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ABSTRACT 

The consequences of a pole on the second sheet of the S matrix are 

investigated. It is shown that corresponding to each such pole is an 

eigenstate of the Hamiltonian with a complex energy. These eigenstates 

lie in a natural extension of the physical Hilbert space. Because it is 

the vector space that is modified and not the Hamiltonian, unstable 

particle states transform covariantly. They have complex energy and 

momentum but real integer or half-integer spin. Scattering amplitudes 

involving unstable particles are expressed as residues of poles in a 

reduction formula of the LSZ type. An example from potential theory 

is worked out in detail. 
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1. INTRODUCTION 

Of the known elementary particles only five are stable; all others eventually 

decay into combinations of e, P, y, ve, v and their antiparticles. For the 
P 

stable particles field theory provides a beautiful description based on three 
- 

principles: 

4 Stable particles correspond to eigenstates of energy-momentum in a 

linear vector space. 

b) They transform as irreducible representations of the Poincard group 

labeled by mass and spin. 1 

c) Scattering amplitudes are matrix elements of Heisenberg operators 

taken between these states. 

Unfortunately most real particles are not stable. The purpose of this paper is to 

show that even for unstable particles these same principles apply. The essen- 

tial difference is that stable particles lie in a Hilbert space and unstable ones 

do not. 

Conventional treatments of unstable particles are all based on perturbation 

theory in that the unstable states are always eigenstates of an effective Hamil- 

tonian which is chosen to contain the essentials of the spectrum. The difference 

between the total Hamiltonian and the effective Hamiltonian is a small perturba- 

tion that induces decays of the eigenstates of the effective Hamiltonian. This 

approach was the very basis of theoretical atomic physics. There the effective 

Hamiltonian includes the Coulomb field of the nucleus but neglects the electron- 

photon interaction. This perturbation results in the radiative decays summar- 

ized by the Balmer formula. Dirac2 showed how to calculate the effect of such 

unstable states on the scattering amplitude 

T(E) = HI + HI &- Hl + . . . (1-l) 
0 
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when E is near an eigenvalue of Ho. Later, in nuclear physics, the abundance 

of resonances required more sophistication. A number of approaches were 

developed based on the energy dependence of the scattering wave function at 

large distances. Kapur and Peierls3 expand the wave function in terms of states 

with complex eigenvalues corresponding to resonance energies and widths. 

Wigner and Eisenbud4 expand in different states that led to the reactance matrix 

and the many level formula for overlapping resonances. (See Ref. 5 for complete 

reviews.) Feshbach 6 and also Fonda and Newton7 generalize the earlier 

approaches by abandoning coordinate space in favor of an abstract Hamiltonian 

and projection operators that distinguish open and closed channels. The reso- 

nant part of the perturbation series (1.1) is expressed in terms of a general 

effective Hamiltonian that is both energy dependent and nonhermitian. Feshbach 

shows that Kapur-Peierls and Wigner-Eisenbud result from different choices of 

projection operators. Common to all these approaches is the identification of 

an unstable state with a vector in the usual Hilbert space of stable states that is 

an eigenstate of a modified Hamiltonian. 

The S-matrix theory of unstable particles naturally makes no statement 

about Hamiltonians or state vectors. It began with the suggestion by M$eller8 

that an unstable particle corresponds to a pole on the second Riemann sheet of 

the analytically continued S matrix. This observation is based on the idea that 

the scattering wave function outside the range of the potential should have only 

outgoing waves when the energy is exactly that of the unstable state. The 

presence of a pole on the second sheet is then taken as a Lorentz invariant 

characterization of an unstable particle. Peierls’ brought this idea into field 

theory by suggesting that the pole should occur in the one particle propagator. 

Both the relation of this pole to the experimentally measured mass and the 
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dependence of the pole position upon the choice of field type was questioned by 

StaPP, 
10 who formulated a pure S-matrix theory of unstable particles. 

This paper employs features of both approaches. The most important step 

is to use the existence of second sheet poles to construct a state vector for * 

unstable particles. The construction is begun in Section II. It is found that 

whenever there is a pole on the second sheet of a scattering amplitude there is 

an eigenstate of the full, hermitian Hamiltonian with a complex energy. The 

usual prohibition against this is that 

<EIE>E = <ElHIE>= E*<EIE> (l-2) 

forbids E being complex. However, Section III shows that the unstable states 

lie not in the usual Hilbert-space but in a natural extension that corresponds to 

the second sheet of the S matrix. In this larger space unstable particles auto- 

matically have zero norm and thus escape the prohibition (1.2). Therefore, in 

contrast to all earlier approaches, it is the vector space and not the Hamiltonian 

that is modified. The unstable states so constructed are eigenstates of (H, <F) 

but do not transform as irreducible representations of the Poincare group. 

Therefore in Section IV the Casimir corresponding to spin is expressed in a con- 

venient manner that is used in Section V to construct unstable particle states 

that do transform irreducibly under real Lorentz transformations. The spin is 

automatically Lorentz invariant and can take on only real integral or half-integral 

values. The most interesting irreducible representations are the helicity states, 

which have the particularly simple one dimensional transformation law 

U(A) Ik, j,o> = Ink, j,g> e 
i ewu 

* (1.3) 

Here, in contrast to the familiar massless case, the helicity (T may take on all 

integrally spaced values from -j to +j. The practical reason for considering 
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irreducible representations is given in Section VI. There it is shown that pre- 

cisely these representations produce poles in partial wave amplitudes. The 

Lorentz transformation law (1.3) is, however, not observable because of the 

way in which the complex energy-momentum must be continued to the real axis. * 

The observed transformation law is shown to be just the same as for stable 

particles. Next, wave functions are investigated. Because unstable particles 

correspond to eigenstates of energy-momentum, they possess genuine Bethe- 

Salpeter wave functions. These are used to calculate scattering amplitudes, 

which are expressed in a reduction formula of the LSZ type. 

TO defray any mystery about extending the Hilbert space to include zero 

norm states a simple nonrelativistic example is worked out in Section VII. The 

Schrcedinger wave functions are displayed and used in calculations. This last 

section is essentially self-contained and may profitably be read immediately 

after Section Il. 
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II. CONSTRUCTION OF AN INTERPOLATING STATE VECTOR 

Suppose that when the S matrix is analytically continued in the total energy 

k” in a clockwise direction around a particular n-particle branch point there is 

a pole in k”. The first step in constructing a state vector for the corresponding 

unstable particle is to find an eigenstate of momentum I $(r)> such that the func- 

tion 

<#‘) I 1 I $qEj> 
k”-H 

(2.1) 

has that same pole in k” on the second sheet. It is essential for the later analy- 

tic continuations that I $(x)> itself does not depend on k”. Therefore the simil- 

arity of (2.1) to the familiar expression 

1 Tfi= <flV+V kO HVli> (2.2) 

is of no use; I @> cannot be chosen to be V Ii> because Ii> in (2.2) depends on k”. 

In other words, (2.2) is an on-shell amplitude. 

It is only at this point that field theory enters. Its Green’s functions are 

off-shell analogues of (2.2). In particular, the S matrix of a field theory can 

have a pole only if the Fourier transform of the corresponding time-ordered 

product of Heisenberg fields also has the same pole. It follows that the state 

J 
r d3X .iX.X 

T 
1 l 

(x )-4, (xn) lo> 1 (2.3) 
n 

with 

is a suitable choice for I q(x)>. Appendix A contains a more complete argument. 

It is convenient to sum the Lore& indices in (2.3) to form eigenstates of T2 

and J3 (see also Appendix A) and to integrate the relative coordinates against 
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some smearing function to achieve the normalization 

<$(X’)j’,j~l$(X)j,j3>= 63(P-X)6.,.6.,. . J J 3333 (2.4) 

It should be emphasized that the I $> so constructed is not an eigenstate of the 

Hamiltonian and does not transform into anything simple under boosts.* In fact, 

a boosted I c@ is not even an eigenstate of T2 and J3. 

Given such a I c#n , define projection operators 

AE /d3k c 

j3 
~~Khj3=N79jJ31 

(2.5) 

B = 1-A 

with the multiplication properties 

A2=A, B2=B, AB = BA = 0 . 

Split the full Hamiltonian into diagonal and off-diagonal parts with respect to 

I c$> by defining 

H = H’ + H” 

where 

H’=AHA+BHB 

H”EAHB+BHA . 

Define the full resolve& by 

R(k’) E 1 
k”-H 

and a reduced resolvent diagonal with respect to I $> by 

(2.6) 

1 r(kO)= - 
k’,H’ ’ 
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Let the matrix element (2.1) be expressed as 

63(pT;) 6 6 . 

<q(g) jl, j$ IR(k.‘) l+(x) j, j,> = 
j’j j;J3 

D(k) , (2.7) 

where D(k) depends on both k” and ‘i;’ and vanishes whenever the S matrix has a 
* 

pole. (The j dependence of D(k) is suppressed.) 

A state vector for the unstable particle corresponding to the pole in (2.1) 

can now be built from I $>. The connection between the full resolvent and the 

matrix element (2.1) is given by the identity 

R( k”) = Br(k’)B + [l+r( k’)H”] AR( k’)A[H”r( k”) + I] , 

which is proved in Appendix B. Rewrite this as 

R( k”) = Br(k’)B + /-d3k c 
WtWj, j,> Wk) L j, 1 

D(k) , 
j3 

where 

I~(k)j,j3>=[l+r(ko)H1t]I~(??)j,j3> . 

This may also be written as 

I+(k)j,j3> =A 
k”-H 

Wt% j,j,> D(k) . 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(From now on the spin indices j and j, will be suppressed. They will be dis- 

played again in Section V and subsequently.) Equation (2.9) suggests that I+> 

interpolates between eigenstates of H. To demonstrate this, use the definition 

of I$>: 

(k”-H’) I+(k)> = [k”-H’+H’l] l+(x)> 

H”l$(k)> = [H”+H”r(k’)H’;) lHx)> . 

Subtract to get 

(k”-H) I+(k)> = [k”-H’-H1’r(ko)Hf] I$@)> . 
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The right hand side of this is orthogonal to B and is therefore just I $(c)> multi- 

plied by a function of k. This function is just D(k) because 

< $(??) 1 k”-H1-H” r( k”)H” I q(x)> = 63(X?7-r)D(k) (2.12) 

as proved in Appendix B. Hence _ 

(k”-H) I+(k)> = I @(r)>D(k) . (2.13) 

This equation contains the principle result: If the S matrix has a pole at some 

“k” then there is an eigenstate of the Hamiltonian with that energy. The state 

vector I$> therefore interpolates between all eigenstates of H with the same 

quantum numbers as I+>. When the pole of S is on the physical Riemann sheet, 

I$> lies in the physical Hilbert space. When the pole is reached by continuing 

in k” to another sheet, the state I$( k)> must also be “continued” and this is the 

topic of Section III. 

Before proceeding, however, it is a useful comparison to recall the usual 

applications of the same formulas. Equation (2.12) is essentially Dirac’s 

method2 of summing (1.1) near an eigenvalue of Ho. Without translation invar i- 

ante there is no i? dependence. As the energy approaches the real axis from 

above 
lim D(k’) = k”-E 

k”.+ O+ 
@-A(k’)++ r(k’) , 

where the unperturbed energy, level shift, and width are given by 

A(k’) = <$IHlrL 
k”-H’ 

H” I+ 

y(k’) = <@IHI’ 2n6( k”-H’)H”I@> . 
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In the Dirac approach H’ is chosen as the unperturbed Hamiltonian and I$> is 

required to be an eigenstate of Hr. Feshbach, 6 on the other hand, let the pro- 

jection operator (i.e., I $>) determine H’ as done here in (2.6). His effective 

Hamiltonian is the energy dependent, nonhermitian operator 

H eff 
E HI + H” r( k’)H” 

occurring in (2.12). 

In all such approaches the final results are dependent upon the choice of 

the effective Hamiltonian. Write (2.7) with spin indices suppressed: 

I@(% . (2.14) 

Clearly D(k) is a functional of I$> and I$>+. Choosing an effective Hamiltonian 

is equivalent to choosing a particular 1 (p> . The variation of D(k) when I $>+ is 

varied independently of I +> is 

a- l Ic$(i;> D(k)2 --- 
6 I@>+ k”-H ’ 

, 

which by (2.11) is just 

sD(k) = 
Sl$- 

-I$ (k)> D(k) . (2.15) 

This variation vanishes only when D(k) vanishes. Thus if a I I$> has been chosen 

that produces a pole in (2.14) then the location of that pole is independent of the 

choice of I $> because of (2.15). It is essential to continue k” to the pole. All 

effective Hamiltonian treatments focus on the real value of k” that produces a 

bump in (2.14). The location of such a maximum is usually called the resonance 

energy. However (2.15) shows that this energy clearly depends on the choice 

made for I @> and depends on it even though all orders of the perturbation are 

summed. 
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Note that it is the zeros of D(k) that are significant for stable particles too. 

Equations (2.10) and (2.12) are then the usual formulas of Wigner-Brillouin 

perturbation theory for the eigenvectors and eigenvalues of H. l1 (The exact 

formulas do not depend on H’ being small, of course. ) 
- 
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. 

III. EXTENSION OF THE HILBERT SPACE 

To apply (2.13) to unstable particles an extension of the physical Hilbert 

space k must be found that corresponds to different sheets of D(k). Always the 

appropriate sheet of D(k) is determined by the resonance and not by the partic- 

ular scattering process (i.e., I $>) under consideration. For example, to 

reach the p” pole in the e’e- scattering amplitude requires going around the 

very same branch points as for the n’n- amplitude (see Fig. 1). Regardless of 

the amplitude, the pole is always reached by going around the heaviest decay 

threshold. 

A. Inner Products in AT 

For complex k” the state 

l+(k)> = [l+ r(k”)H”]I$(~)> (3.1) 

is an ordinary state in the physical Hilbert space A as long as the cuts along the . 

real k” axis are avoided. A new state vector may always be added to h by 

specifying the inner product of the new state with every vector of X. The means 

of specifying that inner product here will be analytic continuation and the enlarged 

space will be called XT. In particular, define the continuation of [q(k) > as a new 

state whose inner product with an arbitrary state If> is the analytic continuation 

in k” of <f I+(k)>. The inner product to be continued is then 

<f I@(k)> = <f I l+r(k’)H” l+(x)> . 

Because of (2.11) this is just 

<fl$(k)> = <f I- ’ I$(k)>D(k) . 
k”-H 

(3.2) 

The new states of special interest are those that correspond to a second-sheet 

pole in the S matrix. Let the pole occur at K O on the sheet reached by clockwise 

continuation around a particular n-particle branch point and let D,(k) be the 
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continuation of D(k) around this branch point. The existence of a pole means 

that 

Dn&) = 0 . (3.3) 

The corresponding state is I+n(%)>. For any real-energy eigenstate-IE> of X, 

(3.2) gives 

<E I@)> = <E I#@)> .2!& 
k”-E ’ 

Analytically continuing to “k” yields 

<Elz+$J%)> = 0 . (3.4) 

The unstable particle is therefore orthogonal to all real-energy eigenstates. 

At first, this result seems paradoxical because I @> itself is in X and is 

therefore just a superposition of real-energy eigenstates. But I @> is certainly 

not orthogonal to the unstable state because 

<$(-i?) I+(k)> = s3(‘,-T;, , (3.5) 

independently of k”. The explanation lies in the difference between a continuous 

and a discrete superposition and is discussed further in Appendix C. 

The inner product of two new states is the analytic continuation in two 

variables of their inner product in X. Thus the analogue of (3.2) is 

<q(k) I$( k’)> = D(k)*<+&) IR(k’)+R( k”) I$(?)>D(k’) . 

Using 

o+ 
R(k”)+R(ko’) = R’kf;) -Wk ) 

k _ k”l 

and the definition of D(k), this may be written as 

c+(k) I q(k’)> = 63(x-?) D(k;; - D(k’) . 
k _ k”’ 

(3.6) 

(3.7) 
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(Of course, the same result may be obtained directly from (3.1) by using an 

identity like (3.6) for the reduced resolvent r(k”) and the alternate expression 

(2.12) for D(k).) The inner product of an unstable state with itself results from 

continuing both k” and k”’ in (3.7) clockwise around the same branch point. 

Because 

D,(x)* = Dn(E) = 0 

g”*-go#() 

it follows that 

< (b,(X) I lQ+ = 0 * (3.8) 

Obviously (3.7) also implies that two different unstable particles (i. e., with 

different energies) are orthogonal. The vanishing of (3.8) is a direct conse- 

quence of H being hermitian in (3.6). It will now be shown that since H is 

hermitian in X it is also hermitian in h7 so that the argument (1.2) for a zero 

norm state was correct. 

All the poles of S discussed so far lie in the lower half k”-plane. However, 

it is well known 12 that hermitian analyticity requires S to have poles in complex 

conjugate pairs. From the definition of D(k) in (2.14) it is clearly hermitian 

analytic for 2 real: 

D( k’,T)* = D(k’*,$ . P-9) 

If (3.9) is continued in k” clockwise around an n-particle branch point and into 

the lower half-plane then k”* goes counterclockwise around that branch point 

and into the upper half-plane. See Fig. 2. Since D,(k) denotes the clockwise 

continuation of D(k), let Da(k) denote the counterclockwise continuation of D(K). 

The continuation of (3.9) is then 

D,(k’,z)* = Dn(k’*,x) . (3.10) 
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Hence if Dn vanishes at “k” the Djii vanishes at co*. Thus unstable particles 

come in complex conjugate pairs. This again reflects the fact that H is hermitian 

even in the larger space ~$7. Denote the state resulting from counterclockwise 

continuation into the upper half plane with a subscript 6. Thus 
* 

Hlz,@$ = ~“I$& 

(3. lla) 
H I z,L(“k*)> = “k”* 1 @ii;*)> . 

The adjoint states are defined by 

qp) I = IQ+>+ . 

Thus 

<$,(& IH = i+,(E) I?;“* 
(3.llb) 

<qL(it*) IH = <$,(E*) 1%’ . 

It is not surprising that 

q-(~*) I &-(E*)> = 0 , 

just like (3.8). A more interesting calculation is the inner product between the 

two conjugate partners. This requires continuing both the kol in (3.7) clockwise 

from the upper half-plane around the n-particle branch point to “k” and the k” in 

(3.7) counterclockwise from the lower half-plane around the same threshold to 

the value K”*. Performing the k” continuation first gives 

<+(i;*) 1 $(k’)> = s3(i;-x1) -Do . 
“k”- k”’ 

Because D(k’) vanishes at E”, the continuation in kol then gives 

<$@*) I z@i’)> = dir;-?-?) N(g) 
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where 

N(x) z 
d D,(k) 

. 
dk” k=i; 

(3.12) 

If instead, the continuation in k”t is done before that in k” the result is 

Because of hermitian analyticity this is the same as (3.12). By assumption the 

pole in the S matrix is of first order so that the zero of D(k) is simple. Thus 

N@.) is a finite but nonvanishing constant. It is useful to absorb this factor by 

defining 

E(k)> = I7/JK.)> 1 
b&g 

(3.13) 

IP(k*)> s I$#+)> ’ 
d$$ 

so that 

<e (k*) I-\E(k’)> = a3(T;-x’) o (3.14) 

(The momentum k in I%(k)> will always be on the mass-shell so there is no need 

to call it C.) 

Because the unstable particle states have zero norm, it is necessary to find 

a new definition of norm that is positive-definite. This is necessary so that the 

equality of two vectors 

IF1> = IF2> (3.15) 

will have a precise meaning. In a Hilbert space the meaning of (3.15) is that 

<aFIaF>=O (3. 16) 
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where 

I&S> = IFl> - IF2> . 

Obviously (3.16) is not good enough for AT because it will still allow IF 1> and 

IF2> to differ by an arbitrary number of unstable states. In Appendix C a posi- * 

tive definite norm operator s2 is constructed. The precise meaning of (3.13) is 

then that 

<LwI~lAF>=O . (3.17) 

Goldberger and Watson 13 have emphasized that the S matrix may have higher 

order poles on the second sheet. (The decay law then is the familiar eTrt mul- 

tiplied by a polynomial in t. ) In such a case N=O in (3.12). Appendix D discusses 

the additional states that are then present in AT. 

B. A Lee Model Example 

A simple example of an unstable particle occurs in the Lee model. IL4 The 

Hamiltonian for a static N and V is 

H=m,z,$q!V+ mN#$,6, + / d3p w aTip’, a@ 

d3p f(w) a&?) + h. c. 
JiZ 1 (3.18) 

where w = and f(w) is a real cutoff function. The interaction produces 

a dressed V state that is a simple combination of a bare V and a bare N+8 : 

(3.19) 

This state is an eigenstate of H for those values of E that cause 

D(E) = E-mv - (3.20) 

to vanish. 
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The formula for IV> in (3.19) is just a special case of that for I# > in (3.1) 

inwhich I@>= &IO>, H’ is the free part of (3.18), and H” is the interacting 

term of (3.18). The expression for D(E) is a special case of (2.12). The zeros 

of D(E) can only lie on the real axis below the branch point at mNfm e or in the 
* 

complex plane on another sheet. The s-wave N+B - N+8 scattering amplitude 

is15 

,2i6(E) _ DII(E) 
DIP) ’ 

where I and II indicate the physical and unphysical sheets of D. The second 

sheet poles of the scattering amplitude are therefore the zeros of D on the second 

sheet. These poles come in complex conjugate pairs and have zero norm: 

<V(E) IV(E)> = <V(E*) lV(E*)> = 0 . 

The inner product of the two is the analytic continuation of 

2 
80 .d3p 2 

<V(E*) IV(E)> = 1 + 4n J / 2 If(w) I 
w (E-mN-w)2 ’ 

(3.21) 

as obtained from (3.19). Clearly 

<V(E*) IV(E)> = cg!2 

as shown generally in (3.12). There is no real benefit in choosing a particular 

cutoff function f(w) and then calculating these integrals explicitly. A more illus- 

trative example is worked out in detail in Section VII , 

It should be noted that this version of the Lee model is nothing fancy despite 

the zero norm states. In particular, it is not the indefinite metric quantization 

of K%lle/n and Pauli. 15 They showed that the Lee model violates unitarity in the 

point source limit (i. e. , f(w) - 1). To preserve unitarity it is necessary to 

make go imaginary and to let the bare V state have negative norm. Such a 
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modification changes the sign of mV in (3.18) and (3.20) but, more importantly, 

makes gi negative in (3.20) and (3.21). This allows D(E) to have a second order 

zero on the real axis 16 or zeros at complex E that lie on the physical sheet. 17 

These theories are quite different from the simple proposal made here of taking 

a well defined cutoff theory, quantized in a conventional Hilbert space with positive- 

definite metric, and investigating the consequences of a pole on the second sheet 

of the scattering amplitude. 

Another contrast can be made to the work of Glaser and KU&. IL8 They 

also treat the cutoff theory with conventional quantization. In order to discuss 

resonances they do not continue to the zeros of D on the second sheet however, 

but instead define a new D by replacing the integral in (3.20) with i-ts principal 

value. The new D has zeros on the real axis above mN+m8 that give approximate 

eigenvalues and approximate eigenstates of H. Of course, their answers depend 

on this prescription. 
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IV. POINCARE/ GROUP PRELIMINARIES 

Once the eigenstates of energy and momentum are constructed, all the 

transformation properties can be derived by imitating Wigner . 1 The present 

section introduces the covariance notions that will be needed. 

A. Complex Momentum 

The unstable particle state l*(k)> was constructed with a real momentum 

7; and a complex energy k” such that 

.5Pp I*(k)> = kp W(k)> 
(4.1) 

<+(k*) I+( k’)> = S3@-li ) . 

Lorentz transformations are generated by six operators M’” satisfying 

[Mpv, Map] = i(g~‘M’~ _ $L&$‘a _ g”“Mpp + gv@Mp”) . 

Corresponding to each Lorentz transformation matrix A”, is a linear operator 

U[A] = exp[i hpvMIIV} . 

The commutation relations of the Poincark group generators alone imply 

u-1[A]L9p U[A] = APvcw . 

From this and (4.1) it follows that states with complex three-momentum FI are 

automatically generated: 

, (4.2) 

where k1l-l = A’ k* . 
V 

Complex momenta suggest wave functions which grow exponentially in some 

spatial direction. In the soluble example of Section VII this is exactly the case. 

Such exponential growth is, in fact, characteristic of second sheet singularities. 

It is no problem because inner products are always calculated by analytically 
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continuing in momentum space. (Heuristically this corresponds to integration 

along a complex path in position space. ) To analytically continue in momentum 

space requires continuing the 6-function in (4.1). This is discussed in (5.37) 

and Ref. 24. 

At present, it is necessary to introduce some covariant notation. Because 

of (4.2) the momentum of an unstable particle has the general form 

kP= pP+iqP , (J-3) 

where p and q are real four-vectors. Since k2 is Lorentz invariant, so are its 

real and imaginary parts. Thus put 

k2 = M2 _ * IMI’ , (4.4) 

where M and l? are real constants that characterize the unstable particle. In 

terms of p and q this means 

M2 = p2 _ q2 
(4.5) 

MI=-2p.q . 

It is also useful to define the complex number 

in terms of which the mass shell condition (4.4) is 

k2=,tt2 . 

Note that I’ may be positive or negative because of hermitian analyticity. 

The analytic continuation of Section III yields poles with i? real, i. e. , 

p = (Re k”,x) 
(4.7) 

q = (Im k”, 0) . 
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Obviously q2>0. Because of (4.5) p2>0. Any state whose momentum is related 

to (4.7) by a real Lorentz transformation must have the same values of p2 and 

q2. Conversely, any such state may be transformed by a real Lorentz transfor- 

mation into one with the standard momentum 

qdp,o,o,o . ( ) 
(4-W 

This is just (4. 7) withx rotated into the z-axis. 

B. The Spin Casimir 

In order to find unstable particle states that transform irreducibly under the 

Poincare/ group it is necessary to diagonalize the Casimir’s p2 and W2 where 

(4.9) 

in the notation of Gasiorowicz. 19 This is easily done for a state with real mo- 

mentum by transforming to the rest frame. This section will show that this 

technique is the only way to diagonalize W2 even for states with complex 

momentum. 

The application of Wo to the eigenstates of energy-momentum constructed 

in Section III replaces S’ P by its eigenvalue: 

with 

Wo I*(k)> = WJk) IQ(k)> , 

Now evaluate (4.10) when k has the special form 

(4. 10) 

P = (01 0 0 p) > 3 > 

cr2-p2 = A2 ) 
(4.11) 
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introduced in (4.8). The result is 

W,tb = -PJ, 

W,(E) = CL! Jl - ,BK2 

W,@) = aJ2+PK1 

W,@ = aJ3 , 

where 

Jid, 
2 ijk 

Mjk 

Ki- M. 10 

are the generators of rotations and boosts, respectively. 19 

(4.12) * 

The Casimir is then 

13: 
b(i;jJ2 = - ~J~-PK,]’ - ~J,-I-PI(~I~ - &2p3~- . (4.14) 

This suggests defining 

S,(E) = -$ @Jl - PK2) 

s203 = -$- (a J2 + pK1) 

S3&) = J3 , 

in order that the Casimir be 

[w&l2 = -dM2 [s(E)]2 . 

(4.13) 

(4.15) 

(4.16) 

The operators S,(i;, in (4.15) are the particular combination of rotations and 

boosts that leave the vector l? invariant, i. e., they are the generators of the 

little group. (In the special case of stable massless particles the appropriate 

combination provided by (4.14) is obviously Jl-K2 and J2+Kl rather than (4.15). 

It is well known that these two combinations plus their closure, J3, generate the 

little group of massless particles. 20 ) 
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To find the eigenvalues of W2, observe that (4.15) gives the familiar com- 

mutation relations 

[sat@, $a(‘] = iEabC SC@) ’ (4.17) 

Obviously both Sl and S2 in (4.15) are nonhermitian because 01, p, and A are 

complex. However, because SU(2) is compact all solutions to the commutation 

relations (4.17) are equivalent to hermitian operators, 21i e . . , there exists a 

hermitian operator r and a transformation T such that 

g(I;) = TvT-l . (4.18) 
7 

Hence the eigenvalues of [X(Ejj2 are, as usual, real nonnegative integers or half- 

integers and label irreducible representations of the Poincaregroup because of 

(4.16). That these integers or half-integers actually are related to rotations 

will not be shown until Section V. 

To diagonalize the spin Casimir when k is arbitrary requires constructing 

a general g(k). It is useful for this and later sections to define complex Lore&z 

transformation matrices Lc by 

Lc(kQ)cvp kp = k’o , (4.19) 

where k and k’ are arbitrary complex momenta with the same mass. (Note that 

(4.19) does not completely specify Lc. ) Now consider the transformation 

(4.20) 

where Jtt denotes the momentum vector 

dtvp = (Jclt, 0, 0, 0) . 

Use the columns of this matrix to define three complex vectors: 

(4.21) 

ecY(k,a) E L’(k,&)Og a=l,2,3 . (4.22) 
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These vectors are orthonormal 

ea4,a) e,(k,b) = -6ab ) (4.23) 

and orthogonal to kQ itself ., Together the four vectors form a complete basis 

in that 

- a~le@(k,a)eP(k,a)+[--$ kCrkP= go’ . (4.24) 

This relation is useful in calculating the Casimir 

bW] 2 = WJk) gaPWptk) . 

From the definition (4.10) 

so that (4.25) reduces to 

[W(k)12 = -&2[$k)]2 

where 

S,(k) = 5 e~tkaWrr(k) a=l,2,3 . 

A different expression for g(k) may be obtained by using 

e%, a) 
kP 

x Ea&.w = -eabc p e 00) y,(k, c) 

in (4.27) to get 

Sale) = -1 2 Eabc e,$W evtkC) rJr”” . 

(4.25) 

(4.26) 

(4.27) 

(4.28) 

From (4.28) the commutation relations 

[s,(k), stk( = iEabc SC(k) (4.29) 

follow easily. 

Again because of the compactness of SU(~) the eigenvalues of [X(kJ2 are 

real integers or half-integers. 21 The equivalence transformation from the 
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nonhermitian x(k) to three hermitian operators can now be explicitly constructed. 

The definitions (4.22) and (4.27) give 

S,(k) = $- Lc(k,&Z)“a WJk) . (4.30) 

The definition (4.10) of Wa!(k) guarantees its covariance under a real Lorentz 

transformation: 

A”lPWo&k) = U[A] WJA-!k) U-‘[A] , (4.31) 

where 

U@] = exp{ilPV MPV] (4.32) 

as always. When the transformation matrix A is complex the six parameters 

A are complex, but (4.31) still holds because it depends only on the commu- 

LtLrs of the MClv with themselves. Thus using (4.31) in (4.30) gives 

saw = -&- U[L”(k,-41)1 Wa(JZ) U-l[L’(k,&r] . (4.33) 

Because 

WaW =AJa , 

(4.33) may be rewritten as 

s(k) = U-l[L’(k,““L;I ~U~c(J/c,k;l . (4.34) 

Note that U here is not unitary because the parameters h 
PV 

in (4.32) are complex. 

This is the promised equivalence relation between some hermitian operator and 

the nonhermitian x(k). It shows, furthermore, that to construct unstable particle 

states that transform irreducibly under real Lorentz transformations necessarily 

requires the use of complex Lorentz transformations. 
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V. LORENTZ TRANSFORMATIONS OF UNSTABLE PARTICLES 

Sections II and III showed that corresponding to every pole in a scattering 

amplitude there is an eigenstate of energy momentum in a space AT larger than 

the physical Hilbert space. This section will show that corresponding to every 

pole is a state which transforms irreducibly under the Poincare group. 

A. J, States ” 

Because of (4.26) a state Ik> will transform irreducibly under real Lore&z 

transformations only if 

[g(k)12 Ik> = j(j+l) Ik> (5.1) 

with j a real integer or half-integer. Right away the states constructed in Sec- 

tion III therefore cannot be- irreducible. They are given in (3.2 1) by the analytic 

continuation of 

IP(k)j, j,> = 1 -i- [ $--$@J MtRj,j3~ ---& . (5 - 2) 

Recall that I +@)j, j,> are the states constructed in Appendix A for an arbitrary 

real momentum &. They are eigenstates of T2 and J3 because the discrete field 

indices are summed against appropriate Clebsch-Gordon coefficients. Both H’ 

and H” commute with T2 and J3 since they are just the projections (2.6) of H 

determined by I @@) j , j,> . Therefore (5.2) and its analytic continuation satisfy 

-2 
J I*@)j, j,> = j(j+l) I*(k)j, j,> 

(5 ’ 3) 
J3 IWW, j,> = j, IWW, j,> 

and do not satisfy (5 e 1). 

The IW are, however, irreducible representations when g= 0 because (5.1) 

and (5.3) are then identical due to 

saw I- = Ja 0 
k=O 

(5.4) 
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An irreducible representation with momentum k then automatically results from 

boosting such a I%> from rest to k . With the rest momentum again denoted by 

dzzp=(u%x, O,O,O) ) (5.5) 

the irreducible representation is just 

Ik j, j,> = U LcQ+@( IQ(A)j,j,>m C . (5.6) 

(The m is included to give a covariant normalization in Section V. D. ) The 

proof of irreducibility is that 

9’ Ik, j, j,> = IclJ’ Ik, j, j,> 

[3(k)12 Ik, j, j,> = j(j+I) I& j9 j,> - 

In addition, (5.6) satisfies 

s3tk) Ik,j,j3>= j,lkj,j,> - (5 * 7) 

The difference between (5.2) and (5.6) has nothing to do with complex momentum; 

the difference is equally present for stable particles in the physical Hilbert space. 

Also note that the precise meaning of (5.6) is that its inner product with an 

arbitrary state If> is given by the analytic continuation in k” of 

ih MPV 1 <fIk,j,j3>=<fle P.v - 
k”-H 

I+(@ j,j,> W”) m (5.8) 

to the value k”= c/kt. Here the A 
PV 

are six complex parameters corresponding to 

a boost from momentum dP to kP. Equation (5.8) is an obvious parallel to 

(3.2). From now on Lorentz transformations will be applied at will but the 

precise meaning will always be in terms of inner products like (5.8). 

The behavior of (5.6) under a real Lorentz transformation A now follows 

easily: 

U[A]kjJ3 (5 * 9) 
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where 

R; = Lc(Ak,&)-IA Lc(k,&) . 

Clearly R& is a complex Lorentz transformation that leaves &’ invariant. It 

is therefore just a complex Wigner rotation whose affect on the rest state is 

UR; 
[ 1 IA,j,j,>= c 

jh 
(5.10) 

Here D is the usual rotation matrix for spin j. The three rotation angles are 

complex. The complete transformation law is then 

U[A]Ik,j,jS>= c IAk,j,j$>D.,. Ca&) . 
j$ 33J3 

(5. 11) 

This result is quite similar to the usual transformation law for stable particles. 

It has been suggested, in fact, that the only momentum kc” allowable for an un- 

stable particle are those for which -$ kP is purely real. 22 Such a restriction 

makes the Wigner rotation in (5.11) purely real. The explicitly constructed 

states in Section III, however, show that other momenta do occur and Rb is 

therefore complex. 

B. Other States 

The states constructed in 

q2>0. (See Eq. (4.7).) Once 
3 3 

Section III by analytic continuation have p2,0 and 

complex boosts are allowed states with any mo- 

mentum k satisfying km=&” can be constructed from these. (The J3 states of 

the previous subsection, for example, have no restriction on the sign of p2 or 

q2. ) Out of this myriad of possible states the physically important ones are 

those that can be excited in physical scattering processes. All states used in 

scattering experiments have a total energy momentum that is timelike. There- 

fore the only unstable particle states than can be excited in physical scattering 
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processes must have a four-momentum k that becomes timelike when continued 

back to the real axis. In short, they must have p2>0 to produce resonances in 

scattering amplitudes. (See Section V1.A for more details.) For a given time- 

like p the associated q may be either timelike, lightlike, or spacelike. In each 
_ 

case the momentum k is related by a real Lorentz transformation to a standard 

momentum i; defined as follows: 

If p2>o, q2>o 

If p2>o, q2=o 

+(A, 0, 0, A) ; 

If p2>o, q2<o 

6 Pq) 
2 22 

p E -P q , 0, 0, P-q 
-q2 ) Q 

(5. 12a) 

(5.12b) 

(5. 12c) 

SE ( 0, 0, 0, -q2 . 0 

Obviously (5.12a) is the prototype (4.8) that resulted from analytic continuation 

in the variable k”. 

The J3 states constructed previously did not take advantage of the fact that 
2 only states with p >O are excited in physical scattering processes. Their trans- 

formation law (5.11) is based only upon the invariance of momentum (5.5) under 

arbitrary rotations. The little group thus has three generators. On the other 
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hand, the only real Lorentz transformations that leave any of the l? in (5.12) 

invariant are rotations around the z-axis. The little group thus has only one 

generator and its irreducible representations are one dimensional. It might 

therefore be possible to construct states which are irreducible representations 

both of the full Poincare/ group and of this one parameter little group. Because 

the representation of the translations is not unitary there is no guarantee of 

finding such states. In the next subsection, however, they are successfully 

constructed and their transformation law (5.21) is derived. 

For completeness, states with momenta other than p2>0 are discussed in 

Appendix E. Beltrametti and Luzzatto” have shown that for any complex mo- 

mentum k a standard zi can be chosen. The corresponding little group is always 

one dimensional but depends on the sign of 

A z (p-q)‘-p2q2 . (5.13) 

The momenta in (5.12) all have n> 0 and the states which are irreducible repre- 

sentations of both PoincarQ group and the little group are constructed in the next 

subsection. In Appendix E states with A<0 on which both groups are represented 

irreducibly are also constructed. For the case A=O, however, such represen- 

tations are not possible. 

C. Helicity States 

The unstable particle states that produce resonances in scattering ampli- 

tudes all have a momentum k that is related by a real Lorentz transformation 

to one of the l? of (5.12). All three possibilities in (5.12) have the form 

i-i = (a, 0, 0, P) 
(5.14) 

,lt2q2-p2 . 
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Define a new state by 

Ik, j,@> = U[L(k,E) L~(LAQ] ~+((~tt) j,j,> -1 
j,=o 

(5.15) 

It should be noted that although (5.15) is very different from (5.6) the only nota- 

tional distinction will be the use of an index o (later related to helicity) rather 

than a j,. In spite of the two stage boost in (5.15) it is easy to check irreduci- 

bility by 

[-5(k)]“lk,j,o> = U[Lc(k,~~~2U[X] I\E.(Jlt)j,j3>mI , (5.16) 
j,=cr 

where 

X = L’(k,&)-’ L&E) Lcfi,M) . 

Because X leaves the four-vector &! invariant it must be some complex rota- 

tion. Therefore 

T2 u[x] = u[x]T 

so that (5.16) becomes 

[??(k)12 Ik, j,a> = j(j+l) Ik, j,o> . (5.17) 

The behavior of (5.15) under a real Lorentz transformation A follows from 

u[A. Ik, j,g> = U[L(Rk,E) Lc(&J4)l u[R] W(.M)j,o>,/~ , (5.18) 

where 

R = LC@,~+(Ak,i+A L&i;)] Lc&M) . (5.19) 

Again fi leaves &VP invariant and must therefore be a complex rotation at worst. 

Closer inspection shows that the quantity in braces in (5.19) is a real Lorentz 

transformation that leaves Ii of (5.15) invariant. Therefore it can only be a 

rotation about the z-axis: 

hL(k,E)l = eiewJ3 , (5.20) 
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where ew is a real Wigner rotation angle that depends on k and A. Now 

L’@,&) is just a boost along i. Because 

II 1 J3,K3 =O > 

it follows that B itself is simply a rotation around the z-axis: 

U[R] = e 
i BwJ3 

. 

Therefore (5.18) becomes 

u[A] Ik, j,g > = Ub(Ak,E) L’@,&i eiewJ3 IP(&)jp JEZ . 

Because I!&> is an eigenstate of J3 this collapses to 

U[A] Ik, j,o> = Ink, j,cr > e 
i ewg 

. (5.21) 

This is the analogue of (5.11). The transformation law for J3 states in (5.11) 

was more complicated just because those states are an awkward linear combin- 

ation of the helicity states. The precise combination is 

Ik,j,j3>=x Ik,j,o> DC j (Y) 9 
o- ’ 3 

(5.22) 

where Y is another complex rotation given by 

Y - L’(LM,@ L&k) L’(k,JK) . (5.23) 

The transformation law (5.21) is exactly the same as for massless particles 

because in both cases there is no real Lorentz transformation that takes the 

three-momentum to zero. The only difference is that here c may take on all 

integrally spaced values from -j to +j rather than just the two extreme values 

allowed in the massless case. It should be emphasized that the restriction of j 

to integers or half-integers comes from the Poincare group itself in Section 

IV. B. The construction of I$, j, j,> and then I!&, j, j,> by combining field indices 

(as discussed in Appendix A) merely capitalized on that result. 
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Calling (5.15) helicity states is as yet unjustified. The real justification 

is the demonstration in Section VI. A that these states occur as resonances in 

helicity amplitudes. At the present this nomenclature may even seem inappro- 

priate. Clearly (5.15) is an eigenstate of 2.7 when the momentum is ii and 

hence along i: 

J,ll?,j,c>= oliT,j,m> (5.24) 

For arbitrary complex K, however, it is not likely that (5.15) will be an eigen- 

state of 3.3 as the massless case might suggest. The correct generalization 

of the helicity operator is obtained from boosting (5.24) to get 

where 

C(k) lk, j,u> = alkj,a> , (5.25) 

C(k) = U[I&~jlJ3U-1[i44jl a (5.26) 

An alternative expression for this operator that will be derived shortly is 

CQ = EapP 

Q P PV PqM 
_ 

2 v (p. Q2-p2q2 

. 

This helicity operator is manifestly a Lorentz scalar: 

U[A] C(k) U-$1] = C(Ak) . 

(5.27) 

(5-28) 

Furthermore, whenever F andc are parallel so that k has the special form 

then (5.27) reduces to 

(5 e 29) 

This result at present is only a plausibility argument for the name helicity but 

it will be very important in Section VI. A. 
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Naturally C(k) is just the generator which leaves a general complex vector 

k invariant. As an example take 

P = (a, 6, 6, b) 

q = tc, 0, d, 0) . 

Then p is left invariant by the three generators 

J37 bKl+aJ2, aJl - bK2 

just as in (4.15). On the other hand, q is left invariant by 

J2’ cJ3 -dJ$ cJl+dK . 3 

There is, however, only one combination of generators that leaves both p and 

q invariant. It is given by 

E o!@.Lvp Q! p ” q M = bcJ3 - d@K1+aJ2) 

= b(cJ3 - dK1) -adJ2 . 
/ 

This combination of generators is grouped in two different ways to show how it 

leaves both p and q invariant. 

Now to show that (5.27) is correct, explicitly carry out the transformations 

in (5.26) to get 

C(k) = x?k h Mpv (5.30) 

where 

P$,E) E - ; L(k, QPa L(k,QVb cab3 , 

Apply a real Lorentz transformation A: 

A’PAnv~V(k,i?) = -+[L(Ak,li)R]Sa [L(Ak,%)Rlqb cab3 , 

where 

R = L-$Ak,i;) A L(k,%) . (5.31) 
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Obviously R is a real transformation that leaves E invariant. Hence it is only 

a rotation about the z-axis. This means 

Ra( Rbl cab3 = ea’b’3 
a b 

Therefore (5.31) is just 

dp A? ,xpv(k,ii) = x&(,k,l?) . (5.32) 

This means that 2’ is a tensor function of k independently of l?. Furthermore, 

from the definition (5.30) it also satisfies 

2” = -XVI.1 

The only such tensor is 

xyk) = c tO@vpolgp . 

The constant c may be evaluated in a particular frame (like k=@ and gives 

(5.27) as claimed. 

Note that this argument fails, as it should, for stable particles. Then the 

R in (5.31) that leaves a real vector 5 invariant will contain boosts, though in 

a special combination like (4.15). Therefore (5.32) fails for massive stable 

particles and their helicity operator cannot be Lorentz invariant. 

D. Covariance of Inner Products and Norms 

Both the J3 states and the helicity states are related to N!(&)> by complex, 

nonunitary boosts. The inner product of either with itself therefore might 

not be covariant. However, because H is hermitian the inner product vanishes 

and hence is trivially covariant. 

The complex conjugate partner of (5.6) is 

Ik*, j, j,> G U L’(k*, A*)] IQ(.M*)j, j,> m C 
(5.33) 
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and similarly for helicity states. Because the Lorentz generators tiV are 

hermitian 

ih* ‘&f” I- [ 1 -ih MPV 
e PV = e IJV , 

or equivalently 

u[L*]t = ucL.1-l . 

This means that the inner product of (5.33) with its partner (5.6) is 

<j3,j,k*Ik’,j’,j!3>=2k063$-p)6. 6. 
3J’ 3,Jb ’ 

(5.34) 

The covariance of this product may be explicitly verified. From the definition 

(4.19) 

L’(k’*, k”) = L’(k’,k)* . 

Consequently the transformation law of (5.33) is 

U[A]Ik*,j,j3>= c Ihk*,j,j~>D-, . iR2) 7 
ji J3’J3 

where R.$ is just the complex conjugate of the rotation occurring in (5.11). 

Because 

the inner product (5.34) is genuinely covariant. 

For helicity states this check is easier. The transformation law for the 

conjugate state is 

U[A] Ik*, j,c> = Ink*, jp> e 
iewg 

, 

where Ow is the same real angle as in (5.21). The covariance of the inner 

product just amounts to 

c 1 eiefl * = e-iewc . 
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The momenta r and ‘I;; in (5.34) are generally complex and the A-function 

must therefore be analytically continued. Moeller proposed this long ago. 8 

The continuation was thoroughly 

usual representation 

1 I 

developed by Bremermann and Durand. 24 The 

d&‘-k) = =$ 
i 

1 1 
27n (k’+iE) -k - (k*-ic) -k ’ 

. 

is valid for k and k1 real. For complex variables 

/‘dk’ f(V)s(k’-k) = / dk’f(k’)-& --‘-) ) 
C c1+c2 

27rr \k’-k (5. 35) 

where cl is a contour parallel to c that passes above k and c 2 is a contour anti- 

parallel to c that passes below k. 
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VI. WAVE FUNCTIONS AND S-MATRIX ELEMENTS 

FOR UNSTABLE PARTICLES 

The consequences of the transformation laws derived in Section V for exper- 

iments carried out on the real axis will now be discussed. The wave functions 

for unstable particles and their use in calculating scattering amplitudes will be 

quite analagous to the usual stable particle results. 

A. How the Irreducible Representations are Produced in Scattering 

Two points will be emphasized in this section: First, that the irreducible 

representations of Section V actually do occur as poles in partial wave amplitudes; 

Second, that the Lorentz invariance of the helicity in (5.21) is not experimentally 

observable. It will turn out, in fact, that measurements conducted in two dif- 

ferent frames will find the 2j-t1 helicily components rotated according to the 

usual law for stable particles with m+O. In short, it is (6. 18) that is observed 

and not (5.21). (It goes without saying that the transformation law (5.11) for J3 

states automatically reduces to that for stable particles when the momentum 

becomes real. ) 

For definiteness, consider the scattering of two stable particles that produce 

a resonance in the s channel. Denote the scattering amplitude by 

T(l+2-A) = <A IT@) lijtl,hl;~2,~2’ , (6.1) 

where A is some multiparticle final state, Ai are the individual helicities, and 

p=pl+p2. This amplitude may be decomposed into partial waves of definite total 

angular momentum by following the procedure of Jacob and Wick 25 to construct 

eigenstates of T2 in the center-of-mass frame. These states must be further 

specified as eigenstates either of J3 or of helicity. The partial wave amplitude 

in any frame is then obtained by boosting these two particle states. Denote the 
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partial wave amplitude with s channel helicity cr by 

where 

Tj( l+2 -A) = <A IT(p) Ip, j,o;1+2> , 

Ij,-j, IL j 5 Ijl+j2 I 

(6.2) 

The three labels on the two particle state in (6.2) denote the fact that 

gzJp Ip, j, CT ; 1+2> = p’” Ip, j,c ; 1+2> (6.3a) 

p(p)12 Ip, j,a ; 1+2> = j(j+l) Ip, j,a ; 1+2> (6.3b) 

1;.Xjp, j,c; 1+2> = crlp, j,g; 1+2> . (6. 3c) 

A Lorentz transformation rotates the 2j+l values of (T according to the usual law 

U[*] Ip, j,c; 1+2! = 3 Nilp, j,c’; I+2> Dct,o 6) (6.4) 

where 

g = L(f;‘, W)-l[R@ l, p”‘)-’ AR(p,;)] L(& W) 

w= t@, 0, 0, 0) 

5’ tP”, 0, 0, IFII, 

p’= Ap 

g zz (POI, 0, 0, 13 I) 

It is, of course, obvious that the different helicity components must mix from 

the observation that the helicity operator in (6.3~) is not Lore& invariant. 

By hypothesis (6.1) has a resonance pole when analytically continued to the 

second sheet. The amplitude can be related to the Fourier transform of the 
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Green’s function 

< 0 l+(Y) W,) ax,,] lb - 

Just as in Appendix A the pole can then come only from the term 

G(p) = 4 Id(y) i(2n)3 63G- g, T[$(r) $(-r)] IO> - 
p”-H 

withr=-l 2 (x1-x2). Analytic continuation of G(p) will then yield a pole whose 

residue may be expressed in terms of state vectors for the unstable particle: 

GN- l c 
k2 - A2 jl,cl 

CO l&(y) Ik, j’,@> <k*, j’,c’ IT[+(r) i&-r)] lo> 

(6.5) 

The unstable particle states in (6.5) have been chosen as helicity states: 

@p Ik, j’,c’> = p Ik, jr,@> (6.6a) 

[x(kd2 Ik, j’,c’> = j’(j*+l) Ik, j’,c’> (6.6b) 

C(k) lk, j’,c’> = o’lk, j’,g’> , (6.6~) 

where 

The contribution of (6.5) to the partial wave amplitude is obtained by taking q - 0 

in the residue of (6.5)) projecting out the two particle formation amplitude 

<p, j’,g’ lFl, hl;F2, h2> , and then combining spins to get 

Tj(1+2-A)= ’ c 
p2-d2 j1 ,U1 

<A Ip, j’,@><p, j’,gl Ip, j,m; l-t-2> . (6.7) 

Now, the question of interest is which values of j’ and 19 in (6.5) actually 

survive the partial wave projection in (6.7) ? Comparing (6.6b) with (6.3b) shows 

that j’=j because 

lim X(k) =-S(p) o 
q-0 
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(See (4.27) for example. ) However the helicity operator 

E CfP Ea, 
C(k) = appv p q M 

2 
J---T-E 

(P-q) -P q 

(6.8) 

has the property that in general 

lim C(k)$p.Q . 
q-0 

Only when < is taken to zero along the 5 direction does (6.6~) correspond to 

(6.3~)) for then 

lim C(k) =p.T . 

;;i II g 
(6.9) 

Thus if q is taken to zero along the plane < II ‘j;;- then CT’=Q in (6.7). Appendix F 

shows furthermore that the only nonvanishing contribution to (6.7) comes from 

taking the q limit in this manner. Thus 

Tj(l+2-A)z <AIp,j,cr><p,j,oIp,j,o;1t-2> 
p2-M2+iMI’ 

(6. 10) 

The discussion leading to (6.10) shows that the helicity states of Section V. C 

are actually produced in scattering. In spite of this, the Lorentz invariance of 

the unstable particle helicity is not observable because the limit required in (6.9) 

is not covariant. To see exactly what the observed transformation law for the 

helicity states will be, consider how to calculate (6. 10) in two different frames. 

In the first frame let 

P= (PO, 0, 0, P3) * (6. lla) 

Then the residue of the pole in (6.5) that contributes to (6.10) must have 

q = &lo, 0, 0, s3) * 
With q in this form go and q3 may be taken to zero independently. 

(6. llb) 
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If the same experiment is viewed from a frame moving along the x-axis the 

observed momenta are 

p’ = (p” cash h, p” sinhh, 0, p”) (6. 12a) 

q’ = (q” coshh, go sinhh, 0, q3) . (6.12b) 
- 

But now 3 is not parallel to 3. To calculate the contribution of the unstable 

particle pole to the partial wave amplitude in this frame requires continuing q’ 

to zero in the plane of 3. Let q” be this continued value of q’ and let p”=p’ be 

the unchanged value of the real momenta: 

p” = (p” sinhh, p” sinhA , 0, p3) = p’ 

q” = (q”o, Epl 2) , 

(6.13a) 

(6.13b) 

where 

0 3 ;= (p sinhh,O,p) 

’ (p” sinh A)2+ (P~)~ 

For (6.13) to correspond to the same value of mass and width as (6.11) it is 

necessary that 

(p”+iq”)2 = (p+iq)2 . (6.14) 

If (6.14) has solutions of the form (6.13) then k’l and k can still be related by a 

Lorentz transformation that is complex. Solving (6.14) gives 

qlrO =$ 

P I 

p’“@~cQ - IT I rn) 

(6.15) 

@‘I = + { I$ I@*@ -PI0 
P 

Thus there is a complex Lorentz transformation AC for which 

p” f iql’ = Ac(p+iq) . 
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Because k” is the appropriate momentum in the moving frame to produce a 

pole in the partial wave amplitude the observed transformation law will be deter- 

mined by this complex Lorentz transformation. To find that law requires 

applying Ac to the Ik, j,a > helicity state in (6.5). The result is directly anala- 
* 

gous to (5.18) and (5.19): 

Uhcllk, jp > = c IA%, j,uf> Do, ~ (EC) , 
c( 3 

where (6.16) 

Recall that in (5.19) R is a real rotation around the z-axis because A there is 

real. Here, however, AC is complex. As a result Rc is neither real nor a z 

rotation. Consequently all 2j+l helicity components are rotated in (6.16). The 

experimentally observed transformation law is the q” -+ 0 limit of (6.16). Hence 

the helicity states will be observed to transform covariantly not invariantly. The 

precise form of this covariance is obtained by taking q” - 0 in (6.16). It will 

shortly be shown that 

(6. 17) 

where 2 is just the usual real rotation (6.4) appropriate to stable helicity states. 

Thus the observed transformation law following from (6.16) is exactly like (6.4): 

U[A] Ip, j,o> = 3 IQ, j@ >Dgrto. @> . (6. 18) 

It is, of course, essential that 

lim Rc = fi , (6. 19) 
q-0 

also. This guarantees that the transformation law is symmetrical between the 

two observers. 
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To demonstrate (6.17) it is necessary to specify the transformation L@, k) 

more carefully. Consider, for example, the case q2 > 0. Then i; is given by 

(5.12a). A real Lorentz transformation from k to li may always to accomplished 

by first boosting q to rest and then rotating into the z axis. Thus 

L(I;,k) = Rtk Wi, q)p) B(% q) - 

With the p and q of (6.11) the boost is in the i direction so the rotation is just the 

identity: 

U&k) = BZtS, s) l 

On the other hand, for pl’ and qll in (6.13) 

L(Ii, k”) = R(;, j, B$, q”) . 

Putting this together gives the complex rotation in (6.16) as 

i? = BZ(&,@ [R&l-)B;I({,q”)ACBZ(q,$] Bz(i?,&) . (6.20) 

It is convenient to rewrite (6.20) by using 

to get 

R(i) ;) B;(;, 9”) = BZ(;, 9”) R(;, ;) 

RC = BZ(&,i;) Bz({,q”) R&j) ACBZ(q,;) Bz(ii,&) . (6. 21) 

The boosts are explicitly given by 

BZ(&&) = e 
&Kg 

Bztqi) = e 
ip’K3 

Bztq%) = e 
@“Kg 

, 
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where 

u+i q $” 

cash /L = 
Q 

c/48 

0 
cash ~1’ = Lk- 

47 

- 
(6.22) 

110 

cash /A” = 4 . 

Q 

(Note that ~1 and ~1” are both real.) Thus (6.21) is 

ii’= e 
-i@+pf1)K3 

R(l,c)A”e 
i W+i-W3 

(6.23) 

By using (6.11); (6. W), and (6.22) one finds that 

p!T”+ iq!lO 

cash (/L+/.?‘) = ~ (6. 24) 
J 

p” + iq” cash &+/A’) = ~~ , 

Taking q” - 0 is now easy: 

"0 I0 

lim 
q’l--+ 0 

cash @+,u”) = k = k 

0 
lim cash @+/A’) = k . 

q”-0 

Hence 

lim Rc = B(M,$‘) R(k,$ AB(F,M) . 
q’l-+ 0 

(6.25) 

This is precisely the rotation fi given in (6.4) appropriate to these p and p’. 

Hence Rc reduces to fi as claimed in (6.17). It is also obvious from (6.24) that 

the same limit fi is obtained if q- 0 instead of ql’. 
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B. Elementary Unstable Particles 

The indicated transformation laws apply to any unstable particle. It may or 

may not be associated with an elementary field occuring in the Lagrangian. In 

conventional field theories, for example, the p has an elementary field but the 7r, 

being composed of quarks, does not. Thus a p will be called elementary and a 7r 

composite though both are unstable. 

Since the p is, in fact, the only candidate for an unstable particle with an 

elementary field, it will be treated explicitly here. The generalization to other 

spins is straightforward. The Feynman propagator for a p field is 

Performing the Fourier transforms gives 

%!p@) = iOI#JJO) ( 27r)3 s3ik’-q 

k”-H+ie 
?&O) IO> 

- 4 Imp ( 27r)3 s3(E-q 
k’+H-ie 

$,(O) IO> 

Continuing in k” around the positive energy cuts to the second sheet pole gives 

3 ~0 lqa(0) Ik, j3xk*,j3 I? (0) lo> 

k2 -A2 
(6.26) 

In (6.26) a sum over J3 states (j3=f1/2) has been used. The sum could just as 

well have been over helicity states. 

The J3 wave functions will be discussed first. Just from the definition (5.6) 

of the J3 states the residue must be 

~0 Iqa(0) Ik, j,> = 2&z 
7\/ 

3 u,W3) 
(274 
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where z is some constant and the dimensionless functions u are defined by 

u$ , l/2) = Sa 1 , [iL”(k>ij 

uJk,-1/2) = sa 2 , ptk4j ’ 
(6.27) 

Here s[A] denotes the usual (l/2,0) 6 (0,1/2) representation of the Lorentz 

20 
group. A real Lorentz transformation applied to (6.27) gives 

S[A] utk j,) = c UW, j’) S., j; 3 j3J3 [ 1 R; > (6.28) 

where RC w is the same complex rotation as (5.9). Define adjoint spinors as 

$Jk, j,) = ho utk j3))E . (6.29) 

The completeness and normalization conditions are 

l/2 
c - u&j,) up+*, j,) = 2d 1 thp+~)a p 

j,= -l/2 
(6.30a) 

4 
c itk*, j,) u&jh) = 6. 

cY=l J,J; ’ 

Using (6.30a) in (6.26) gives 

+y’k +A 
sap) - z 

k2+A2 k2-d2 
7 

(6.3Ob) 

(6.31) 

as might be expected. 

The location of k and k* in (6.30) is important. For example, (6.30b) is 

clearly a reflection of the normalization 

.<j,, k* Ik’, ji> = 2k083(E-I?) 6. 
J,J; ’ 

Note however that 

<j,, k Ik’, jb> = 0 
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has no finite dimensional counterpart: 

(6. 32) 

In fact, the left hand side of (6.32) is nothing particularly simple: Nor is it 

needed in calculations. 

The spinors may be explicitly displayed by choosing a particular complex 

Lorentz transformation for (6.27). For example, let this be a pure boost from 

A to k. The direction and magnitude of the boost are then given by 

(6.33) 

c,sh A’ = P”zo . 

The 4x4 spinor representation of this boost is 

= cash $ +i.Zsinh$ , (6.34) 

where 

This gives 

(6.35) 

uJk, -l/2) = 1 

JLiijZZ) 
td-$+4cr 2 . > 

Obviously as qP- 0 these spinors go smoothly into the usual spinors for real 

energy momentum. 
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The helicity wave functions are much more interesting. Let 

where (T=* to distinguish from j3=&1/2. From the definition (5.15) of the helicity 
- 

states it follows that 

(6. 36) 

f The adjoint spinors are defined just as in (6.29). Completeness and normaliza- 

tion are then the same as (6.30) with j, replaced by fl. The novel feature of 

these spinors is their transformation law. Write (6.36) as 

utk*:) = @44&&*) * 

Then - 

S[A] u(k, +) = S[L(Ak,i;g S@] u(l?, &t) , (6.37) 

where 

iE= L(Ak,l+ A L(k,fi) . (6.38) 

Because Ris a real transformation that leaves ii invariant it can only be a rota- 

tion around z just as in Section V. C. Thus 

1 

S[R] = e 
i0,z c3 

where o3 is the usual Pauli matrix. This gives for (6.37) 

1 

S[A] u(k,*) = u(Ak,*) e +!?W . 

(6.39) 

(6.40) 

Note that (6.40) holds even when q -. 0. This is because L(k,E) does not reduce 

to the identity even when q + 0. 
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C. Composite Unstable Particles 

By definition a composite unstable particle is one which does not produce a 

pole in any two-point function. It does, of course, produce poles in Green’s 

functions with more lines. Thus in quark theories all hadrons are composite. 
* 

All of these except the proton are unstable when weak and electromagnetic inter- 

actions are included. 

Composite particles that are stable produce a pole in a Green’s function 

when continued in the total energy-momentum onto the real axis below the pro- 

duction threshold. Composite particles that are unstable produce poles when the 

continuation is onto the second sheet. The residue of the pole is a product of 

Bethe-Salpeter wave functions like 

xktrl’ - - ’ , (6.4la) 

The only difference between (6.4la) and the usual Bethe-Salpeter wave functions 

is that here k is complex and the state lk, j, CT> does not lie in the physical Hilbert 

space. The Lore&z transformation property of (6.41a) follows from (5.21). 

Denote the adjoint wave function by 

iktrny . . . , rl) = <g, j,k IT &rn). . . 
E 

(6.41b) 

As always, the complex conjugate of (6.41a) involves antitime ordering and is not 

simply related to (6.41b). Note, of course, that either of (6.41) may also have 

momentum k* . 

The momentum space wave functions are real Fourier transforms of (6.41) 

in spite of the fact that k is complex. As Appendix A illustrates, if the Green’s 

function depends on (x,, . . , , xn) and (Xi, . . . , xi) the pole occurs in the Fourier 

transform with respect to the average coordinate X given by 

xi=X+r. , 1 Eri=O D 
1 

(6.42a) 
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Therefore only the relative coordinates ri appear in the residue factors like 

(6.41). If ki are the momenta conjugate to xi then it is convenient to define 

ki=$k+Qi , gQi=o ) (6.42b) 

The total momentum k is then conjugate to the average position X and the rela- 

tive momenta Pi are conjugate to the relative coordinates ri: 

;k .x .=k.X+ gQ:r 1i i 1i i’ (6.43) 

Even though the ki are complex all the Qi may be taken as real because of (6.43). 

The momentum space wave functions are then 

;ktQl’ . . . , Qn) = ,’ (dr) ik(rl’ . . . , rn) e 
-iCei* ri 

7 (6.44b) 

where 

. 

It is important that all the relative momenta Qi are real for (6.44) to make sense. 

The Bethe-Salpeter integral equation and normalization condition may be 

written either in coordinate space or momentum space. They are displayed 

graphically in Fig. 3. The derivation of these equations and the graphical nota- 

tion is the same as in Ref. 26. The only difference is that now the normalization 

is between xk and xk.+. This is because 

G(k’, k) - 
xkr it2T)4 64W-k) xk* 

k2-A2 k2-&f2 - 
(6.45) 

(See (6.5) for example. ) 
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D. S Matrix Elements 

Scattering amplitudes involving unstable particles are residues of poles in 

the off-shell Green’s functions in direct analogy with the stable case. The reduc- 

tion formula expresses just this relation. Its practical value is that the Green’s 

functions may be expanded in a perturbation series and the poles extracted from 

the external legs. This has been done for stable particles (elementary or com- 

posite) in Ref. 26. The graphical analysis leading to the pole extraction applies 

equally to unstable particles. 

A simple example of the reduction formula for unstable particles is provided 

by e-h elastic scattering. The scattering amplitude is 

out 
d2>p2 lpi,ki> 

in 
= J fd4xld’x2d4yld4y2[Utk2,Y2) ~~@,J,WJ(P,,X~) W,,Y,)] 

(6.46) 

where 

Here x and p are the coordinates and momenta of the e; y and k, of the /J. The 

external wave functions are spinors times plane waves: 

U(p, x) = u(p) elp’x (6.47) 

Continuing the right hand side of (6.46) to complex ki such that 

(kl)2 = dH2, (k2)2 = dzi?*2 

gives the matrix element as the residue of the Green’s function poles. Note that 

energy-momentum conservation reads 

p2+k; = pl+kl . 



. 
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For stable particles the proof of the reduction formula depends on the 

existence of asymptotic states 27 like 

lp,in = lim J d3y 77 * 
t 

?<Y> i x u(p) elP'YIO> 
+-CO 

(6.48) 

(This is, of course, only true in the weak operator sense.) For unstable par- 

ticles the energy is complex so that this limit either diverges or vanishes. (This 

reflects the physical reality. ) The absence of an asymptotic state has an impor- 

tant consequence for the connectedness of the scattering amplitudes. Consider 

e-e scattering instead of e-p. Then the complex ki in (6.46) become real Qi. 

The connected amplitude is 

outd2, P2 Ipl,e& = i. 
J 

d4y Out <Q2,p2 I?(y) IP$~ tE-+m2) U(&YJ . (6.49) 

Strictly speaking, the external wave functions should really be square integrable 

solutions of the Klein-Gordon equation that equal (6.47) only in the plane wave 

limit. Before this limit is taken the spatial derivatives in (6.49) may be inte- 

grated by parts to get 

out 
cQ2, p2 IP~,Q~$ = i s d 4 outce2,P2 I?(y) lPl>in Y [$- e2+ m21U(Ql,y) . 

(6.50) 

Because the wave function satisfies the Klein-Gordon equation this is 

out <Q2, p2 Ip,, Q& - = -/d4y&pe22,p21$(y) Ipl?&J(eI,y)) 

= )J d3y Outd2,p2 I?(y) Ipl>in 7 i at UtQ1,~) . 
(6.51) 

Because of the asymptotic condition 27 G(Y) creates an in state at t=-m and creates 

an out state at t=+~: 

Outd2, p2 IpI, Q1$ = 
out 

d2, p2 IP~,Q$~ - d2 le,> <p2 IpI> . (6.52) 
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This shows that stable particles may propagate freely or interact as Fig. 4 

illustrates. 

It is easy to see that unstable particles do not give this connectedness struc- 

ture. If c is complex, the integration by parts in (6.50) is not possible and the 

derivation fails. If, however, x is actually real then (6.50) is valid but because 

k” is complex the limits in (6.5 1) either diverge or vanish. Thus (6.52) does 

hold for unstable particles. The connectedness structure for the S-matrix ele- 

ments is then that given in Fig. 5 where the wavy line denotes the unstable 

particle. 

For unstable particles the proof of the reduction formula must naturally be 

modified. The .method of Appendix A is again the key. The Fourier transform 

of the three &functions in (6.46) produce three resolvents. These may be ana- 

lytically continued to the poles whose residues are then the unstable state vectors. 

The right hand side of (6.46) thus becomes 

i /- _I d4y Outck2,p2 I?(y) lpI>in [n+dM2] UtQY) 

analogously to (6.49). But now there is no fourth &function to produce a resol- 

vent. Instead, crossing and translational invariance give 

i / d4y Out<k2, p2, G1 le ---y q(o) IO> [$+ Jzi] u(k,, y) 

= i’ ‘%k2, p2, & l(2nj4 d4(k,-g) 8(O) IO> @;+A2 U(k,) . 

(6.53) 

To go to (k,)2=.-M2 requires analytically continuing the 6 function. Suppose FI 

is kept real and ky is taken complex. Then as discussed in Section V. C, 
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Bremermann and Durand24 have shown 

(6.54) 

The continuation appropriate to (6.53) starts with ky in the upper half plane. 

Thus (6.53) becomes 

Out<k2, p2, if+ lGw3 63@l-3+ 1 Tj(o) IO> (I+~“) uq 
k;-H 

(6.55) 

when Im ky> 0. Now the resolvent can be continued clockwise onto the second 

sheet. Because of (2.9) it has a pole whose residue is a product of unstable 

state vectors. -The continuation of (6.55) to the pole is then 

out&2, p,,p, Ikl> ik; 1$(o) lo> U(kI) = Out<k2, p2, PI lkI> 

Using crossing again shows this is 

out 
<kg, p2 I+ kl> 

in 
. 

This demonstrates the reduction formula (6.46) as claimed. (Note that for stable 

particles the continuation is to a real energy below the production threshold and 

the same argument is rather weak because of the double contribution from (6.54). 

Already knowing the correct answer (6.52) shows that the Atie actually corresponds 

to the creation of both an in state and an out state. ) If the unstable particles 

are composite rather than elementary essentially the same proof applies. 
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VII. A SOLUBLE EXAMPLE 

To show how simple it is to describe unstable particles as eigenstates of 

the Hamiltonian, the familiar problem of elastic scattering from a three- 

dimensional square well potential will now be examined. This problem is non- 

relativistic, but otherwise contains all the features of unstable particle states. 

The exact S matrix is given in (7.7). The wave functions that correspond to the 

second sheet poles are displayed in (7.28). These are exponentially growing 

but nevertheless have zero norm (7.32) when properly calculated by analytic 

continuation. This method of calculating with unstable particle wave functions 

is put to an exact test subsection E. 

A. The S Matrix 

The Schroedinger equation for a constant potential of depth V > 0 and range 

R is 

The Q=O solution is 

‘PEtr) 

where 

(7.1) [ 
1 

-2m v2 -V e(R-r) +(F) = E G(F) 1 . 

CA-L CE sin Kr .r 

_ F [em” _ q(E) etir] 

r<R 

r>R , 
(7.2) 

k= ,j=, K=,/m . (7.3) 

The three quantities C, D, and q are determined by the continuity of + and its 

derivative at r=R and by the overall normalization. 

The scattering amplitude is determined by the phase shifts: 

*(p2-p1) 2 (ZQ+l) e2i*QPQ(cos 6) , 4np p 
2 1 Q=O 

(7.4) 
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where plane waves are normalized as 

3 3- - 
G2 q> = (270 6 ( P2 -P,) - U-5) 

The phase shifts may be calculated from the asymptotic behavior of the wave 

function because 

where (7.6) 

f(e) = z ’ g (%+l) (e2i6a - 1) PQ(cos 0) . 
Q=O 

Comparing the asymptotic form of (7.2) with (7.6) gives 

T(E) = e 
2i60(E) 

Thus n determines the scattering amplitude, To find 7 explicitly, apply the 

boundary conditions to (7.2) to get \ 

K cot KR + ik 
vItE) = K c&m _ ik e 

-2ikR 
’ (7.7a) 

This is the exact S matrix. It has a cut in E whose location depends on the 

definition chosen for the square root in (7.3). It is conventional to take this cut 

along the positive real axis, Thus 

0 < Arg JE 5 YT , 

i.e., 

ImklO 

ImKLO . 

The analytic continuation of nI(E) onto the second sheet is then 

77Ip) = 
K cot KR - ik ,2ikR 
K cot KR + ik , 

(7.8) 

(7.7b) 

where k and K are still the principle square roots given in (7.8). 
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The two-sheeted S matrix n(E) explicitly satisfies extended unitarity and 

hermitian analyticity . Physical unitarity is the statement 

I\(E) I2 = 1 (E positive real). 

The extension of this to all values of E is 

77p)17Jp) = 1 (E complex). (7.9) 

Hermitian analyticity follows from the principle square root definition in (7.8) 

which satisfies 

(JE)” = - @ . 

Consequently 

771(E)* = ?I@*) 
(7. 10) 

vIIW* = vII(E*) - 

It is well known that resonance bumps occur along the real axis at energies 

for which 

This means 

cotKBR=O . 

KBR = (n + l/2) 7r 

or equivalently 

E 
B 

= in+ 1/2)2 1T2 _ v 
2mR2 

. 

Precisely at this energy 

dEB) = -e 
-2iKgR 

. 

I The width of the resonance is obtained by writing 

(7. lla) 

qI(E) =m e-2ikR , 
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where 

f(E) = i Frn cot KR . (7.12) 

When E is near EB 

f(E) G (E - EB) f’(EB) + d(E -EB)2 . 

Therefore 

77(E) = 
E - EB - d yB e-2ikBR 

E-EB++yB 
, 

f 
where 

Explicitly calculating this gives 

YB = 
2 J(n+ l/2)2 ,2 - 2mVR2 

mR2 
(7. lib) 

The resonances will be distinct only if the width is much smaller than the energy 

spacing. This requires that 

2 J(n+ l/2)2 7r2 - 2mVR2 
2 

<< 1 . 
(n-!-l) 7-r 

(7.13) 

B. Location of the Poles 

The discussion of these resonance bumps is quite standard and is given in 

many textbooks. The emphasis of the present work, however, is not on these 

bumps but rather on second sheet poles. In this example, as always, there is no 

guarantee that real axis bumps are a manifestation of second sheet poles. This 

section will show that, in fact, there are second sheet poles. Theses locations 

will turn out to agree with the energies and widths in (7.11). 
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Let the poles occur at a complex energy E” on the second sheet. Put 

ol=RJ+) 

/3=Rds 
(7.14) 

where 

Im a! > 0 , Imp>0 . 

Then the S matrix (7.7b) has a second sheet pole only if 

a! cot Q! = -ip 

o2 -0’ = 2mVR2 . 

Now eliminate /3 to get 

(7.15) 

a 
sin =f 2mVR2 J . (7.16) 

The real part of the left hand side must vanish and the imaginary part must equal 

the right hand side. Let 

~=a +icz 1 2 
(7.17) 

Then (7.16) gives 

tanh a2 tan ocl 
=- 

o2 9 
(7.18a) 

o2 - 2mVR2 . (7.18b) 

The existence of solutions to these equations is proven graphically in Fig. 6. 

There the solutions of (7.18a) and of (7.18b) are both plotted. The intersections 

of the plots give the al and CY~ of the corresponding unstable particle pole. 

Figure 6 is plotted for a weak potential. As V is increased the widths become 

smaller and aI approaches (n+ l/2) 7r. If V is increased so much that 2mVR2 > CY~ 



-62 - 

the unstable particles become stable. Then a2=0 and (7.18b) determines al. 

As V-+00, the stable particle energies approach the usual value cxl= nn. 

Once al and a2 are found, the corresponding values of p, and /3, given by 

(7.15) are 

(7.19) 

Figure 6 shows that the only allowed values of positive al lie in the strips 

nr < ozl < (n+ 1/2)n . 

Because of (7.19) this means #at all the poles have p, > 0 and hence all lie on 

the second sheet as claimed. (Of course, a2 must also be positive but its sign 

is lost in going from (7.15) to (7,16). ) 

Let the real and imaginary parts of the energy at the pole be given by 

E=Ep++yp . (7.20) 

Then 

2 2 2 2 

Ep = al-[Y2-V= k-p2 

2mR2 2mR2 
(7.21) 

(7.22) 

because of the definitions (7.14). Equations (7.18) have the property that if 

al + icr2 is a solution then so is -a! + ia! 1 2’ Therefore from (7.19) both p1+ip2 

and -pl+ip2 are solutions. Thus in (7.22) there are automatically poles at 

Ep+$yp andEp -f p y as claimed. 
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The existence of the second sheet poles is thus proved but it would be nice 

to determine their locations more accurately. Fortunately, approximate solutions 

to the coupled transcendental equations (7.18) may be obtained for a1 large and 

a2 small. In this limit Fig. 6 shows that a! 1 is a little less than (n+ l/2) r for 

n a large positive integer. Therefore let 

al = (n-t l/2h - tn+ :/zjn 

and determine A. Equation (7.18b) gives 

o2 = 

(7.23) 

(7.24) 

where 

a f (n-k 1/2)7r 

b E &+ 1/2)27r2 - 2mVR2 . 

For o2 to be small it is necessary that 

b<<a . 

This is in accordance with (7.13). Substituting (7.23) and (7.24) into (7. 18a) 

determines h via the equation 

;+A. 1-i = 1-3 
i ) 

1 h2(b2+A(h 2)) 1 

a2 a2 - +@2 ’ 0 

Because a is large, A must be near 1. In fact 

The solution is then 

9 
1 -kk + .., 

=“-a 3a3 
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The corresponding values of p are 

2-l p,= 1+=---+ . . . 
6a2 

These solutions give for the real energy (7.21) 

Ep=-l_ 
2mR2 1 . . . . 

(7.25a) 

(7.25b) 

This is in good agreement with the energy at which the bump on the real axis 

occurs which according to (7. lla) is 

b2 EB=- 
2mR2 * 

The width which follows from (7.22) is 

yp=2c [l+$+...] , 
whereas the width of the real axis bump is 

YB =3 

according to (7. lib). 

(7.26a) 

(7.26b) 

C. Schroedinger Wave Functions 

The wave functions for an unstable state is the analytic continuation in “E of 

+(E, r) to the point E on the second sheet. At this value of energy, n =oo and D-0 

but the product Dr] is finite. To calculate norms and inner products with such 
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states it is useful to introduce the wave function 

w sin Kr r<R r 
GA = , (7.27) 

D(E) q(E) ,ikr r>R r 
* 

where C, D, and n are the same functions of E as in (7.2). Note that whereas 

Cp is an energy eigenstate for any energy E because it satisfies the boundary con- 

ditions for any E, $ certainly is not. However zc) is an energy eigenstate at 

energy “E on the second sheet because it coincides with + there: 

On the second sheet $ is given by 

f -C#) 
I sin Kr r<R 

&AE,r) = r , 

r>R 

(7.28) 

where 

ImkLO , ImK> 0 

as always. The continuity of $I and its derivative at “E imply 

-C sin c~ = (Dn) e-@ 
(7.29) 

C cos a! = i i (Dq) emiP 

where a! and p are given by (7.14) and C, D,r are the values at E” on the second 

sheet. (Note that the boundary conditions (7.29) contain the pole constraints 

(7.15) on Q! and 0.) 

The norm of $,I obviously cannot be obtained by integrating the absolute 

square of the wave function (7.28) because it diverges exponentially in r. This 

divergence in r results from continuing to the second sheet; # decreases 
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exponentially on the first sheet as (7.27) shows. The norm of $II is obtained by 

calculating the norm on the first sheet and then analytically continuing the answer 

to the second sheet. (See Section III. ) The first sheet norm is simply 

<z)(E) I+(E)> = J d3r I$(E,r) I2 * 
= 27rlW) I 

2 sin (K*+K)R 
K*+K 1 

+ 4~rlD(E)q(E) l 
2 ,i(k - k*)R 

i(k-k*) . (7.30) 

t 
Analytically continuing (7.30) to the second sheet gives 

a,h,,(~) I$,,(& = 27R IC I2 2 - 
sin 2a! 1 

2a! 
1 I 

2P2 
-27rRIDi~l~ e . 

p2 
(7.31) 

Because of the two boundary conditions (7.29) this whole quantity vanishes. To 

see this, multiply the first boundary condition by the complex conjugate of the 

second and vice versa to get 

IC I2 sin a* P cosa!=-iT IDJI 2 2P2 e . 

Add and subtract these: 

IC12sin2cul=i($-5) lW12e 
202 

IC12sinh2a2=(~++) lBn12e 
2@2 . 
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Substitute this into (7.31) to get 

<+,$Ep) IGu(Ep)> = 2nR lDq12 e 

= 2rR /Dn12 e 

Now from the definition of Q! and p 

2 2 CY -p = 2mVR . 

Separating real and imaginary parts gives 

ala2 - PlP, = 0 ’ 

Thus 

< $,(E) l+II(Q> = 0 . (7.32) 

Note that the vanishing of this norm depends essentially on the reality of V, 

i.e., on the hermiticity of the Hamiltonian. 

As indicated in Section III the effective norm of an unstable state is the inner 

product with the state of energy E*. This will be explicitly calculated now and 

used in several later subsections. It was shown subsequent to (7.22) that such 

poles do exist. Because of time reversal invariance 

Therefore (7.27) satisfies 

This means that evaluating 

@E*(F) = @E(F)* . 

W*,r) = qG,r)* . (7.33) 

first requires calculating 

<$(E*) I+(E)> = ,‘d3x NE*, r)* $(E,r) 
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. 

and then continuing the result to E. Performing the integral gives 

- 4~[D(E) rl(Efl 
2 e2= 

2ik’ 

The continuation of this to the second sheet is 

+,@*, I$,(+ = 27rR C2 k-v] +2733(Dr7)2 $ . (7.34) 

The boundary conditions (7.29) may be manipulated into another useful form by 

multiplying them together and by adding the squares: 

-C2 sin a! cos a! = i i (DIJ)~ emzip 

C2 = 1 --ICE (ml2 evzip . 
( ) a2 

Using these in (7.34) gives 

+,$-@*) I$@)> = 271R (DJ) e 2 -2qLg (l+?$) . 

For subsequent purposes it is useful to define normalized states 

(7.35) 

Iq*)> = I?@*)> 
G 

where 

N = 27rR (Dn)2 eWzifi 

(7.36) 
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D. Calculation of yF 

One simple application of these curious wave functions is to calculate the 

decay width yF given by Fermi’s Golden Rule and see how it compares with yB 

and yp. This requires evaluating the matrix element 
* 

<P IV B&> (7.37) 

where 

To calculate the decay amplitude use the first sheet wave functions (7.27) to get 

<i?* IV I G(E)> = - rd3x .-iGY V _ @I-r) F sin Kr 

_ sinkip)R 1 . ’ 

Continuing this to the second sheet and using the definitions of a! and @gives 

<i?* IV II@E)> = C 

Using (7.15) simplifies this to 

27rC cc* IV IzJ+.&E)> = 111 - LL cos a sin /3 p 1 . 

The boundary condition (7.29) can be used to eliminate a! and get 

-271. <f-j* IV I@)> = --&- DYj . 

The normalized amplitude (7.37) is obtained by dividing this by N in (7.36): 

<r* IV I@R(E)> = - m 

2r &-f$q * 

(7.38) 



- 70 - 

Denote the continuation of this amplitude to real energy by T: 

T = lim 
E-real 

2r .I. e = -- 

The real part of “E is defined as El? in (7.20). The decay rate is then 

YF = / 
-$ 2& - Ep) IT I2 . 

The phase space integration gives 

YF = ITI2 7i- 

mPl == ITI2 . 

By (7.39) this is 

Using the explicit values of Q! 1 and p, in (7.25) gives 

YF = (7.40) 

This value of the width is to be compared with (7.26) for yB and yp. 
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E. An Exact Test 

The idea of introducing a wave function for an unstable particle may be 

checked exactly. The general expression for the S matrix 

<‘i;z; IS lj$> = <‘;tz ‘El> - 2riS(E2-El) xc2 lV+V & v ‘I$> _ (7.41) 

must have a pole on the second sheet at g. According to Section II this pole is 

produced by the resolvent in (7.41) and has a residue determined by the wave 

function of the unstable state. The scattering amplitude at the pole is therefore 

predicted to be 

<c2 IS II-cl> C - -27ri 6(E2-El) - 
E-Z E-E ’ 

where E=E =E -and the residue is 1 2 

c E <r* IV Iy’u(E)><qp*) IV II-c> . 

Because of the time reversal property (7.33) 

<$.&*) IV Ii& = <I?* IV &@)> . 

This is the matrix 

predicted to be 

J..L II 

element already calculated in (7.38). Hence the residue C is 

(7.42) 

. 
The real test of this calculation is the knowledge of the exact S matrix for 

J?=O. If the calculations that have been done with the exponentially diverging wave 

functions for unstable states are valid then (7.42) must be an exact result. 
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According to (7.4) for s-wave scattering 

cg2 Is I Cl> = (279 
3 6(P2-Pl) 

4V2Pl T(E) 

= -2ni 6(E2-El) mp [= rl(E;1 

On the second sheet 
.BikR f(E)+E 

‘IbE) = f(E)- E 

where f(E) is given by (7.12). 

?JJ+E) -, 
E--E 

This gives for (7.43) 

At the pole 

2Iz ,2iP 
(E-z) [f’(E) - ij ’ 

<‘ji;z IS ‘jt$> C’ -- -27ri 6(E2-El) - 
E-+E E-E 

with 

c, = -ir 2~3 eW . 
rnK [f?(E) - 11 

Calculating the required derivative gives 

f?(E) _ 1= zg p$)(l++) . 

Putting this into (7.44) gives 

_ (7.43) 

(7.44) 

(7.45) 

Hence C’=C and the wave function calculation is exact. 
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APPENDIX A 

EXISTENCE OF l@(r;‘)j, j,> 

The resonance pole will occur in many scattering amplitudes. To demon- 

strate the existence of the state I$> used in Section II consider, in particular, 

an elastic scattering amplitude in which the pole occurs in total center-of-mass 

energy, i.e., in s. This scattering amplitude is obtained from the Fourier 

transform of a Green’s function with an equal number, n, of incoming and out- 

going lines. Denote this Green’s function by 

%(x’,x) = <O IT[d(xl) cd(x)] IO> , 

where 

x = (X1,X2’ . . . Xn) 

-G9=‘Va (x)zcI 
[ 1 1 o-2 

(x2)..- zci, (5) 
n 1 

(A. 1) 

(A. 2) 

and the G(x) are renormalized Heizenberg fields. Let kp be the total energy- 

momentum four vector of the corresponding elastic scattering amplitude 

tea g. , s=k2). Introduce average and relative coordinates by 

xi = X+r. , 1 5ri=0 . 
1 

Then X and k are conjugate variables. 

By hypothesis, analytic continuation of the scattering amplitude in the vari- 

able k” leads to a pole on the second sheet independently of the other momentum 

variables. The pole must therefore occur in the analytic continuation of 

G(k? , k) = /d2X’ d4X eik” x’ f?(xf,x) e -ik. X 
7 

independently of the 2n-2 relative coordinates r and r’. Among the (2n)! time 

orderings in (A. l), isolate the (n!)2 terms for which (xi)’ > (x3’, for all i and j, 
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by separating 

t ‘g(x’,x) = <o I& (x’) e(tf.n - tmaxj d(X) IO’ + AC% (x’, X) ’ 

When there are only two fields in &’ , 

t max=$(tl+t2) +; ItI-t,I 

t min = + (tl+ t2) -; It,-t, 1 . 

Generally for n fields 

t maX = X0 + cr(rlo, r2’, . . . rno) 

t min = X0 + p(rI”,rzo, . . . rno) . 

This separation and the fact that 

iXOH 0 
&(X,r) = e d&r) ems H 

allows the Fourier transform (A. 3) to be performed. The result is 

G(k’,k) = <+ikf) le -ip(k” -H) 2~-i~S(k’~-k~) .i(u(k’-H) ,+(rr,> 
k”-H 

where 

+ AG(k’, k) 

Im k” > 0 

a = a(rio) 

, 

(A. 4) 

(A- 5) 

(A. 6) 

Because the resonance pole in the scattering amplitude is on the second sheet, 

it can only come from terms in (A. 5) that have a branch point in k”. The dis- 

played term has branch points along the positive real k” axis coming from 

thresholds in H. Of the terms in AG, (n! )2 of them have cuts only along the 
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negative real k” axis coming from (k’+H)-l. None of the other terms in AG 

have branch points at all because they come from finite ranges of integration of 

the variable Xto-X0. Thus the unstable particle pole can only come from the 

analytic continuation of the first term of (A. 5). Since this term has a pole then 

so does the analytic continuation of 

(A. 7) 

Because the spatial dependence of the Heisenberg fields is 

d&r) = e 
-g. g 

&(O,r) eZaB , 

where g is the full momentum operator. This means that I@> in (A. 6) is an 

eigenstate of momentum: 

9 I@(G) =Klg,K)> . (A. 8) 

As yet I#> has n discrete field indices (cY,, cy2, . . . on) that are suppressed 

in (A.6). These indices may be coupled in pairs with ordinary Clebsch-Gordon 

coefficients leading to an n-fold Clebsch-Gordon coefficient that satisfies 

where 9’ are the rotation appropriate to the field representation (usually 

(I, 0) @ (0, I)). The final form for I+ is then 

I$(r)j, j,> = c /(d4x)” &(X0) eiFx (xl) . . . +a (xn) IO> 
Q! 9 n 1 

Here f is a convenient smearing function of Lorentz invariants r2 and r.. r 1 j’ If 

I+> in (A. 6) gives a pole in (A. 7) then at least one of the (j, j,) combinations in 
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(A. 9) must also because of the completeness of the Clebsch-Gordon coefficients. 

Under rotations (A. 9) transforms as 

U[f] IG(r)j,j,> = c I@(RT;)j, jb> D., . (R) . 
jb J3’J3 

Also, 

7’ I$F)j, j,> = j(j+l) l+(Qj, j,> 

J31~~)jj,j3’=j31~if;)j,j3> . 

The function f may be chosen to guarantee the normalization 

< j$, jt $@) l$(G)j, j,> = S3(P -X) 6.’ .6., J ,J 13J3 ’ 
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APPENDIX B 

RESOLVENT IDENTITIES 

The identities (2.8) and (2.12) follow very easily from the definitions 

R(k”) = 1 
k”-H 

- 

r(k’) = 1 
k’-H’ ’ 

The full resolvent satisfies the three integral equations 

R(k”) = r (k’) + R(k’) HI* r(k”) 

R(k”) = r (k’) + r(k”) H” R(k’) 

R(k’) = r(kO)+r(kO)Hf~r(ko)+r(kO)H’lR(ko)H1lr(ko) . 

Use the fact that r(k’) commutes with A and B to calculate the projections 

AR(k’)B = [AR(k’)A] HI’ r (k’) 

BR(k’)A = r(k’) H”[AR(~‘)A] 

BR(k’)B = Br(k’)B+r(k’) H”[AR(k’)A] H”r(k’) . 

Sum these three projections together with AR(k’)A itself to get 

R(k’) = Br(k’)B + [l+r(k”) H’;) AR(k’)A [HH”r(kO) + 13 (B. 1) 

as claimed in (2.8). 

Now to simplify AR(k’)A use the integral equation 

R(k”) = r(k’)+r(k’) H”r(k’)+r(k’) H”r(k’) H”R(k’) . 

The diagonal projection of this is 

An( = i + 1 HI’ r (k’) HI’ [AR (k’)~] 
k”-E k”-E 

(P 4 

(B-2) 
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where E 
e 

is the expectation value 

3- - 
+(t;;) IH’ l$(E2)> = E+ 6 (kl-k2) . 

Rewrite (B. 2) as 

Htj AR(k’)A = A . 

The expectation value of this is 

J d3k2i$(Fl) lkO-Ht-H”r(k’) HI’ l$(~2)><+@2) I& 1 @(r3)> = d3(rl-r3) 

(B- 3) 7 

The definition of D(k) in (2.7) is 

Therefore (B. 3) shows that an equivalent formula for D(k) is 

<@(zl) Ike-H’-H” r(k”) H” I$(F2)> = ~5”(7;1-‘;~) D(k) , 

as claimed in (2.12). 
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APPENDIX C 

THE TOPOLOGY OF AT 

Because the unstable particles have zero norm a new, positive-definite 

norm operator must be found to give meaning to (3.15). This norm should be 
* 

positive-definite both in the unstable particle sector of AT as well as in the physi- 

cal Hilbert space 4 c A f . The difficulty is that certain states like I+> are in 

the Hilbert space h and yet are not orthogonal to the unstable states. In partic- 

ular , 

< @(P) I q$)> = S3(PX) . tc. 1) 

Essentially the problem is that the three states I +n>, lQ6>, and I$> are 

linearly independent but not orthogonal. To construct an orthogonal basis is 

straightforward. First let 

Ilu= _ rd3k (l+(k)><B(k*) 1 + IQ(k*)><@(k) I) . tc. 2) 

This is the identity operator in the one unstable particle sector: 

Ilu19fk)> = l\koc)> (C. 3a) 

Ilu 19(K*)> = lQ(k*)> . (C. 3b) 

The projection of I$> along the unstable sector is 

I,I@(+ = W(k)> 1 + l@(K*)> 1 
JN m 

with N taken from (3.12). The part of I$> orthogonal to the unstable particle 

sector is just 

Ils I$$)> = l@G)> - W(k)> mi- + le(k*)> 1 . 
J-N m 

(C. 3c) 

An orthogonal basis is therefore provided by the three states (C. 3a), (C. 3b), and 

(C. 3c). 
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The identity operator (C. 2) for the unstable particle sector may be extended 

in a hermitian manner to include many unstable particles or mixtures of stable 

particles and at least one unstable particle. With the extension Iu so defined let 

IF> - I, IF> if IF> E +4 _ 
Is IF> = . tc. 4) 

0 if IF> k X 

Thus Is projects out what may be called the very stable part of the Hilbert space 

A. The identity operator in the full space AT is then 

I = Is + Iu tc* 5) 

where IsIu = IuIs = 0. The important point is that the first term of (C. 5) is Is and 

not the usual identity in A. Note, too, that (C. 5) assumes that the eigenstates of 

H spanAT. 

Before constructing a positive definite norm operator (see (C. 13)), it is 

worthwhile to investigate in more detail why the inner product (C. 1) does not 

vanish. To do this, express I $> as a superposition of energy eigenstates. By 

assumption the asymptotic scattering states, either in or out, span A. Thus 

Put 

I&)>= /dE IE,c>in q(E) * tc. 6) 

The state lE,x;r>m is a direct product of asymptotic stable particle states 

@3,x veT p v ) with total energy E and total momentum F. (The relative energies 

and momenta are suppressed.) The state I+> was specially chosen in Section II 

and Appendix A so that a pole would occur in the matrix elements 

Because of (C. 6) 

I l ->. 
k”-H 

pw 

1 -= 
W / 

dE- . 
k”-E 

(C. 7) 
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Analytically continuing the k” dependence of (C. 7) clockwise into the lower half 

plane merely distorts the dE contour ahead of it. A pole can occur in (C. 7) at 

k”=p only if the contour is trapped against a fixed pole of the integrand at E=k” 

in the lower half plane. Thus 

C 9*(E)q(E) - - 
E-p 

(C. 8) 

where c is finite but nonvanishing. The pole in (C. 8) cannot be of higher order 

because the pole in (C. 7) would not be first order then. Furthermore, V(E) can- 

not have ad hoc poles and cuts because they would produce spurious singularities 

in (C. 6) and hence in the S-matrix. Hence it is the pole in the weighting function 

(C. 8) that allows certain states in the physical Hilbert space X to have a nonzero 

overlap with the unstable particle states. 

All this is in preparation for discussing the norm. For a general state 

IG>= /d3k IQ(k)> GA(r) + /d3k W(k*)> GB(f;) tc. 9) 

the inner product norm is 

<GIG> = GAGB+GAG;; . (C. 10) 

This norm is, of course, real but not necessarily positive. Clearly (C. 10) is 

just the expectation value of (C. 2): 

<GIG>= <GIIlulG> . 

This suggests defining a diagonal operator 

iI lu = J I d3k I@(k)> <%0(k) I + W(k*)> <*(k 

The expectation value 

<GIOlulG> = /d3k{lGA12 + IGB I 2 
I 

3 I] * 

(C. 12) 
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is then positive-definite. Again (C. 11) can be generalized to the entire unstable 

sector. Therefore define the full norm in AT by 

!2 = Is + Qu 
(C. 13) 

IIFI12=<F1621F> for IF> EAT _ 

To see how (C. 13) acts, calculate the norm of I@>. From (C. 11) 

<qb@) IauI$(G)> = 
This, of course, is not generally positive. To calculate the Is contribution to 

the norm use 

c+(r) IIs I&‘)> = {<@@J IIs}(Is lM+} * 

Substituting (C. 3c) gives 

<y3@) II, I@(P)> = 1 ( +$) &lx-‘) 

so that 

<$(K) IQ l$(P)> = S3ikp-P) . 

This shows that for states in k the G norm agrees with the usual norm in X: 

<F Ifi IF> = <F IF> for IF> E X . 

Thus /I F II is a genuine norm. It satisfies 

a) II F II 2 0 ; II F II = 0 iff IF>=0 

b) II aF II = la! I . II F II 

c) IIF1+F211 ( IIFIII f IIF . 

A further bonus is that AT is Cauchy complete in this norm. More precisely, 

any sequence of states IF,> of the form (C. 9) that is Cauchy complete, i.e., for 

which 

II IF,> - IFm> II - 0 as n,m+m 
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must necessarily have a limit IF> E AT. This is a trivial consequence of (C. 12) 

and the fact that square integrable functions are Cauchy complete. The more 

substantive version of completeness is why only states of the form (C. 10) should 

be considered. This is just the question of whether the eigenstates of H span AT - 

previously mentioned. 

The definition of the norm operator in (C. 13) is not unique. For example, 

define linear combinations 

I n,(k)> = I Q(k) >a+ l*(k*)>p* 

h,(k)> = I *EQ> +f!- - I q(k*)> @$ 

where a! and p are complex numbers satisfying 

o!p + o!*p* = 1 . 

The IT> have inner products 

<T+‘) I al(k)> = S3(j=) 

< r2(k’) 1x2(k)> = -63(l?-T;) 

<al@‘) In,(k)> = 0 . 

The identity operator (C. 2) written in terms of these new states is 

I lu = /d3k {hr.&k)>< 7rl(k) I - la2(k)z<T2(k) I} . (C. 14) 

The norm operator a in (C. 11) is diagonal in the I$> basis but not in the Im 

basis. The minus sign in (C. 14) suggests defining a new positive definite norm 

operator that is diagonal in I r>: 

S-2’ G /d3k { Inl(k) > <nl(k) I + I 7r2(k)> ar2(k) I} . 

Obviously 17r2> here is formally analogous to the timelike photons of the Gupta- 

Bleuler quantization of QED and W is analogous to their 77 trick. 
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Sets which are open in the 0 norm are also open in the at norm because the 

two are connected by the transformation 

T = Id38 { ly(k)xf(k) I + ln2(k)><Wc*) I} , 

in that 

Q=T+Q’T . 

Because of (C. 2) 

T+T = Ilu . 

Because of (C. 14) 

TT + = Ilu . 

Thus T is unitary. The topology of AT is therefore not changed by such a change 

in the definition of norm. In particular if 

<AFl51lAF>=O 

then 

Therefore 

<AF Is2’lAF> = 0 . 

IF1> = IF2> 

has an invariant meaning. 
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APPEND= D 

MULTIPLE POLES AND MULTIPOLE GHOSTS 

The analysis of Section III applies to any first order pole in the scattering 

amplitude. It is well known that unitarity and the asymptotic condition forbid 

multiple poles on the physical sheet. 28 No such prohibition applies to unphysical 

sheets. 13 An analysis similar to Section III will show that whenever there are 

multiple poles the state space x T necessarily contains some curious new states. 

t 

The term multipole ghosts originated in Heisenberg’s indefinite metric 

16 quantization of the point source Lee model. In such a quantization the usual 

prohibition does not apply and, indeed the scattering amplitude has a second 

order pole on the real axis. (See Section III. B. ) Associated with the double 

pole are two states: an energy eigenstate and a ghost of that state. Nakanishi 

has discussed the possibility of multiple ghost states generally in an indefinite 

metric quantization and shown that if there are such states the scattering ampli- 

tude has a multiple pole on the physical sheet. 29 

This discussion borrows the name multipole ghosts but differs in two respects. 

First, the existence of the states is deduced from the existence of the multiple 

poles (rather than conversely) . Second, the quantization is conventional in that 

the multiple poles are only on unphysical sheets. 

Suppose then that the scattering amplitude contains a pole of order L on the 

second sheet at k”=p. This sheet is reached just as in (3.3) by continuing 

clockwise around a particular n-particle branch point. At the pole 

D,(E)=0 . 

Furthermore, because the zero is of order L 

dk” lk” 
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and generally 

d-l Dn(k) 

doroTe- 
= 0 !I= 1,2,... L . 

“k 

Using expression (2.12) for D(k), these three equations are 

<$I(??) I%‘-H’- H” r,ii;“) H” I q(r)> = 0 (D. la) 

<$I@) ll+H” r,(x’) 2 [ 1 H” I@)> = 0 (D. lb) 

<@@?) IH” r,&“) ’ H1’ I$$)> = 0 [I 1 8=3,4,... L . (D. lc) 

The L’th derivative of D(k) does not vanish. Let it be 

-c@(p) IH” rn(ko) L+l [ 1 H” I+(g)> = CS(i? -r) , (D. 2) 

where C is a finite but nonvanishing constant analogous to N in (3.12). 

The analytic continuation of (2.13) is still 

&O-H) l&(k)> = I&) > .Dn(k) . 

Thus 

@O-H) I$$)> = 0 

as before. Now, however, the equation 

(k0-W2 l#Jk)> = @O-H) l+(r)> D#) 

contains new information. Differentiate this with respect to k” and then set 

@O-H) 2 
d I $Jk) > [ 1 ZZ 

dk” “k 
0 . 

Generally if the equation 

(k”-H)’ I$Jlc)> = (k”-H)‘-l I e(r))> D,oI;) 
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is differentiated Q-l times the result is 

&O-H) ZZ 0 . 

These equations may be summarized by 

&O-H)” I$Q@> = 0 

where 

. 
I$@)> = (-)Q-l 

d-l l$p)> 

d(k’)‘-’ E 

Q=1,2,3 ,... L . 

(D. 3a) 

Q=1,2,... L . (D. 3b) 

These equations are useless unless I#,&)> can actually be differentiated. 

The explicit form (2.10) shows that it can. Furthermore, because the k” depend- 

ence of (2.10) is so simple the results are just 

Iz)~&)> = 
C 
l+ r,&‘)H’;] I@(K)> (D. 4a) 

l&G)> = [rn&o~Q H” I@@)> Q=2,3,... L . (D. 4b) 

Now, of course, 

@O-H) I&$)> = 0 (De 5) 

as always. Next try to evaluate 

&O-H) l@i)> . 

Because 

&O-H’) r,@‘) = 1 

it is clear from (D. 4b) that 

@O-H’) I$:&)> = rngo)H” I#‘(??)> . P. 6) 

Furthermore 

H” I$:@)> = H” rnGo) 2 [ 1 H” l+(r)> . 
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From the definitions of HI1 and the reduced resolvent in Section II the right hand 

side of this equation is proportional to I$>. Thus 

H” I$;($ = I&))> A P. 7) 

where h is given by * 

<c$@) IH” r,(%‘) 2H’f I$F)> = S3ikf-r)A c 1 . 

Referring to (D. lb) shows that A=-1. Subtracting (D. 7) from (D. 6) gives 

@O-H) I$:&)> = k + rn&‘)H’j I#&)> . 

Hence 

@O-H) lz@i)> = I$$)> . (De 8) 

Now do the samk thing for the higher order states: 

&O-H) I@)> = &O-H’) I$&)> - H” I@+ . 

For Ql3 the second term vanishes because of (D. lc). The first term is just 

@O-H’) I$~&)> = [rn&o~Q-lH” I@(‘)> Q=3,4,... L . 

Therefore the general result is 

&O-H) I$-&)> = I$-‘(%)> Q=2,3,... L (D. 9) 

even though the Q=2 case required special treatment. Because of (D. 9) the fact 

that 

&“-H)Q I~~~)> = 0 

merely reflects the fact that 

(l-?-H) I+&> = 0 . 

The states I#Qn> are sometimes called multipole ghost states. It is easy to show 

that 

<&) I$&> = 0 (D. 10) 
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because the Hamiltonian is hermitian as in Section III. Again hermitian analy- 

ticity requires that D(k) has a zero of order L when continued counterclockwise 

to k”=xo* * in the upper half plane. There are thus L additional states I$:&*)> 

analogous to (D. 4). The inner product of conjugate partners is 

c a3(E-F) if Q+Q’=L-l-1 
(D. 11) 

0 otherwise . 

The constant C is given in (D. 2). 
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APPENDIX E 

OTHER ONE DIMENSIONAL IRREDUCIBLE REPRESENTATIONS 

The states constructed in Section III by analytic continuation automatically 

have q2>0. Unfortunately they are not irreducible representations of the 

Poincare/ group. To construct irreducible representations requires introducing 

complex boosts because of (4.34). Once these boosts are allowed, however, a 

state with any momentum k = p+iq satisfying k2=d2 can be generated. 

Beltrametti and Luzzatto 23 observed that there are three classes of momentum 

vectors that are distinguished by whether the plane containing p and q (1) inter- 

sects the interior of the light cone, (2) is tangent to it, or (3) is completely 

spacelike. The.quantity @I: q)2 -p2q2 is correspondingly positive, ‘zero, or 

negative. A suitable real Lorentz transformation will bring any k into one of 

the three standard forms as follows: 

Type 1: A>0 

E= (01, 0, 0, P) 
(E. 1) 

Ai2 = a2 - p2 

Type 2: A=0 

E= (01, 0, i&t, ac) 03.2) 

Type 3: A<0 

Ii= (0, 0, a, P) 
(E. 3) 

A2 = -a2 - p2 . 

The subgroup of the real Lorentz group that leave % invariant is one dimensional 

in each case. Denote the little group generator by gi. Then the three classes 

have, respectively, 

\ g1= J3 
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g2 = J2 + Kl 

g3=Kl - (E. 4) 

(Of course for any of the momentum classes the subgroup of the complex Lorentz 

group that leaves a particular i; invariant has not one but three generators, viz. 

the three Si(l?) given by (4.27). In each case, however, only one of these three 

generators is proportional to a hermitian generator gi. ) 

Regardless of the type, an irreducible representation of the full Lore&z 

group may be defined as in (5.15) by 

Ik, j,o> = U[$k& L’(kd)l IQ(&)j, j,> 1 m , (E.5) 
j,=a 

where the meaning of o may differ from one class to another. For Type 1 mo- 

menta (E. 5) actually yielded the states of Section V. C on which the one dimen- 

sional little group was represented irreducibly. It will now be shown that states 

of Type 3 can also have their one dimensional little group represented irreducibly 

but states of Type 2 do not have such a representation. To see this, apply a 

real Lorentz transformation A to (E. 5) to get 

U[A] Ik, j,o> = Ub(hk,Ii) L’(&d)l Ubi] IA, j,o , 03. f-5) 

where 

Zi= L’(l-++{L(Ak, 4-l n L(k, i;)] Lc(ii,v6ir) . (E. 7) 

The quantity in braces in each case is a real Lorentz transformation that leaves 

li invariant. It is therefore generated by the corresponding gi so that 

U[L(Ak,@-‘A L(k,kd = eiwi , (E. 8) 

where A W is a real Wigner parameter, (For Type l,hW is the real Wigner rota- 

tion angle around the z axis, for Type 3,~ gives the real boost velocity along 
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the x axis, and for Type 2,$, is a mixture of rotation angle around y and boost 

along x.) 

States with momenta of Type 1 are the helicity states discussed in Section 

V. C. Consider now states of Type 3. Choose the complex boost in (E_. 5) to be 

(E* 9) 
(The velocity boost in the y direction is purely imaginary.) The corresponding 

Lore&z matrix is 

/O Oi 

I 
LC(i+q~ = “r O IL O 

icose 0 0 

\ isin 0 0 

Obviously 

I 0 1 

0 
Lc(E,J;cL)pvd = , 

1 

i& cos 6 

,ir/tz.sin 8 i 

O \ 
0 ’ \ . 

-sin 8 I / 

cos 8 I ‘ 

1 

, 

in accordance with the k of (E. 3). To calculate Z use (E. 8) and 

[ 1 Jl,Kl = 0 

to get 

ZK 
U[Z] = e2 2 

ihWKl rK 
e e-B 2 

Because 

this becomes 

[ 1 Kl,K2 = -iJ3 , 

-hWJ3 
U[Z]=e . 
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The transformation law (E. 6) for Type 3 states is therefore one dimensional as 

claimed: 

U[A] Ik, j,o> = Ihk, j,cJ> e 
-hwC 

. 

Because hW and o are real this representation is not unitary. More importantly, - 

it is not even unitary when k is continued to real values. 

For states with momentum of Type 2 there is no choice of the complex 

boost L’fi,A) that will represent the one dimensional little group irreducibly. 

Suppose there were such a choice. The Z in (E. 7) could only be a rotation 

around the z-axis if 

Lcfi,A+(J2+Kl) Lc(i;,&Y) = $-J, , (E. 15) 

for some constant c. This would then insure that 

U[Z] = e 
ihWtJ3 

and (E. 6) would then represent the little group irreducibly. Unfortunately there 

is no Lc that satisfies (E. 15). To see this write (E. 15) as 

(J2+K1) L’(E,A) = C L’(I;,A) J3 . (E. 16) 

The generators may be represented by the 4x4 matrices 

1 0 

0 
J3 = 

I 0 

\ 0 

-i 

0 

0 

-i 

0 

-i 

0 

0 

0 

i 
\ 

0 ! 

0 / 

0 0 1 

0 I 

. 

0 I 
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Explicit multiplication shows that the only matrices Lc that satisfy (E. 16) have 

all zeros in the second row. Such matrices have zero determinant and thus 

cannot represent Lorentz transformations. This shows that there is no 

state like (E. 5) which represents the little group of Type 2 momenta irreducibly. - 
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APPENDIX F 

HOW q- 0 IN HELICITY AMPLITUDES 

It is crucial that q goes to zero in the plane Fll T. Because of this, the 

helicity states of Section V. C are actually produced in (6.10) and yet their - 

observed transformation law is (6.18). To see how q + 0 begin with the trans- 

formation law 

$p(-Ar) 1 IO> 

appropriate to the residue in (6.5). Let q - 0 in some unspecified manner. Then 

project out the two particle irreducible representation (6.4): 

<np, j,Ur IAp, j,o;1+2> 

-i @fat =e C cp, j,@ lp, j,@‘;1+2> gc,,,u iii) 
o-1’ 

(F. 1) 

where 

89 = lim ew 
q-0 

P’ - 2) 

and fi is given by (6.4). 

Equation (F . 1) may be used to investigate how q - 0. Recall from (6.4) that 

Choose 

fl= Vti?‘) R@,P’) A R(P,~ L&W) . 

P= @O, 0, 0, m, 

A=e 
ieJ3 

. 

Then p = g= p’ = 2 so that 

ieJ3 
E=e . 
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This greatly simplifies (F. 1) because now 

and (F. 1) reduces to 

-ieW ieo c 
<p, j,ar lp, j,a;l+2> = e <p, j,V’ Ip, j,U;1+2> e . (F - 3) 

The content of (F -3) is that the amplitude vanishes unless 

ew = eu . 

The angle 8’ will depend on whether or not cl1 c. In fact, it will be shown that 

e if <II F 
0’ = . (F* 4) 

0 otherwise 

This has two consequences: If .yll F then the amplitude vanishes unless @=u; 

If q and 5 are not parallel, the amplitude vanishes regardless of the value of 

u’ . 

To demonstrate (F. 4) take 

q = &lo, ITI sinq, 0, ITI cost) . 

Since A is a z rotation 

q’ = (SO, I< I sin n cos 8, I< I sin 77 sin 8, I< I cos 77) . 

Thus n and 8 are the polar and azimuthal angles of q’ and <II F corresponds to 

n=O. To calculate 8’ requires first calculating ew from 

eioWJ3 = L(li, k’) e 
ieJ3 

L&II) . (F. 5) 

A specific form for the real transformation L(k, E) is necessary. Consider the 

case q2>0 as in (6.20). Then 
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;?. = p, 0, 0, 0) 
from (5.12a). A real transformation L(ii, k) from k to i; may always be 

accomplished by boosting q to the rest form i and then rotating into the z axis: 

L(Ii,k) = R(& B(;,~)P) B&q) . - 

Thus 

eiowJ3 
= R&, B(i, CyW B(k q’) e 

i 8J3 
Wq, ;i, R(B(q,q)p, g) , F - 6) 

where pf=p has been used in the argument of the leftmost rotation. The two 

boosts are given by 

where 

E;= (sinn, 0, cosrl) 

iit = (sin 7~ cos 8, sin 7) sin 8, cos 77) 

Because Gt is just G rotated by 8 around z^, 

Hence (F. 6) is just 

B(G, q’) e 
ieJ3 ieJ3 

= e B(b) . 

eiowJ3 
= R&L W<,qW) e 

ieJ3 
RCB(Kq)p, i, - P’s 7) 

To calculate ew these rotations must be explicitly displayed. The rightmost 

rotation above rotates a vector with momentum along L until it is parallel 
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p” cash 1-1 - IFI n3 sinhp 

-p”nl sinh ,U + IF I nln3 (cash p- 1) 

0 

-p”n3 sinh ~1 + IF I + n3n3 (cash p - 1) 1 
9 (3’. 8) 

where the vector components are written (t, x, y, z) vertically. Thus the rotation 

is around the y axis and is given by 

cos 0 0 sin w 

WW,ih g, = 
I 

. 

,’ 0 1 0 , (F- 9) 

\-e w 0 cos &J 
i 

where 

tan w = 
-p”nl sinh P-I- IFI nln3 (coshp - 1) 

-p”n3 sinh /.A + IF I 1 + n3n3 (cash p- 1) 
C 1 

. (F . 10) 

This gives for (F. 7) 

eiowJ3 = Wz^, B(ti, q’)p) 

(F. 11) 

The remaining rotation to be calculated rotates a vector with momentum along 

2 until it is parallel to 

-p ni sinhp + 1s I nini (coshp - 1) 

wi, cl’)P = 

:11.1,,,., (coshp _ 1) ’ 

-p”nb sinhp + IF l ngnb (coshp - 1) 

” 12) 
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Comparing ^nt with ^n shows that this vector is just (F. 8) rotated around the z 

axis by e . Thus 

I cos e sin e 0 

RP(q’, GM, i, = -sin e 

i 

cos e 0 

0 0 1 

This rather simplifies (F.ll), which becomes 

I cos &,l 0 sin 

1 

w 

0 1 0 . (F. 13) 

\ 

- 
-sin w 0 cos (&I 

eiewJ3 i( 1 0 0 = 

0 1 0 1 . 

0 0 1 
(F* 14) 

This means that ow=O and hence P=O as claimed for <not parallel to s. 

It appears, in fact, that ew=O regardless of the direction of <. This is not 

correct. Suppose that zll F. Then G is along the z axis. Thus the vector in 

(F .8) has only t and z components so that 

/l 0 0 

R(B($q)p, i) = (F . 15a) 

In other words w=O. The vector (F .12) in this case also has only t and z compo- 

nents so that 

WB(%q’)p, 2) = 

and hence (F .7) becomes 

eiowJ3 = 

i 0 0 1 0 0 1 0 0 1 

i -sin cos 0 e sin cos 8 e 0 0 
I 
\ 0 0 1 

(F .15b) 

(F. 16) 

as claimed in (F .4). Generally, of course, the rotation that takes the vector 

(O,O, 1) into itself is not just the identity. It can be any fixed rotation around the 
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z axis. This fixed rotation must appear in both (F. 15a) and (F. 15b). It then 

cancels in (F. 16) so that .$,=0 regardless. This is the reason that (F. 15b) is 

not just the w=O limit of (F. 13). 
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FIGURE CAPTIONS 

1. Example showing that the continuation to the unstable particle pole is 

always around the same branch point (viz. , the heaviest decay mode) 

independently of the scattering process considered. * 

2. The path followed in continuing hermitian analyticity away from the physical 

sheet to obtain 

D,(k)* = D,(k*) . 

3. Bethe-Salpeter equation and normalization condition for a composite unstable 

particle with complex momentum kp. 

4. The usual connectedness structure that results from the LSZ asymptotic 

condition. 

5. The connectedness structure that results when one particle (denoted by the 

wavy line) is unstable. 

6. The values of 01~ and o2 that solve (7.18) and correspond to second sheet 

poles in the S matrix (7.7). The broken line is a plot of (7.18aj ; the solid 

line, of (7.18b). 
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