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ABSTRACT 

The angular dependence of the differential cross section is 
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The dimensional scaling laws 

-$(ab - cd) - s-n+2f(t/s) (1) 

for hadronic scattering at asymptotic energies and fixed angle derived by 

Brodsky and Farrar [ 11 and by Matveev, Muradyan, and Tavkhelidge [ 2 ] have 

been successfully confronted with experimental data. There have been some 

attempts recently to determine the angular dependence of the differential cross 

section in that same framework. We argue here that given some usual assump- 

tions, the analytic properties of the amplitude determine its angular depen- 

dence. For that purpose we will assume with T. Uematsu [4] that the invari- 

ant amplitude obeys the Mandelstam Representation with subtraction, Some re- 

sults related to the impulse approximation in the Constituent Interchange 

Model [ 31 will be used together with a requirement of nonexoticity. This paper 

is organized as follows: 

In sect. 1 we present our method and emphasize the assumptions. Then we 

apply it to a simple case, namely the elastic scattering of two spinless particles, 

In sections 3 and 4 we consider the case of meson-baryon and baryon-baryon 

scattering taking carefully into account the spin of the fermions. Definite pre- 

dictions are obtained in a number of cases, In sect, 5 we compare our results 

with other theoretical calculations. 

10 Presentation of the Method 

We will work in the framework of the Constituent Interchange Model [3]. 

Let us recall briefly the basic features of this approach that seems to describe 

successfully the physics of large transverse momentum processes : the baryons 

are described in the language of quark partons, the basic quark-quark interac- 

tion is governed by dimensionless coupling constants, and anomalous 
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dimensions are assumed to be absent. Furthermore, in hadronic reactions, 

processes of the quark interchange type (fig, la) dominate those of the quark 

scattering (fig. lb) type. For a more detailed description of the model and its 

phenomenological successes, we refer to the recent review of Sivers, Brodsky, 

and Blankenbecler [ 91 O Let us consider now an invariant amplitude A of a 

scattering process 

a+b-.c+d, 

Defining as usual the Mandelstam variables s , t, and u by 

(2) 

we have in the high energy region,where all the masses can be neglected, the 

relations 

t = -(l-z) s/2 u = -(l+z) s/2 (3) 

where z = cos Oc m O We will consider the fixed angle asymptotic region, i.e,, 0 0 
S,-t,-U + +=-J t/s, u/s fixed (4) 

We assume then [1,2] that the amplitude scales with a power dependence in the 

energy 

A = s-~ f(z), (5) 

n being an integer. In asymptotically free theory, a logarithmic factor 

can modify this result. We will neglect here such modifications, Note that by 

continuity with the Regge domain s>> - t, this dependence implies a finite 

asymptotic trajectory at t -+- 00 . Following T. Uematsu [4] , we write that A 

satisfies the Mandels tam Representation. Because of eq. (5),we can write it 

without any subtraction. In the spirit of the Constituent Interchange Model 

[31 the single dispersion terms, which correspond to quark-quark scattering, 

are not dominant so that we have 
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A (s,t,u) = L 
T2 

P &’ t t’ ) 
ds’dt’ . - 

(s’-s)(F-t) 
+ 5 // dt’ du’(;$‘(;‘u) + 

+ s/j- &Ids’ pus(u-‘9?‘) 
(u’-u) (s’- s) 

(6) 

Assuming that we can expand eq. (6) in the powers of l/s and pick out the 

leading terms compatible with eq. (5) , leads to the determination of the 

angular dependence of the amplitude as [4] 

sn A = ft5 t (z) + qu (z) + f”us (z) (7) 

with 
n-2 m+l m+l 

fit p) =c (5) CSt n-2-m, m (2’1 -‘) 
m=O 

n-2 

fFu (z) = (-$C c;y2mm,m (2/l-z)n-m-1 (2/l+z)m+l (8) 

m=O 

fts (Z) =k,” (-ljm+’ ‘z,n-2-m (2/l + Z)m+l 
m =0 

where we have noted 

C st & 1 
nm 7- 

dsdt sntm P,,(s,t) 

C 
tu 
nm 

dt du tn urn Ptu(t,u) (9) 

C us 

=+- 
duds 

nm 
unsm P,,(u,s) 

This result in itself leads to few predictions unless we make some other 

assumptions. They will be of two kinds, dealing with a requirement of 
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nonexoticity and with the connection to Regge regime: a) In the spirit of dual 

models, we will assume that the discontinuity of the amplitude in an exotic 

channel gives a nonleading contribution to the amplitude via the dispersion re- 

lation. This is a straightforward application of the concept of exoticity that has 

proven to be very efficient in the phenomenology of hadronic processes, b) We 

will assume that the effective asymptotic trajectories in the two regions of 

Regge behavior 

s = -u >> -t >> m2 (10) 

s = -t >> -u >> m2 (11) 

obey in the case of the exchange of a bosonic system the relation obtained in the 

Constituent Interchange Model [ 5 ] O 

sac (-CO) = (4-n,-nc-nint)/2 , (12) 

where na and nc are the number of valence quarks in particles a and c and nint 

is the minimum number of exchanged quarks compatible with the internal states, 

This relation is obtained assuming a smooth connection between fixed (but not 

small) t and fixed angle regimes., However in the case of the exchange of a 

fermionic system this result is likely to be modified. We will only need to as- 

sume that this modification is not more than one unit. This can easily be 

shown to be equivalent, in the physical processes studied below, to the require- 

ment that there is no fixed pole at J = -l/2, i. e. , that oat (-m) # -l/2, A mod- 

ification of eq. (12) by more than one unit would be difficult to justify in the 

framework of the model. We will now illustrate this method in the simple case 

of the elastic scattering of two bosons. For definiteness we will study K+n- 

scattering. 
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2. Determination of the Differential Cross Section of K’r- Elastic Scattering 

Dimensional scaling tells us that in that case the amplitude will be of the 

form 

A = ~-~f(z) - (13) 

Because in this reaction the u channel process is exotic, we write eq. (7) and 

(8) as 

A = s--~ fft (z) = d2/ (1-Z) 
In other words, the amplitude is of the form a/ st. The differential cross 

section can then be written as 

$f- (K+r -.iK+n-) zz p = da (K+a-4Kfr-)- 
s4t2 I 

1 

dt go0 (I- z)2, 
(15) 

The asymptotic trajectory is seen to be equal to -1 for the region given 

by eq. (10) and -2 for the region given by eq. (11) in accordance with eq. (12). 

In this example our assumptions seem to be redundant. However, that will not 

be the case in the more interesting processes studied thereafter. 

3. Study of Meson-Baryon Scattering 

The complete amplitude of the scattering process 

Ml+ Bl - M2+ B 
2 

can be written as 161 

.hV= ii (B2) (A+ B Y Q) u(Bl) (16) 

where Q is the sum of the 4-momenta of Ml and M2. It can be assumed, if we 

have in mind an underlying field theory with y5 in variance, that in the limit 



I 

-7- 

of asymptotic energies the helicity of the baryon is conserved so that A can 

be neglected. The differential spin-averaged cross section is then proportional 

to 

(17) 

We will now apply our method to the reduced amplitude B, the energy dependence 

of whit h is, following eq. (1)) 

a. 

The 

B = s -4 f(z) 

K+p and K-p elastic scattering 

process Ktp - K+p is s -channel exotic so that eq. (7) and eq. (8) simplify to 

B =s -4 ftu (z) 

16a 
ftu (z) = 

168 16Y 

(1 + z)8(1 -z) 
c 

(1+ z)2(1-z)2 
+ 

(l+z) (l- z)3 

In other words, B can be written as 

B=A+- - P Y (18) 
u3t u2t2 + ut3 

We now use our argument about the asymptotic trajectory in the Regge 

regime. Using that, in the region -t cs , a? 
K+K+(-‘=) = -” 

as given by eq. (ll), 

and that in the crossed region ~1 
K+P 

( - 00) f - l/2, we require that OL and Y 

vanish so that the angular dependence of the differential cross section is 

completely determined as 

--. K+p) = 
CTU 

_ __I -d”fi+p - K+p) 
&40,4 --a= 

ml+z 
9o” (l-z2)4 

c19) 
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‘5 (K’ p +K+ p) = - sot;l4 = +(K+ p-K+ p) 
I 

l-+Z 

go0 (1 -zq4 

The process K-~T*K-P can be easily obtained from s- u crossing and one gets: 

- q)” 
$%K-P -K-P) = s5 t4 i (K-P -K-P) goo 

l+z = (20) 
(1 -z)4 - 

Moreover one obtains the relation 

F (K+p +K+p) 
9o” 

= 16da 
dt 

(K-P-K-P) 
9o” 

(21) 

One can deduce of these results the form of the differential cross section 

for the annihilation process p b --3 K E by an additional s -t crossing. 

One obtains 

;+ (p&Kz) = -s%t- = ;; --(p+KK) 
I 

1+z 
2 s6t3 go0 tl-z)3 

(22) 

together with the relation 

$- (K-p+K-p ) 
I 9o” 

= 4 $ (p ~--+K+K-) 
9o” 

(23) 

b. r-p s tatter ing 

We will study here the elastic scattering of rf and r- on a proton together with 

the charge exchange reaction n-p + Ton. Because of isospin invariance the 

latter can be deduced from the two first reactions by the’following relation 

between the amplitudes 

fit& 
0 =“tl+ . . ,+ -CM 

np-7rn TP --nP ?T-p - s-p (24) 
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We will use in this section one more assumption related to the impulse 

approximation, namely that the contribution of f,, as defined in eq. (7) and 

eq. (8) can be neglected. The argument is as follows: Neglecting spin effects, 

the process a f b ---, c + d can be visualized as in Fig. 2. In the impulse 

approximation, only one constituent can be interchanged between the meson 

and the baryon. However the presence of the two spectators in the baryon is 

reflected in the physical amplitude by a form factor Fbd (t) such that: 

,$- (ab-+cd) = F 2 
(aq-+w) (25) 

The dimensional counting technique tells us that that the spin averaged 

form factor Fbd(t) behaves as t -2 . In simple models f$- (aq+c q) does not 

depend on t and we can thus reasonably assume that this quantity does not 

vanish faster than t as t 40, so that fus(z) which is the only non-singular part 

with respect to t in the amplitude can be neglected. The resulting expression 

for the elastic scattering of 1~+ p is then 

a1 B+ = - CL2 

s t3 
+ 

ut3 
+- 

and for 7r- p elastic scattering, the s -u crossed expression 

a2 a3 
u2t2 + u3t - (27) 

Imposing the asymptotic trajectory to be or71(-oo) = -1 and a,(-W) # -‘i, 

one obtains a1 - p, = 0 and ~1~ = p 3 = 0 so that the following expressions 

for the differential cross sections hold 
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g- (r+P 
ati 

+“+p)=-+ cul a2 a1 P, 2 - + 
st st ,2+ut +yp- 

da QU 
p2 5 a2 --&- (7r--p-kp) = - +-- 2 + ,2 + ; + --$- 

st 

(28) 

2 
- (29) 

These results are not very predictive but,using eq. (24), one deduces the 

following form for the charge exchange case 

$ (T-P 
OIU +x”n) = - - 
St4 ( 

1 
,2- -1 :z 

2 

(30) 

l- 

Using SU(3) symmetry, we can simplify eqs. (28) and (29), because the 

amplitude is then a linear combination of the amplitudes for Kfp and K-p 

elastic scattering so that aI vanishes. 

4. Baryon - Baryon Scattering 

We now turn to the case of baryon-baryon scattering. In that case the 

matrix element can be written as the sum of five independent amplitudes. 

However, because of helicity conservation at asymptotic energies, we can 

retain only two of these amplitudes, namely the vector -vector and axial 

vector -axial vector ones. Dealing with the process 

Bl (P,) + B2 (P,) - B3(p3) + B4(p4) 

one thus writes the matrix element as 
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rM = vu (P,) Yp u(p,) u (P4) Ycl u(p2) f A u (P,) Ys Y/J u (P,) u (P,) Ys Y p u(p2) (31) 

in the case where the two baryons are distinct, and as the antisymmetrized 

form. 

A= V~(P,) 5 u (P,) c (P,)Y’ u (~2) + Au (P,) Y5J u(p,): (~4) y5Yp u(p2) 
(32) 

- z (P,) 5 NP,) u (P4) Ycl u(p,) - “A u (P,) Y5Yp u(p2) u (P,) YCj YP u(p,) 

in the case where the two initial (and final) baryons are identical, where we 

have noted 

T(s,t,u) e V(s,u,t). x(s,t,u) = A(s,u,t) (33) 

a. PP-PP 

We take the matrix element given by eq. (32) and square it. We obtain 

that the differential cross section can be written as 

5 (PP-+PP) = $- s2 
[ 1 . 

V+A+?+x12 +u2 /V-A/2 + t21? - Ri2] (34) 

The dimensional counting rules lead us to the power dependence upon the 

energy of V and A as 

v = s-5 fV(Z) A = s-~ f,(z) 

The s-channel exchange being exotic eqs. (7) and (8) simplify as 

v =s -5 f;(z) A =s -5 fp, (z) (35) 
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c-5 + a2 + a3 
v=s+- - - t2 u3 t3 u2 t4u 

(36) 

A=“+-&+&+L tu4 t4u 
The asymptotic trajectory, as given by eq, (12), being ~(-a) = -2 for the 

two Regge regions (10) and (11) leads to great simplification, finally giving 

$- (PP-+PP) = a0 = $%P.+PP) 
1 (37) 

s2 t4 u4 go0 (1 - z2)4 

b. PP - PP 

That case is easily deduced from the preceding calculation by s-u crossing. 

We obtain 

OO E (pp+pp) = - = 
1 

s6t4 
$- (PSPP) goo (1 _ z) 

together with the relation 

5 @P-PP) goo = 16 2 (PP-tPP) goo 
I 

(38) 

(39) 

C. w - np 

We have to use the unsymmetrized form given by eq. (31). The differential 

cross section is then given by 

$- ( np-+np) = -$- 
S 

(~~jVilj~i~~/V-A~~) (40) 

Expanding V and A in the form given by eq. (36) and using the result given 

by eq. (12) for the’two Regge regions (10) and (ll), namely that a(-+ is equal 
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to -2, the expression simplifies so that the differential cross section has the 

same angular dependence as in the pp case 

g bw-+w) = $ (nP-+nP) goo 
I 

( I’- z2)4 (41) 
- 

5. Summary and Conclusions 

We summarize in tables 1 and 2 our main results together with earlier pre- 

dictions obtained in that same framework of the Constituent Interchange Model. 

Greek letters represent adjustable parameters,, In ref. [3] Gunion et al. do not 

assume any analytic properties for the amplitude. They neglect exotic channel 

contributions as we do, In ref. [ 7 ] Freund and Nandi take advantage of the 

compatibility of scaling and Regge behavior in a similar manner as in our 

method. They however do not include spin considerations in their analysis, 

which renders it doubtful in the case of baryon-baryon scattering, In ref. [8] 

Matveev, Maradyan, and Tavkhelidze make extensive use of naive quark count- 

ing in the SU(3) limit, We show in figs. 3 and 4 comparisons between theoret- 

ical predictions and experimental measurements of the angular dependence of 

the differential cross section in the case of elastic K+p and pp scattering. The 

agreement is quite good for K+p but in the latter case a distribution of the form 

l/(l-~~)~ seems to be favored. Higher energy data are clearly needed for 

these reactions, together with np charge exchange and np elastic scattering, 

before any conclusive distinction can be drawn. As a final remark let us note 

that our results show that in the case where a fermion is exchanged the values 

obtained using eq. (12) in ref. [5 ] for the asymptotic trajectories must be cor- 

rected by an amount of half a unit giving in the same notation 
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aTp(-4 = aK+p(-oo) = - 3/2 

(42) 
CY~-~(-OO ) =-7j2 . 
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Figure Captions 

lo Examples of quark interchange (a) and quark scattering (b) processes for 

the description of elastic scattering at large momentum transfer, 

2. The factorization of the form factor of the target as seen in the Constituent 

Interchange Model. 

3. Angular distribution of K+p elastic scattering, Experimental data are 

from ref, [ll] (s’= lo,55 GeV2)0 The curve is our prediction (eq. (19)). 

4, Angular distribution of pp elastic scattering. Experimental data are from 

ref. [ 121 (s = 33.5 GeV2 and 38 GeV2), The full line represents our pre- 

diction (eq. (37)), the broken line the prediction of ref. [7]. 





Table 2 

Ratios at 90’ of the Differential Cross Section 

Ratios This 
Calculation Ref. 3 Ref. 7 Ref. 8 Expo Value 

gP-- 
PP - PP 

16 * 1024 16 -100 

K+p + K+p 
K-P --L K-p 

16 16 16 16 -3 
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Fig. 1 
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