SLAC-PUB-1698 December 1975 (T'E)

PRODUCTION PROPERTIES OF Q MESONS IN $K^{\pm}p \rightarrow K^{\pm}\pi^{+}\pi^{-}p$ AT 13 GeV *

G. W. Brandenburg[†], R. K. Carnegie^{††}, R. J. Cashmore^{†††},
M. Davier[‡], W. M. Dunwoodie, T. A. Lasinski, D.W.G.S. Leith,
J.A.J. Matthews^{‡‡}, P. Walden^{‡‡‡}, S. H. Williams, and F. C. Winkelmann^{††}

Stanford Linear Accelerator Center Stanford University, Stanford, California 94305

ABSTRACT

The momentum transfer (t') dependence of the $J^P = 1^+ K^* \pi$ and ρK partial waves in the $K^{\pm} \pi^+ \pi^-$ system is presented. The production of the Q_1 meson (m ~ 1300 MeV), which has a large ρK decay mode, obeys approximate s-channel helicity conservation. In contrast the production of the Q_2 meson (m ~ 1400 MeV), which decays predominantly to $K^* \pi$, satisfies approximate t-channel helicity conservation. Furthermore the Q_1^{\pm} production distributions are virtually identical, whereas the Q_2^{\pm} distributions exhibit a distinct cross-over for $|t'| \sim$ 0.18 GeV².

(Submitted to Phys. Rev. Letters.)

‡‡Now at Phys. Dept., MSU, E. Lansing.

^{*}Work supported by the U.S. Energy and Development Administration. †Now at Phys. Dept., MIT, Cambridge.

^{††}Now at Phys. Dept., Carleton U., Ottawa.

^{†††}Now at Phys. Dept., Oxford U., Oxford.

[‡]Now at Lab. de l'Accel. Lineaire, Orsay.

<u>tt</u> Now at TRIUMF, U. of B.C., Vancouver.

In a previous letter, ¹ the results of a partial wave analysis investigating the spin parity structure of the $K_{\pi\pi}$ system were presented as a function of mass for the reactions

$$K^{\pm}p \to K^{\pm}\pi^{+}\pi^{-}p \tag{1}$$

at 13 GeV. Definite structure was observed in the intensity and phase variation of the 1⁺ partial waves and was interpreted as evidence for the existence of the two strange 1⁺ Q mesons expected from the quark model. The Q₁ meson at ~ 1300 MeV was observed to have a large ρ K decay, while the Q₂ meson at ~ 1400 MeV decays predominantly to K* π . In addition, a large low-mass peak in the 1⁺K* π system near 1200 MeV was ascribed to a "Deck" mechanism.

In this letter the t' dependence of the partial waves associated with these structures in the mass spectrum is presented. The production properties are studied in the regions

(I) $1.16 < m(K\pi\pi) < 1.28 \text{ GeV}$,

(II)
$$1.22 < m(K\pi\pi) < 1.34 \text{ GeV}$$
,

(III)
$$1.36 < m(K\pi\pi) < 1.48 \text{ GeV}$$

in order to emphasize the "Deck" aspects of the data (I), the lower mass resonance $Q_1(II)$, and the upper resonance $Q_2(III)$.

The data were obtained using a wire spark chamber spectrometer system^{1, 2} in an experiment in which rf separated 13 GeV K[±] beams were incident on a 1 m liquid hydrogen target. The spectrometer measured the forward mesons from reactions (1), and K/ π identification was achieved by means of a multi-cell Cerenkov counter. The spectrum of missing mass opposite the reconstructed K $\pi\pi$ system shows a clean proton peak, and events of reactions (1) are selected by requiring 0.74 < MM < 1.10 GeV. In order to minimize the relative normalization uncertainty associated with possible changes in the characteristics of the apparatus, periods of K^+ and K^- data collection were interleaved. In addition the large samples of $K^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}$ beam decays obtained under the trigger conditions for reactions (1) permit detailed studies of apparatus efficiency effects and yield a direct measurement of the K^+/K^- relative normalization which is uncertain to $\pm 2\%$.

To determine the production properties of the two Q mesons and the Deck background, a partial wave analysis of the $K\pi\pi$ system has been performed as a function of t' for each of the mass regions I, II, and III. The partial wave notation is that of Ref. 1. Each wave is labelled by $J^P M^{\eta}$ Iso, where J^P is the $K\pi\pi$ spin parity, M the magnetic substate, η the exchange naturality, and Iso denotes the isobar $(K^*, \rho, \kappa, \epsilon)$. The production cross sections were measured by utilizing the wave set and solutions of Ref. 1 in discrete t' bins. The parameters of three mass bins of Ref. 1 within each of the regions I, II, and III were used as starting points for the likelihood fits. In general the fitting procedure converged to the same parameter values in a given region and t' bin; in particular, this was true for various starting points within the K⁻ ambiguous region, ¹ 1. 14 < m(K\pi\pi) < 1.25 GeV.

The differential cross sections for reactions (1) are shown in Fig. 1 for regions I-III. The K⁻ distribution is always steeper than the K⁺, and for both K⁺ and K⁻ the differential cross section becomes less steep with increasing mass. There is no obvious cross-over in regions I and II, although one may exist in region III. All distributions exhibit significant curvature.

The t-channel production distributions for the $1^+K^*\pi$ waves in regions I and III and for the $1^+\rho K$ waves in region II are shown in Fig. 2. The individual partial wave t' distributions are, for the most part, well described by the form A exp (bt') with the parameters given in Tables 1 and 2; this is in contrast with

the t' dependence of the total cross sections.³ The M=1 waves for both $K^*\pi$ and ρK exhibit a forward turnover, which is characteristic of amplitudes involving one unit of net helicity change.

There is a dramatic change in the production of the $1^+K^*\pi$ system as the $K\pi\pi$ mass increases from 1.22 to 1.42 GeV (Fig. 2a, c). The amount of $1^+1^+K^*\pi$, already small compared to $1^+0^+K^*\pi$ in region I, decreases with mass; that is, t-channel helicity conservation (TCHC) is a better approximation at higher $K\pi\pi$ mass. For the $1^+0^+K^*\pi$ wave, the K⁻ slopes (Table 1) are larger than the K⁺; however, the difference in slope increases with mass, contrary to the prediction of "Deck" models.⁴ While no cross-over is evident in region I or region II (not shown), a clear K⁺, K⁻ cross-over is observed in region III at t' ~ .18 GeV². This cross-over implies the presence of C=+1 and C=-1 exchange contributions in the production of the $1^+K^*\pi$ system in the Q₂ region.

The production of the $1^+\rho K$ system associated with the Q_1 meson (Fig. 2b) presents a striking contrast to that of $1^+K^*\pi$. The $1^+1^+\rho K$ and $1^+0^+\rho K$ waves are of comparable strength in the t channel for $t^! \ge .10 \text{ GeV}^2$. However, in the schannel system (Fig. 3), the $1^+1^+\rho K$ wave is only ~10% of the $1^+0^+\rho K$ in intensity, indicating approximate s-channel helicity conservation (SCHC).^{5,6} In addition the K^\pm differential cross sections are the same within error (Table 2). This last observation implies that for each nucleon helicity state the ρK system is produced either by pure charge conjugation exchange (C=+1 or C=-1) or that the C=±1 contributions are 90° out of phase. However, the relative phase of the ρK system with respect to the $1^+0^+K^*\pi$ wave is essentially the same^{1,7} for K⁺ and K⁻. With the assumptions that $1^+0^+K^*\pi$ in region II is produced predominatly by C=+1 exchange and nucleon helicity nonflip, it may be inferred that the ρK system is also produced by C=+1 exchange for the nucleon nonflip amplitude.

- 4 -

In summary the production properties of the $1^+ K_{\pi\pi}$ system change dramatically as $m(K_{\pi\pi})$ increases from 1.2 to 1.5 GeV. For the $1^+(K^*\pi)^{\pm}$ systems, the slope difference increases, TCHC becomes a better approximation, and a cross-over develops with increasing $K_{\pi\pi}$ mass. These features are inconsistent with the predictions of a π -exchange "Deck" mechanism.⁴ Rather they are more probably associated with the fact that in region III, the $K^*\pi$ amplitude involves both Q_2 and "Deck" contributions. In contrast the $1^+(\rho K)^{\pm}$ systems at ~1.3 GeV exhibit approximate SCHC and the nucleon helicity nonflip amplitude corresponds mainly to C=+1 exchange. These contrasting production features of the $1^+\rho K$ and $1^+K^*\pi$ systems are strongly correlated with the structure observed in the mass spectra of Ref. 1. Thus, they underscore the interpretation of the $1^+K_{\pi\pi}$ system in terms of two distinct axial vector states, the $Q_1(1300)$ and $Q_2(1400)$ mesons.

REFERENCES

- 1. G. Brandenburg et al., sub. to Phys. Rev. Lett.
- 2. G. Brandenburg et al., to be sub. to Nucl. Instr. and Methods.
- 3. The departures from a simple exponential t' dependence observed for the composite distributions of Fig. 1 occur because the slope differs from wave to wave.
- 4. E. Berger, Phys. Rev. D <u>11</u>, 3214 (1975).
- 5. S. Tovey et al., Nucl. Phys. 95B, 109 (1975).
- 6. G. Otter et al., Nucl. Phys. <u>93B</u>, 365 (1975).
- 7. G. Brandenburg et al., to be sub. to Phys. Rev.

$\Delta m(K\pi\pi)$	Beam	А	b	x^2
GeV		mb/GeV^3	GeV ⁻²	
1.16-1.28	К ⁺ К	3.39±0.11 3.47±0.12	8.8±0.2 9.9±0.3	20. 25.
1.22-1.34	к ⁺ к ⁻	2.89±0.09 3.01±0.10	7.9 ± 0.2 9.5 ± 0.3	$4.4 \\ 3.1$
1.36-1.48	к ⁺ к ⁻	1.60±0.06 2.67±0.09	6.1±0.2 8.6±0.2	7.2 5.3

Table 1. The $1^+0^+K^*\pi$ parameter values from fits of A exp(bt') to the data with $|t'| < 0.6 \text{ GeV}^2$.

Table 2. The $1^+\rho K$ parameter values from fits of A |t'| ^M exp (bt') to the data in the region $1.22 < m(K\pi\pi) < 1.34$ GeV for |t'| < 0.6 GeV².

Wave	Beam	A ^a	b(GeV ⁻²)	χ^2
1 ⁺ 0 ⁺ ρK	K [†] K	1.00±0.08 0.90±0.08	8.3±0.6 7.7±0.6	$6.7 \\ 3.0$
1 ⁺ 1 ⁺ ρK	К ⁺ К	6.70±0.64 5.25±0.68	9.9±0.5 9.6±0.7	8.9 5.3
2	ე	1h.	5	

^aUnits mb/GeV³ for $1^{+}0^{+}$ and mb/GeV⁵ for $1^{+}1^{+}$.

FIGURE CAPTIONS

- 1. Total differential cross sections for the indicated $K_{\pi\pi}$ mass regions (GeV).
- 2. The principal 1⁺ t-channel partial waves as a function of t' for (a) the low mass "Deck" region for $1^{+}K^{*}\pi$, (b) the Q₁ region for $1^{+}\rho K$, and (c) the Q₂ region for $1^{+}0^{+}K^{*}\pi$ ($1^{+}1^{+}K^{*}\pi$ is negligibly small).
- 3. The t' dependence of the $1^+\rho K$ system in the s channel, obtained by transformation of the t-channel data.

Fig. 1

Fig. 3