sub- 

stantially better than the other examples mentioned. 
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V. Noise in the Data Leads to Unstable Solutions 

In the ideal situation where the number of counts is infinite, the scalar field 

r$ may be determined exactly. Then, the problem can be solved as illustrated in 

the previous sections, where the only limitation on accuracy is the computation 

time required by the size of the lattice. In the limit where the lattice extends to 

infinity and the lattice spacing shrinks to zero, the solution becomes exact. 

However, the number of counts must be limited by both physical and medical 

considerations. The dose of radioisotope administered to the patient should be 

small enough to minimize adverse side effects and large enough to provide 

enough data for a reasonable reconstruction. In any case, there will be statis- 

tical variations in the measurement of the scalar field @ at the lattice sites. 

If for a given dose to the patient, the positroncamera is able to record N 

events after some reasonable exposure time, we can estimate the resolution 

limit of the reconstruction. Suppose the total number of sites in the lattice is 

M. Then each event will pass through approximately M l/3 lattice sites and the 

number of events per lattice site is roughly N/M 2/3 . To obtain statistical fluc- 

tuations less than some fraction E , the following condition must be satisfied, 

&3 

‘pe (5 * 1) 

We have found that if an object has linear dimension A, reasonable reconstruc- 

tions are obtained when the lattice size is roughly of linear dimension 3A. The 

resolution 6 is given simply by 

6 = 3A/M113 (5.2) 

and thus the resolution and the number of events are subject to an uncertainty 

relation 

N1/2 6 2 ~A/E (5 * 3) 
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When the error E grows to some (quite small) fraction, the reconstructions 

become unacceptable. For a given E , the resolution may be improved in a well 

defined way by increasing N. 

The largest acceptable level for E depends strongly on the solid angle sub- 

tended by the detector. The effects of noise are coupled in a very nonlinear way 

to the solid angle limitations, as we shall show by studies described in a later 

paper. This results in very practical considerations for the detector configur- 

ation: The detector plates should be as large as possible, placed as close to 

the head as possible, and should surround the head on four sides rather than two. 

Engineering problems will be more than compensated by improved quality of the 

reconstruction. 

Although the presence of noise is inevitable, a careful examination of the 

problem may minimize its effects, and even provide reasonable reconstructions 

where none was possible with a naive approach. The first step is to note that 

the convolution equation we must solve (3.1) is essentially a Fredholm equation 

of the first kind. 

q(F) = -/d3rf K(F, 7)p(3) (5.4) 

where the kernel K(?-,,r;i) is given by the special form 4,(7-F). The equation is 

nonsingular, since on a lattice, the integration limits are finite and the kernel is 

bounded. 

It is well known that such an equation is unstable. This can be seen in the fol- 

lowing way as described by Phillips (15). Suppose p(F) is a solution to the equation 

(5.4). Consider a finite fluctuation in the solution, p,(3 = sin (mx) . Then as 

m--m, 

+,FI = /d3 r’ K(??, 3) p,(p) - 0 (5.5) 
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Hence, an infinitesimal fluctuation in the scalar field $ may produce a finite, 

nonvanishing fluctuation in the solution p. That is, the equation is unstable with 

respect to noise. 

The instability of the equation places a limit on the resolution of the recon- 

struction. As the lattice distance is decreased, the accuracy of the recon- 

struction begins to improve, but at some point, the accuracy begins to worsen. 

The critical point occurs when the lattice spacing grows small enough to admit 

terms in the Fourier series with frequencies high enough for Eq. (5.5) to become 

valid. 

The instability in Eq. (5.5) will occur for fairly small values of m if the 

kernel K(F,??) is a smooth function of 3. Conversely, the stability may be 

improved by choosing a kernel which is sharply peaked. In the extreme case in 

which the kernel is a delta function, K(F,p) = g(??-3 ), there is no instability. 

In Section II, we discussed various possibilities for the kernel (or Green’s 

function) in the convolution integral, In the absence of noise, all the choices are 

equally valid. However, in the presence of noise, it is clear that greater 

stability for the solution can be achieved by choosing a scalar field with sharp 

peaks. Such peaks occur in the scalar fields discussed in Example C in Section 

II. If the detector consists of two parallel plates, orient the coordinate system 

such that the z-axis is perpendicular to the plates. Then the scalar field will be 

peaked for large negative values of n. That is, events near the edges of the 

universal cone are given the greatest weight. (Large positive values of n produce 

a sharply peaked kernel in the x and y directions, but not in the z direction, thus 

degrading resolution in the z direction. In fact, as n-co , we are left with a 

simple two dimensional projection down the z-axis.) 
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At first it may appear that as n is made more and more negative, the solu- 

tions will become more and more stable. However, there is a second balancing 

effect. As n becomes more negative, the cone of detection becomes effectively 

more restricted, and less of the data is used for the reconstruction. Events 
* 

with small 0 are given less weight, and there is some point at which the recon- 

struction must begin to suffer. We have found that the choice n=-3 seems to 

yield the best reconstructions. The quality of the reconstructions is not a strong 

function of the choice for n. For example, n=-2, -4, -5 seem to work about as 

well as n=-3. 

VI. Noise Instabilities May Be Removed 

Phillips (15) has suggested a technique for dealing with the problem of noise 

which removes the instability in the equation (5.4). His discussion applies to I 

any nonsingular Fredholm equation of the first kind, and therefore may be applied 

to our problem. However, we shall recast his treatment, since the convolution 

integral permits a particularly elegant realization of the technique. In particu- 

lar, it will be convenient to work in three dimensions and in the continuum rather 

than on a lattice. 

Suppose the scalar field c#J(~) is known only up to some error e(y). Then, 

the equation to be solved is, 

(6.1) 

where the error E(F) is an arbitrary function except for some condition on its 

magnitude, such as I E (??) I 5 M. Equation (6.1) may be solved for p(T) by taking 

the Fourier transform, as outlined in Section III, 

p(Fj = /$, , [@) + q,(q)] /- d3p exP p26- tzF;fl (6.2) 
@otF) 
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The functional derivative of o(T) with respect to ~(2) is a function of F-2, 

(6.3) 

The error tends to be random from point to point, and it generates insta- 

bilities in the solution p(F) which are manifested as sharp fluctuations. Thus, a 

reasonable condition on p(F) is a requirement for smoothness, in which a solu- 

tion is sought such that 

is minimized. 

Suppose the total error is some fixed number e where 

e2 = Jd3r [c tTjj2 (6.4) 

Then the smoothness condition may be re-expressed by introducing a Lagrange 

multiplier l/y and minimizing the following expression with respect to varia- 

tions in e (7): 

Jd3r[v2 p,], + $ J‘d3r Ed 

It is clear that y must be nonnegative, if there is to be a meaningful solution. 

The functional derivative of this expression with respect to E (7) gives an expres- 

sion for the smoothness condition on the solution p(F), 

0 = y /d3r V2p(y). V2 m 
6 E(?) 

+ E(F) (6.5) 

subject to the constraint, Eq. (6.4). 

Integration by parts and use of Eq. (6.3) yields an expression for the error 

which is proportional to y, 

E(F) = -y d3r 1 p (7) Vt4 a! (2 -7) (6.6) 
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yf4 a(T-7) = (27r)4 Jd3p 5 exp[-2ti$ (g-i?)] 

0 

Substituting Eq. (6.6) into Eq. (6.1) gives a new convolution equation, 

J [ d3rl @,(F-?)+ yV4($‘-T) P(?) = ~(7) 1 
The solution for the density distribution in momentum space is simply 

RG) = 

while the error is expressed in terms of the Lagrange multiplier 

E (F) = -y (ar) 4 ($p exp (-2tisFSti , 
~o(-q~ 

(6.7) 

(6.8) 

(6-g) 

The ideal case in which there is no error in the determination of the scalar 

field corresponds to setting ~0. Then Eq. (6.9) reduces to the canonical solu- 

tion of the convolution equation given in Eq. (3.4). Increasing the value of y 

increases the amount of smoothing in the solution p(7). 

In the case where there is a finite error, an estimate for the appropriate 

value for y may be obtained iteratively. First choose some small value for y 

and compute RG) . Then using Eq. (6.10) compute the corresponding error func- 

tion and compare the result to the total error e expected from statistical fluc- 

tuations in the data. Only a few iterations are needed, since by Eq. (6. lo), the 

total error e is roughly proportional to y. 

From the form of the solution in Eq. (6.9)) it can be seen that the incorpor- 

ation of this technique into the mathematical analysis is rather simple and 
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straightforward. No extra Fourier transforms or scalar fields need to be 

computed for Eq. (6.9). All that is needed is a simple recombination of the 

scalar field @o. 

We have found that the use of this technique is the single most important 

factor in improving the quality of our reconstructions. 

VII. The Algorithm is Summarized 

A. From the configuration of the detectors and the dimensions of the 

region to be imaged, compute the universal cone of detection. 

B. Choose the lattice spacings, 6,, dy, 6z, taking into account the desired 

resolution, aliasing, detector configuration, and noise in the data. 

C. Choose the array’dimensions, Ai = Nisi, to be large enough to make 

leakage unimportant. 

D. Compute the scalar field from a point emitter, $,(??), choosing the 

form which minimizes instabilities in the solution. E.g., take n=-3 in the 

definition for q. in Eq. (2.6). 

E. Choose a window function, W(F) = w(x) w(y) w(z), which minimizes 

leakage. E.g., take w(x) to be a Gaussian as in Eq. (4.11). 

F. Compute the Fourier transform of q,(F) W(T), which we shall denote 

as +o($). (All the steps up to this point need be performed only once for a given 

positron camera, with GoG) stored on a tape.) 

G. Using the data collected by the camera, compute the scalar field +(‘) 

due to the density distribution using the same definition employed in step D. 

Only data falling inside the universal cone are used. 

H. Compute the Fourier transform of q(F) W(F) which we shall denote as 
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1. Compute the solution in momentum space, 

(7-l) 

where the parameter y is determined by the estimated level of noise in the data. 

(See Section VI. ) The point zis the central point in the lattice array, and the 

phase shift is necessary since the functions are defined on a lattice where F=T 

is located at a corner and F=z is located in center of the array. 

J. Compute the inverse Fourier transform of R$), and finally obtain the 

reconstruction of the radioisotope density, p(T). 

VIII. The Computer Solutions are Feasible 

In this section we shall discuss the results obtained by applying our algo- 

rithm to a computer generated phantom. For convenience, we have chosen a 

relatively modest lattice of dimensions 32 by 32 by 32 to illustrate our results. 

In principle, a somewhat larger lattice can be chosen to obtain better resolution, 

if one is willing to pay for the extra computation time. 

The Fourier transforms are performed using a Fast Fourier Transform 

program written by Singleton (16), and the actual computing was done on a CDC 

7600 at the Lawrence Berkeley Laboratory. Two Fourier transforms are 

required for a reconstruction, and we found that for our lattice dimensions, the 

time required was 2.5 seconds per transform. In general, the time required 

for a lattice with M sites is roughly proportional to M log4M, so the time 

required for larger lattices may be estimated from our results. 

For a given detector configuration, the scalar field for a point emitter +,(F) 

and its Fourier transform Go(s) need be computed only once and then stored. 

Reconstructions for arbitrary objects can then be made using the stored values 
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for ao@). Therefore, there is no need to economize on time spent in computing 

Go(F). We have found that the quality of the reconstructions depends slrongly on 

the accuracy with which oo(F) and +oG) are computed. In particular, for a 

detector configuration of limited solid angle, the scalar field +,(??) has large 

variations near the origin and effects at the edge of the universal cone are 

important there. Since time spent computing Go(F) is rather unimportant, there 

is a great advantage to doing it with great care. 

We have generated a set of data in the computer by Monte Carlo corre- 

sponding to a phantom, consisting of a “skull region” corresponding to the blood 

supply for the brain, a flbrainl*, and a hypothetical %unor , ” The “skull region” 

was a spherical shell 3 cm thick, with an inner radius of 18 cm and an outer 

radius of 21 cm, and with a relative radioisotope density, p=l. 0. The “brain” 

was located inside the skull, with density p=O. 2. The !Vumorlf was a sphere 

located off-center in the “brain, ” with a radius of 3.6 cm and a density ~‘2.0. 

The relative radioisotope densities are similar to those found in actual patients 

(17). The phantom was permitted to generate a total of 8 18,785 positron 

emissions. 

We chose a detector configuration of two parallel square plates. Relatively 

modest increases in the size of the plates were capable of producing significant 

improvement in the quality of the reconstructions. Alternatively, if the head is 

surrounded on four sides with detectors, there would be an even more marked 

improvement, while only doubling the detector area. 

In this paper we shall show our results for a detector where the plates are 

84.86 cm by 84.86 cm and 50 cm apart. For such a configuration, 229,429 of 

the total events generated were detected by the camera. 
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The lattice distances were 2.5 cm by 2.5 cm by 5.0 cm, thus making the 

array dimensions 80 cm by 80 cm by 160 cm. We found it necessary to make 

the array considerably larger in the z-direction to optimize the reconstructions. 

Gaussian window functions were used, and we found that the best values for the 

parameters oi in Eq. (4.11) were 32 cm, 32 cm, and 40 cm. The scalar field 

was defined as in Eq. (2.6) with n=-3. 

In Fig. 5 we show the results of our reconstruction for two different values 

of the parametery. In each case, only the central plane, passing through the 

center of the tumor is shown. The numbers indicate relative densities, where 

zero is indicated by a blank space. Figure 6a corresponds to the application of 

our algorithm with ?/=O, where -no noise filter is used. It is clear that noise in 

the data is important enough to create such large instabilities that the recon- 

struction is useless. In fact, there are large regions in which the densities are 

negative. Figure 6b shows the results for ~2x10 -6 . The improvement is 

dramatic, and the reconstruction is a reasonable facsimile of the actual density. 

Negative densities still appear, but they are relatively insignificant. 

In Figs. 6, 7, and 8, we show reconstructions displayed on a cathode ray 

tube, using a program which can differentiate 64 gray levels in the display (2 

The density of dots is proportional to the density in the reconstruction. In each 

figure, we have shown a series of planes in the reconstruction, starting from 

the central plane and working outward in one direction. 

Figure 6 shows the actual density distribution being used to generate the 

data. This gives the reader a basis of comparison for the quality of the recon- 

structions. 

Figure 7 shows the results obtained by a simple back projection of the data, 

as described in Section I. Only those events lying inside the universal cone are 



- 24 - 

used, to remove any bias as one moves out toward the edges. The tumor is 

clearly visible in the central plane, but the contrast has been severely degraded 

by shadows from other planes. Furthermore, the tumor has cast a recognizable 

shadow on at least two other planes, where it does not exist. 

Figure 8 shows the results obtained using our algorithm. Here we have 

set y=5x 10m5 which seems to give the best reconstructions. Computing with 

Eqs. (6.4) and (6, lo), we find the corresponding value for the root mean squared 

deviation to be e = 237. One may estimate e corresponding to the statistical 

fluctuations to be 2461. Thus the optimalvalue for y appears to be smaller than 

would have been expected, a phenomenon also observed by Phillips. The image 

of the tumor appears quite clearly, and shadowing onto other planes has dis- 

appeared. The improvement over the back projection is obvious. And compari- 

son with the actual density is very favorable. 

IX. Compton Scattering May Be Dealt With 

So far we have not mentioned experimental sources of background other than 

statistical fluctuations in the data. It has been found that a serious source of 

background arises from the possibility that a photon may undergo Compton scat- 

tering before emerging from the patient’s body (19). A second source arises 

from the possibility that a photon may fail to trigger a response at the point where 

it enters the detector, undergo Compton scattering inside the detector, and finally 

trigger a response at some other point (19). We believe that both problems may 

be solved rather simply in the context of our algorithm. 

The Green’s function for Compton scattering inside the patient is generally 

a function of position. However, consider a roughly spherical region like the 

head. If the point of annihilation occurs at the center of the head, both photons 

will traverse equal paths before emerging, with the sum of path lengths equal to 
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the diameter of the head. If annihilation occurs toward the edge of the head, the 

path lengths of the two photons will be different, but the sum will still be roughly 

the diameter of the head. Thus the probability for Compton scattering will be 

the same in both cases. 

Expressing this quantitatively, we assume that the two photons must travel 

distances x1 and x2, respectively, in the head, while the distance d = XI + x 2 is 

a fixed number independent of the annihilation point. Suppose that the effective 

attenuation coefficient for head tissue is given by a fixed number p. (The prob- 

ability that a photon pass through tissue of thickness x is given by P = e +-lx. ) 

Then the probability that both of the photons will emerge from the head without 

scattering or absorption is 

-cry -P”“z 
PlP2=e e -End =e , 

independent of the position of annihilation. The probability that either photon 

undergo Compton scattering is therefore proportional to 

l- emCld, 

also independent of position. 

Of course, the attenuation coefficient is significantly different in bone than 

in soft tissue and thus not a fixed number. However, almost all annihilation 

events will occur inside the skull, and both photons will have to pass through the 

skull before emerging, again leaving the probability for scattering roughly inde- 

pendent of position. 

We conjecture that the Green’s function will prove to be roughly independent 

of position in the head, when measured experimentally. 
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Similarly, if the detectors give a uniform response over their entire surface 

area, then the Green’s function for false triggering in the detector will also be 

independent of position. Edge effects may be removed by sufficient restriction 

of the universal cone. - 

We are then left with the familiar convolution in Eq. (3.1) except that now 

the Green’s function $o@ is the scalar field due to a point emitter in a patient’s 

head, as measured by a real detector. The subsequent algorithm is identical. 

The only difference is that the scalar field G,(T) must be measured experimentally 

rather than calculated for the ideal case. 

(We shall reserve explicit investigation of Compton scattering for a future 

paper. ) 

We therefore conclude that Fourier techniques afford an extremely attractive 

means of obtaining three dimensional reconstructions with the positron camera. 

Experimental problems such as limited detector configuration, statistical 

fluctuations in the data, Compton scattering within the patient, and false detector 

response may all be treated by a technique in a natural and elegant manner. The 

method appears to be simple, feasible, and practical. 

Many questions await investigation: how various detector configurations 

affect the quality of the reconstruction; whether there are more effective means 

for dealing with noise in the data; if iterative schemes utilizing all’ the data 

obtained by the camera are feasible; whether convolution methods instead of 

Fourier transforms are more efficient. There may be room for great improve- 

ment in obtaining reconstructions in the positron camera. 
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Figure Captions 

1. Schematic diagram of a possible detector configuration in which the camera 

is used to image the radioisotope distribution in a hypothetical head phantom, 

2. a) Volume element, subtending a solid angle 6fi, with thickness 0, located 

at a distance IF-F0 I from the point emitter: the wiggly lines indicate two 

back-to-back photons. b) Volume element, of radius 6r, located at the 

site of the point emitter. 

3. Area element with sides of length a, located at a distance IF-F0 I from the 

point emitter, oriented perpendicular to the z-axis, at an angle 0 with 

respect to the z-axis: the wiggly lines indicate two back-to-back photons. 

4. Two dimensional schematic illustration of an oval head phantom placed 

between two parallel detector plates: at the pointT2, we have drawn both 

the universal cone of detection (shaded, with opening angle 0) and the local 

cone of detection (unshaded, and containing the universal cone); at the point 

Tl, the universal and local cones happen to be identical with the common 

opening angle 0. 

5. Reconstruction of the computer generated phantom with noise for two differ- 

ent values of the parameter y (only the central plane perpendicular to the 

z-axis passing through the center of the tumor is shown): (a) ~0, where no 

noise filter is used and the instability has left no trace of the phantom; 

(b) 7=2x10-6 where the tumor and skull region are now visible. 

6. Actual noise free density distribution used to generate the phantom by Monte 

Carlo: (a) shows the central plane passing through the center of the tumor; 

(b), (c), (d), (e), (f) show parallel planes, each successively displaced from 

the central plane by 5 cm; the “skull region’! is 3 cm thick, with inner radius 

of 18 cm, and relative radioisotope density p=l. 0; the “brain” has density 

p=O. 2; the ‘%,nnorY1 has a radius of 3.6 cm and density ~“2.0. 
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7. Reconstruction of the phantom with noise by back projection: the planes in 

(a) through (f) correspond to those in Fig. 6. 

8. Reconstruction of the phantom with noise by Fourier techniques setting 

y=5xlO -5 to optimize the quality: the planes in (a) through (f) correspond 

to those in Fig. 6; negative densities were insignificant and have been set 

equal to zero; the results are a marked improvement over the back projec- 

tion in Fig. 7. 
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