
I 

SLAC-m-1701 
January 1976 
(T/E) 

Amplitudes and Exchange Mechanisms 

for K*(890) and K*(1420) Production* 

P. Estabrooks** and A. D. Martin 
Department of Physics 
University of Durham 
Durham City, England j 

G. W. Brandenburg?, R. K. Carnegie tt R. J. Cashmorett‘t M. DavierT, 
W. M. Dunwoodie, T. A. Lasigski, D. i. G. S. Leith, J. 1;. J. Matthews?$, 

P. Walden $T, + and S. H. Williams 

Stanford Linear Accelerator Center 
Stanford University, Stanford, California 94305 

Abstract: -- 

The E"(890) and E*(1420) production amplitudes are determined 

using data on the reaction K-p * K-=+n at 13'GeV/c. The energy 

dependence of g*(890) production is investigated by using in 

addition the corresponding data at 4 GeV/c. A simple model, based 

on exchange degenerate Regge poles together with non-evasive 'cut' 

contributions, is found to provide a good description of all 

features of the data. 
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The high statistics data 1) for the line reversed reactions 

K-p+K*'(890)n 

K+n-+Kk0(890)p 

at 4 GeV/c provide valuable information on the exchange mechanisms for K* 

1,2) production . In particular, these data make possible the separation of 

positive and negative G-parity exchanges. In ref. 2 it was found that 

the data could be described simply in terms of exchange-degenerate (EXD) 

Regge poles and non-EXD non-evasive contributions which have equal 

helicity 1 natural and unnatural parity exchange components in the t 

channel frame. In this letter we analyse the high statistics data for 

the reaction KMP+(K-n+)n at 13 GeV/c 3) . The results for reaction (1) at 

13 GeVjc, together with those at 4 GeV/c, then enable us to investigate 

the energy dependence of this reaction. In addition,the higher energy 

data enable us to determine'not only the amplitudes for reaction (1); 

but also for 

K-p+-?0(1420)n (3) 

so that 

mass of 

In 

partial 

we can also study the exchange mechanisms as a function of the 

the produced Kr system. 

Fig. 1 we show the 13 GeV/c t channel data for the K-P-+K-rr+n 

cross sectibns 

CJ 
0 E PL2(P oo+$sr~)g 

2 (5 da 
+. - Pl (P1l+Pl-l+~Pss)~ 

1 dc? 
lp1-1+3pss)~ 

in the l?"(890) region in comparison with the corresponding data at 4 GeV/c; 



-2- 

PL is the laboratory momentum of the beam. We have normalized the 13 GeV/c 

data so that the extrapolated (t=v2) value of o. is the same at the two 

energies f assuming a t-dependence of the form (-t) exp(A(t-p2))/(u2-t)2. 

We see that u. and o- have a somewhat steeper t dependence at 13 GeV/c 

than at 4 GeV/c and that the natural parity exchange cross section, cr+, 

for -t>0.2 GeV2 is a much larger component of da/dt at 13 GeV/c than at 

. . 4 GeV/c. This is more apparent in Fig. 2 where we plot the effective 

trajectories, aeff(t), obtained from the cross-section components of 

eqs. (4). The values of ueff for u. and o- (a,) are compared in Fig. 2 

-2 * 
with a linear IT-B (A2-p) trajectory of slope 0.8 GeV . 

We now study the amplitudes and exchange mechanisms for !?*(890) produc- 

tion at 13 GeV/c. As described in ref. 2, if only S and P wave Kr production 

are important, the data yield directly the magnitudes So, P , P,, and the 
0 

(so, PA) and(Po9 P-) relative phases. So and p. describe helicity zero 

Kr production and, to leading order in the energy, the helicity one 

amplitude combinations P+E(P~=~+P~=-~)/& describe ff* production by 

natural and unnatural parity exchange. The results of such a t independent 

amplitude analysis of the 13 GeV/c K-p+K-r+n data 3) in the mass region 

0.87~ %7r CO.92 GeV are shown in Fig. 3. The amplitudes are normalized so that 
t 

ssin2bp> (~Po~2+~P+~2+~P-~2) + ISol (5) 

where the brackets indicate an average over the KIT mass interval, AM. 

'The ?(890) region is defined by the mass interval 0.87&M(K-x+)&0.92 GeV 

at 13 GeV/c and by 0.84,<M(K‘-s+)&0.94 GeV at 4 GeV/c. With this difference 

taken into account, the extrapolated values of o. at the two energies agree 

within 4%, well within the experimental normalization uncertainty. 
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We assume that 6 
P' 

the P wave KIT phase, is given by a K* Breit-Wigner 

resonance form E=893 MeV, I'=50 MeV, R=5 GeV -1 . in the notation of 
6' 

ref. 41 and that 6, is constant across the mass interval. The factor 

P/AM is included so that the normalization of 1~~1~ does not depend 

on the size of the mass interval. L 

To study exchange mechanisms we recall that the 4 GeV/c ANL data 

for the line reversed K* and g* production reactions can be described 2) 

simply in terms of the following exchanges 

pO 
= 1~33 

p- = CfC’ 

P+f= C&C' + A2+p 
(6) 

together with a nucleon helicity non-flip contribution to the P+ amplitude 

which is specified in terms of the A2,p contribution to P, 
f 

, namely 

P nf + = t(A2+p)/ J=? . 

The Regge pole exchanges (n,B), and also (A2,p) are assumed to be 

(strongly) EXD with a trajectory slope a'=O.8 GeVm2; the (+,-> signs 

are associated with reactions (2) and (1) respectively. Thus the t 

dependence of k* production can be parametrized as 
e 

J-t Po=g- > 
u2-t (, 

Pm = Ceff = gyc e 
bc (tY2) 

e 
;+ 

> 

p f = Ceff - i(-t') gyA~A'tDu2) 
+ 

2 i-6 R 
where+g = Gebct-' ) e ' . The factor -i in P, occurs because oA -o.,,'O.5. 

2 ->'; We allow for S wave K?r production under the K (890)using 

- 
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i6 
3 

so 
3 is 

(sin6se '+hsin6 e ' ) 

'PO = 
S .bs (t-p21 

Co 
R 

6 ei 6P 

where b 
S 

and the I=3 S wave KT phase, 6s, are free parameters, and the 

I=$,phase, 6: , is taken5) to be -10'. 
. 

The curves on Figs. 1 and 3 correspond to this simple parametrization, 

with parameter values obtained by means of least squares fits to the 13 GeV/c 

E*(890) data for -t<0.35 GeV2; they are seen to provide a good description 

of the data and of the amplitudes obtained treating each t bin independently, 

The values of the parameters are given in the table along with those obtained 

by means of similar fits to the 4 GeV/c Kp-tK-a+n data. The values of G at 

4 and 13 GeV/c indicate that the experimental normalizations are in excellent 

agreement. The variation in the values of b and yA in going from 4 to 13 GeV/c 

is in accord with Regge expectations, and would give a 711=0.8 GeV-2 and 

aA2-alT =O.Bt0.2. Moreover there is good agreement between 6s at the two 

energies. For the non-evasive contribution, Ceff, the values of y, and bc 

imply an effective trajectory parallel to, but some 0.15 above, the assumed 

n-B trajectory. 

The simple model described above and in ref. 2 is able to account 

successfully for the main features of the energy dependence of g* production, as 

well as of the t dependence of the 4 and 13 GeV/c data. This can also be seen 

from Fig. 2 where the dashed line corresponds to the aeff(a+) obtained from 
(. 

the 4 GeV/c amplitude decomposition 2) assuming the A2-p trajectory lies half 

a unit above the effective trajectory for C eff' The structure in aeff (a+> 

arises because the non-evasive contribution dominates at small ItI whereas 

. A2-p exchange dominates at the larger It] values. For line-reversed K* 

3> production (reaction (2)) the model-' predicts the oeff(o+) shown by the 

dotted line; the more pronounced structure is due to destructive interference 

between the A2-o exchange and the non-evasive contributions. 



-5- 

S, P and D wave Kr spin states. With the assumption of spin coherence at 

the nucleon vertex, there are thus nine production amplitudes 6, (SO'PO'P~, 

kDOPD D lk' 2F ) to determine from the 15 measurable moments of the KIT angular 

distribution (<Y;> with 5~4, OiWJ). Fortunately the data suggest simpli- 

- fications which allow an amplitude analysis to be performed. The moments 
I 

with M>2 in the t channel frame are consistent with zero; this implies 

D2?,=0 and so we neglect these amplitudes+. Also the P wave amplitudes are 

found to be small, as would be expected since the odd J moments are small. 

A reliable estimation of the magnitudes of S D 
0' 0' D1+ and the (So,Do> 

and (Do,Dl > relative phases can therefore be obtained from the seven 

moments with J, even and M,<2. However, in Fig. 4 we present the results 

1 from a more complete analysis which uses all 

error correlations) and includes the small P 

determine /PO/ and the phase A Earg 
P 

(PO/Do), 

the observed moments (and 

wave contributions. We 

but we specify P, in terms 

Before comparing the E"(890) and K*(1420) production amplitudes it 

is useful to fit the data in the g"(1420) mass region in terms of the 

exchange contributions of eqs.(6). The t dependence of K"(1420) production 

is parametrized by eqs. (8) with (Do, Dlt) replacing (Po,P+>. The 

lower partial waves++ are described by relations similar to that implied 

by eq. (9), namely 

sO = Ys e 
% 

bs(t-v2) PO iA 

Do 
(. e , 

I)0 
=ype p 00) 

with P+ included as in the t independent analysis. The i?*(l420) parameters 

Listed in the table are obtained by fitting to the data for -t<0.4 GeV'. 

t We present results for data obtained with the M23 moments set to zero. 

$We use the relations P,=(Dlc/Do)Po/G as expected from absorptive correc- 



They provide a good description of the data and agree well with the results 

of the analysis t bin by t bin as illustrated by the curves on Fig. 4. I 
The Regge exchange contributions to ii-k(890) and E"(1420) production 

can be related by considering duality for Reggeon-particle scattering 

7) amplitudes. This approach predicts that the natural parity (A2-P) exchanges 

should, on average, decrease relative to PB exchange with increasing Kr 

mass as 
an-aA2 ~ -1 

ST 

From the values of yA (and bA) we see that our E*(890) and K"(1420) ampli- 

tude decompositions are consistent with this prediction for -tw.3 GeV2, 

where A -p .2 exchange makes a large contribution to the cross section. . 
The non-evasive (or 'cut') contributions may be compared with the 

8) expectations of the Williams model , in which, at small t 

%T 
+I 

%I=- 
YG l- 

#iJGi) yF-t y- 
(11) 

is equal to 1. This model is equivalent to replacing the'n pole contri- 

bution, t/(t-u2>, in the s channel overall non-flip amplitude by ~2/(t-u2). 

At -DO.05 GeV2, we find CW=l.12 at 13 GeV/c (Cw=0.96 at 4 GeV/c) for 

z*(890) productiont as compared to Cw%0,55 for ?*(1420) production (see also 

ref. 9). This corresponds to a suppression of the 'cut' effect with 

increasing Tw Similar 'results are found for 7rn production where in the 

p region CWQ1.O as compared to CW ~0.57 for f(2+) production 6) . No clear 

understanding of this suppression exists. 

In summary, we have used the high statistics 13 GeV/c K-p+K-Tr+n data' 

to determine the K"(890) and 1(*(1420) production amplitudes. Using the 

model of ref. 2 based on data 1) for the line reversed reactions, (l), (2), 
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we were able to study both the s and t dependence of the z* production 

me,chanisms. A simple model based on EXD Regge poles together with non- 

evasive contributions is found to give a good description of all features 

of the data. Comparing g*(1420> with E"(890) production, we find that 

the reaction mechanisms have a similar dependence on mass to that found 

6) for the SU(3) related np-)pn and n-p+fn processes . 
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Table 

it*( 890) 
II 

ii*(1420) 

4 GeV/c 
I 

13 GeV/c 13 GeV/c 

G G 

b b 

Yc 

9 

YA yA 

bA bA - 

% % 

bS bS 

-L 1 

1.39kO.02 

1.5 lto.1 

1.24kO.06 

20356 

2.OkO.5 

8.2k1.5 

2.4kO.6 

1.39kO.02 

1.5 lto.1 

1.24kO.06 

20356 

2.OkO.5 

8.2k1.5 

2.4kO.6 

4824 

4.2k1.4 

4824 

4.2k1.4 

1.42kO.02 

2.4kO.l 

1.46+0,06 

17123 

2.150.4 

20.6t0.6 

2.650.2 

1.42kO.02 

2.4kO.l 

1.46+0,06 

17123 

2.150.4 

20.6t0.6 

2.650.2 

41+2 
! 

41+2 

O.BkO.6 O.BkO.6 

1.26S.04 1.26S.04 

3.2k0.3 3.2k0.3 

0.62kO.07 0.62kO.07 

196+10 196+10 

-1.OkO.6 -1.OkO.6 

4.4kl.O 4.4kl.O 

0 0 

G G 1.03+0.09 1.03+0.09 

A A 46-t4 46-t4 
S S 

bS bS 
-1.2 to.5 -1.2 to.5 

Y Y 
I I 

0.21F0.07 0.21F0.07 
P P 

A A 
P P I I 

73213 73t13 

The parameter values obtained in fitting to K-p+K-n+n 

data using the parametrization of eqs. (8) and (9) or (10). 
c 

The units are appropriate powers of GeV except for G, which 

has units of I'& GeV'; The normalisation is for K* production 

in the K-IT+ mode; the amplitudes should be multiplied by 

6 to account for the For0 decay mode. 



I 

-lO- 

Figure Captions 

4 

Fig. 1 The components of the K-p-%*(890)n cross section in the t 

channel, as defined by eqs. (4), calculated from data at 4 GeV/c 

and 13 GeV/c. The 13 GeV/c data are normalized so that oo(t=u2) 

is equal at the two energies. The curves are. obtained from the 

exchange model of eqs. (6-9) using the parameters listed in 

the table, (The poor fit of the 4 GeV/c o- for -t>0.2 is due 

to a poor description of the large S wave component which 

dominates o- at these t values). 

Fig. 2 The values of oeff calculated from the K"(890) data of Fig. 1 

using o%s 2aeff , compared with linear Regge trajectories of 

slope a'=O.B Ge,V -2 . The dashed (dotted) curve is the prediction 

of the exchange model of ref. 2 for the energy dependence of 

u+ for E*(K*) production. 

Fig. 3 The i?*(890) production amplitudes in the t channel frame 

obtained from the 13 GeV/c K-p+K-.ir+n data in the mass interval 

0.87~ %I; CO.92 GeV. The data for the points with dotted error 

bars do not satisfy positivity constraints. The curves 
r. 

correspond to the model parametrization described in the text. 

Fig. 4 The E"(1420) production amplitudes in the t channel frame 

obtained from the 13 GeV/c K p-+K-n+n data in the-mass region 

l.36<MKr<l.48 GeV. The curves correspond to the model para- 

metrization described in the text. 
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