
SLAC-PUB-1691 
ITP-519 
FNL-Pu-B-~~-~~-TKY 
coo-3075-131 
December 1975 
(T) 

A STUDY OF THE LONGITUDINAL KINK MODES OF THE STRING 

W. A. Bardeen* 

Fermi National Accelerator Laboratory 
Batavia, Illinois 60510 

Itzhak Bars* 

Department of Physics, Yale University 
New Haven, Connecticut 06520 

Andrew J. Hanson* 

Stanford Linear Accelerator Center 
Stanford University, Stanford, California 94305 

and 

R. D. Peccei' 

Institute of Theoretical Physics, Department of Physics 
Stanford University, Stanford, California 94305 

ABSTRACT 

We examine the massless limit of a model for the massive relativistic Nambu 

string. The system possesses longitudinal kink modes excluded from the standard 

lightlike gauge treatment. We demonstrate the equivalence of these modes to those 

proposed by Patrascioiu. The classical nonlinear field theory of the two- 

dimensional string is shown to be a completely integrable Hamiltonian system. 

The Hamiltonian is expressed in terms of normal mode action variables alone; the 

mass-squared spectrum is linear in the Bohr-Sommerfeld approximation. The 

difficulties of canonical quantization are exposed using a particular timelike 

gauge which admits commuting center-of-mass coordinates. 
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INTRODUCTION 

The massless relativistic string model derived from the Nambu action 

functional [l] is widely believed to be connected in an essential way with the 

dual models for strong interactions. It is therefore puzzling that despite the 

desirable features of the dual models, the free string quantization procedure * 

of Goddard, Goldstone, Rebbi and Thorne [2] (GGRT) and the interacting string 

quantization of Mandelstam [3] succeed only in 26 dimensional spacetime. 

Patrascioiu [4] has pointed out that this phenomenon may occur due to the 

omission of longitudinal modes of oscillation which appear when the massless 

f string action principle is suitably generalized. Patrascioiu's modes belong to 

a class of solutions with discontinuous derivatives which appear to be excluded 

from the GGRT solutions due to a singularity in their choice of coordinates. 

Our purpose here is to reexamine the string with particular attention to 

the longitudinal modes in two spacetime dimensions. We argue that a physically 

sound procedure for constructing the Hamiltonian is to define the massless rela- 

tivistic string as the smooth massless limit of a massive relativistic string [S]. 

Then the longitudinal modes remain in the theory as subtle minima of the action 

principle: In two dimensions, these motions appear as massless limits of the 

solutions to the massive Euler equations, but cannot be derived from the standard 

Euler equations if the masses are set to zero before the variation. We note that 

the string is an essentially nonlinear system if the constraint equations are 

taken into account; the longitudinal modes of the string behave precisely like 

kink solutions of a nonlinear field theory, which enormously complicates any 

attempt at canonical quantization of the independent modes. 

Our eventual aim is to write down the full quantum Hamiltonian and Poincarg 

group generators for the longitudinal-plus-transverse string oscillations in D 

dimensions, and then investigate positivity and Lorentz covariance for D = 4. 
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This program remains for the moment incomplete, so this work will concentrate 

on limited sectors of the full theory. 

We begin by deriving the Hamiltonian dynamics of the massive relativistic 

string system. This yields a system of particles interacting via a relativistic 

potential which becomes linear in two dimensions. Then we take the massless 

limit of the massive theory, obtaining longitudinal modes of oscillation. We 

thus find a more physical understanding of the motions proposed by Patrascioiu, 

who useddifferent methods. One section is devoted to showing the equivalence of 

our simplest mode to Patrascioiu's orthonormal gauge solution. Working mostly 

in two spacetime dimensions, where no transverse solutions exist, we approximate 

the quantum mechanics of the longitudinal oscillations by using a semiclassical 

Bohr-Sommerfeld approach. For the D = 2 string with an arbitrary mass distribu- 

tion, we find in the massless limit a simple form for the Hamiltonian in terms 

of action variables alone. The theory of the kink solutions of the D = 2 string 

is thus a completely integrable Hamiltonian system, comparable in spirit to the 

classical system found by Faddeev and Takhtajan [6] for the sine-Gordon equation. 

Finally, using a gauge proposed by Rohrlich [7] to separate the Newton-Wigner 

center-of-mass coordinates of the string, we examine the Dirac bracket algebra 

of the fully constrained system and expose the difficulties of canonical 

quantization. An Appendix gives the Dirac bracket analysis and an alternative 

gauge-invariant approach to the oscillators of the constrained system. 



1. MASSLESS LIMIT OF MASSIVE RELATIVISTIC SYSTEMS 

Classical relativistic theories with points moving at the speed of light 

require extra care in the definition of the system. Here we review the theory 

of a massless relativistic scalar particle, so that we may later apply the 

resulting intuition to the string model. 

We take as our Lagrangian 

L = -p [-xT2]l’2 

where 

The canonical momenta 

obey the constraint 

and have canonical Poisson brackets (PB) given by 

{pU(r),xV(r)} = -gi-lv . 

In the timelike gauge 

X0(T) = T , 

the Hamiltonian becomes 

H = p” = [‘p2 2 l/2 
+u] . 

(1.13 

(1.2) 

(1.3) 

(1.4) 

(1.5) 

(1.6) 

(1.7) 

If we now take the limit p + 0 with pa finite, we find a finite Hamiltonian 

H= I;] , (1.8) 
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even though the action functional vanishes. We also recover from Eq. (1.3) the 

usual result that for po to remain finite as the particle becomes massless, the 

particle must move at the speed of light, 

Another approach to the massless classical relativistic particle might be 

to consider the action functional 

r2 
I[x] = -J 2 l/2 

5 
d-r [-XT 1 , 

(1.9) 

(1.10) 

t where xu(r,) and xu(r2) have a lightlike separation. If we prohibit paths 

connecting x~(T~) and xP(r2) which make [-xT2] < 0 at any point, then there are 

no legal variations of the -action functional; only the single lightlike path 

connecting the two points is permitted, and I[x] s 0. 

We interpret these observations as an indication that to find the correct 

Hamiltonian for a massless classical system, it may be necessary to begin with 

a massive system and take the limit as the mass goes to zero. 
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2. THE MASSIVE STRING 

The Nambu action [l] describes a relativistic massless string. Because 

points on the string can move at the speed of light in this theory, the Hamiltonian 

may contain terms of the type found in the preceding section, which do not follow 

from the standard variational methods. 

We are thus motivated to expand the techniques of the previous section and 

consider the theory of a massive relativistic string. When the string is 

massive, all points move with velocities less than the speed of light, so the 

standard methods may be applied without ambiguity to find the Hamiltonian. The 

Hamiltonian of the massless relativistic string is then found to be the smooth 

limit of the massive Hamiltonian as the mass goes to zero, as was the case for 

the point particle in Section 1. 

The action for a massive relativistic string is 

.L2 
S[xl = I 

r1 
d-rr j71 do {-j~[-xr~]~'~ - y[-G]"'l , 

0 

which has been briefly considered by Chodos and Thorne [S]. xu(-c,o) is a 

D-component field on (r,o) space and 

G=x2x2 T cf - (XT-XJ* . 

We define 

P%,o) = lJ xroL-x-c 
2 -l/2 

1 

K?Lo) = {x,“xo2 - xoa(xT~xo)~ [-G] -l/2 

N%,o) = {xoaxT2 - xT~(xT*xo)} [-G] -l/2 , 

so that we may write the canonical momenta as 

(2.1) 

(2.2) 

(2.3) 

@(-c,a) = -g- = p%,o) + Y K%,o) > 
a,T 

(2.4) 
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where neither p a nor Ka are true canonical variables. The nonvanishing canonical 

Poisson brackets are 

{ Byr,o) ,XB(T,O’)l = aB -g 6(0-o’) (2.5) 

and 8" obeys the constraint 

P2 + 2YWXJ2 
2 21/2 

+lix ~ 1 + y2 xa2 + p2 = 0 (2.61 

due to -r-reparametrization invariance. If we choose a timelike gauge such as 

X0 = T, we find the Hamiltonian 

H[u] = j" da80(-r,o) = j' do {8j2 + 2~[(8*:o)~ + ~~:o~]~'~+y':o~+ jJ2]1'2 (2.7) 
0 0 

At this point, we may take.the mass parameter u + 0 with c'(T,o) fixed, 

yielding the Hamiltonian 

Tr 
H = 1 da {(;+y;)2 + 2Y/;*9 + Y2 Go2}1'2 

0 

for the massless relativistic string. This differs from the usual massless 

string Hamiltonian 

Ho = y /71 do ("K2 + ;02)1'2 , 
0 

(2 -9) 

even though the action functionals appear to be the same in this limit. To 

understand the difference between these two formulations of the Hamiltonian, we 

recall that the canonical momenta in Eq. (2.8) are given by Eq. (2.4), where 
++ 
K*xo is formally zero. When j$ = 0, the two Hamiltonians are identical. However, 

as u + 0, $(~,a) need not be zero in our formulation in any region of o for 

which the string moves at the velocity of light (xr2 = 0), as is evident from 

Eq. (2.3). Our approach thus makes it apparent that the string may have more 

general motions than those considered in the standard treatment of GGRT. 
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The Nambu action is invariant under a-reparametrizations as well as 

7: -reparametrizations. Placing mass on the string as in Eq. (2.1) breaks the 

a-reparametrization invariance. However, the theory described by the 

Hamiltonian (2.8) regains the invariance. This may be seen by examining the 

generator of o-reparametrizations 

C[f] = ( do f(o)@*xo . 
0 

(2.10) 

The function f(o) is arbitrary save for the constraints 

f(0) = f(Tr) = 0 (2.11) 

which follow from the requirement that the end points of the string map into 

themselves. xu(r,a) and 6'u-(-r,cr) transform under the action of X[f] as 

{x%),C[f]] = f(o) x/(o) 

@Qo),C[f]) = a,[f(o) @%I] . 

One can now compute the bracket of H in Eq. (2.8) with C[f]. We find 

{H,C[f]) = 1' do [ - aPo 

0 aZo 

= j' do [f(o) 
0 

= f' do a[f(o)cO]/ao = 0 . 
0 

(2.12) 

(2.13) 

(2.14) 

Equation (2.14) implies that C[f] is a constant of motion. Hence we will,be 

able to use a-reparametrizations to further simplify the theory. 
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3. MASSLESS LIMIT OF A STRING WITH MASSIVE ENDS 

The general Hamiltonian for the string system proposed in the previous 

section incorporates the possibility of many complex motions. To understand 

more clearly the properties of such motions, we devote this section to a detailed 

analysis of the simplest sector of the theory with $(r,o) f 0: We restrict 

ourselves to purely longitudinal motion and allow only the end-points to move 

at the speed of light in the massless limit. To illustrate the desired motion 

it is sufficient to consider the simplified action 

r2 
S[xl = I dr{-u[-xr2(0)]1'2 - ~[-x,~(T)]~'~ - v/' do [-G] 

l/2 

r1 
1 

0 
(3.1) 

describing a pair of point masses joined by a string. Even for 1-1 f 0, this 

action is invariant under the usual invariance group of a-reparametrizations 

obeying 5 (r,O) = 0, ?? (r,~) = n. In the massless limit, this theory corresponds 

to treating the Hamiltonian (2.8) in a specific gauge. This connection will be 

made clearer when we study gauge transformations between equivalent systems in 

Section 4. For 0 <CJ CR, we find the equations of motion 

Kr"+N"=O. cr (3.2) 

At the endpoints, we have 

p,"(O) + yN"(0) = 0 

pTa@) - IN" = 0 . (3.3) 

The variables p", K" and NC1 are defined as in Eq. (2.3). The conserved total 

momentum is 

Pa = 1' dopa 
Tr 

= ~~(0) + I" + y / dcs Ka , 
0 0 

(3.4) 



and the conserved Lorentz-transformation generator is 

= xo(O)p'(O) - xB(0)pcL(O) + xo(a)p'(n) - x'(,)po(n) + y j" do(xoK@- xBKa) . (3.5) 
0 

A. Massive Classical Solutions 

In order to solve the equations of motion, we must fix the gauge to eliminate 

arbitrary functions. Choosing the timelike gauge, 

x0 XT (3.6) 

f to fix the scale of 'r, we find the Hamiltonian 

H = [s'(O) + y2]1'2 + [G2 (Tr) + p2] 1'2 + y y l/2 da[z2(o) +:02(o)] . (3.7) 
0 

If we consider only longitudinal motions,so that we are effectively in two space- 

time dimensions, then "K = 0 and zo E xo giving 

H = [p2 (0) + v I 
2 l/2 

+ [P2(T) + V 
2 l/2 

1 + Y 171 do Ix,\ . 
0 

(3.8) 

The Euler equations (3.2), (3.3) which we must solve are [S] 

1 =o, o<o<lT (3.9a) 

o= 0 
(3.9b) 

CT=71 

Using Eq. (3.9a) and a-reparametrization invariance, we see that we can make 

xo(-c,o) independent of o for 0 < o <r, so that [8] 

1; do jxol = Ix(r,m) - x(r,O) 1 . (3.10) 

The Hamiltonian (3.8) then becomes 
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H = [p2(0) + ~~1~'~ + [p2(Tr) + u2]1'2 + ylx(Tr) - x(O)/ . (3.11) 

We can check classical Poincarg invariance of 

system by using Eq. (3.5) to derive the boost 

J-3 E Mol = -r(P(O) +p(r)) - x(0) EP2(0) +V2 

- *Y (x(O) + x(r)) 

the two spacetime dimensional 

generator 

1 l/2 - x(n)[p2(lT) + 112]1'2 

* Ixm - x(O) 1 . (3.12) 

Taking the total momentum P = p(O)+p(~) from Eq. (3.4), we verify the Poincarg 

group Poisson bracket algebra 

{P,H) = 0 

{B,P) = -H 

{B,H) = -P . 

The Hamiltonian (3.11) therefore describes a classically Poincar&invariant 

system. 

The solutions of the Euler equations are now of the form 

X(T,O) = +( F - 1) {-[(r - ro)2+ u2/y2]1'2 + [lT2/4+ v2/Y211'21 (3.13) 

in the rest frame, where P = p(O)+p(~) = 0. For - ;< T <; , one chooses the 

(+) sign and sets r 0 = 0; this solution joins continuously onto the next T region 

as shown in Fig. 3.1 provided that for :<r<F , one chooses T 0 = 7r and the (-) 

sign, etc. We observe that at o = 0 and CT = ?'r, 

[l- xr2]1'2 = (p/y)[@- To)2 + 1-12/y2]-1'2 , (3.14) 

so that the first term in the o = 0, n boundary condition (3.9b) remains finite 

as u+ 0. For any 1-1, the momentum of the end points is thus 

p(a= 07) = ?y(r - -ro) . (3.15) 

In Fig. 3.2, we plot p(O), p(n) and xo(o) as a function of '1. 
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B. Massless Limit 

In the massless limit, our Hamiltonian (3.8) with the gauge choice (3.10) 

becomes 

H = lpol + IP,/ + Ylxn-xol 9 (3.16) 

where x 0 = x(-r,a= 0), etc. It is amusing to observe that the potential energy 

in this Hamiltonian has precisely the form of a one-space-dimension Coulomb 

potential, so this system is closely related to the two-spacetime dimensional 

relativistic "hydrogen atom". Examining the u + 0 limit of the classical rest 

frame solution (3.13), we find 

x(T,O) = *(l-F ) { IT - ToI - $1 , (3.17) 

while Eq. (3.15) for the momentum continues to be valid. The resulting motion 

is pictured in Fig. 3.3. This motion will be shown in Section 4 to be identical 

to the simplest longitudinal string mode proposed by Patrascioiu [4]. 

C. Action-Angle Variables and Bohr-Sommerfeld Quantization 

We now exhibit the center-of-mass momentum P of the system by changing to 

the variables 

p = PO + P, 

R = +(x0 + XT) 

k = +(P, - PO) 

r=x -x -IT 0 * 

Then the Hamiltonian (3.14) becomes 

H= I$P-k/ + IiP+kl +y/rl . 

(3.18) 

(3.19) 

Hamilton's equations now tell us that 
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; = g = &(k -$P) + &(k +$P) 

1; = - g= -yc(r) , 

where E(Z) = (algebraic sign of z) = z//z/. When we plot the motion in r for 

arbitrary initial energy H = E and momentum P, Eq. (3.19) generates the closed 

phase space trajectory of Fig. 3.4. In the rest frame the total momentum P 

J = $kdr 
1 

where the integral 

vanishes, and the vertical lines at constant r in Fig. 3.4 disappear. 

We now define the action variable 

is around the path of Fig. 3.4 and k(E) is the solut ion of 

E= I$P-k/ + I -$'+kl + y/r1 . 

The result is 
y-l(E-P) 

J=41 
0 

dr[i(E-yr)] =. $(E2-P2) . 

The invariant mass-squared is thus 

M2 Z E2 - P2 = yJ 

and J is manifestly Lorentz-invariant. 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

The Bohr-Sommerfeld approximation for the quantum mechanical energy levels 

of the center-of-mass system is simply 

M2 = yJ = 27rhy (n + COnSt.), n = 0, 1, 2... (3.25) 

The mass-squared spectrum of this sector of the longitudinal massless string 

thus rises linearly with n in this semiclassical approximation. - 

The exact quantum-mechanical mass spectrum of this system is presumably 

given by setting P = 0 and examining the integral equation 

(21kop/ + ylrl>YJ(r,t) = MW,t) . (3.26) 
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Here we may represent lkopl as 

Ik 
oP 

I $(r,t) = jCOdr' G(r,r') @(r',t) 
-Co 

(3.27) 

where 

G(r,r') = lim dkk cosk(r-r') e -&k 

P-0 
+,m 

0 

=P{ l 2) 
K(r-r') 

(3.28) 

and P denotes the principal value. 

T D. Lightlike Gauge 

Throughout the preceding treatment, we have employed the timelike gauge 

x0 XT. Since the usual GGRT analysis is conducted in the lightlike gauge, one 

might ask what happens when we use a lightlike gauge to study longitud inal modes. 

Defining x' = (xOkx)/fi, let us begin by choosing the gauge 

x+(T,o) - T. (3.29) 

In the xo- -uniform gauge, the action (3.1) then yields the Hamiltonian 

2 
H'p-=k + d- 

2p0 2% 
+ YIXT - x01 (3.30) 

PO = p+(r,o= 0) > 0 , p, = p+(,r,a=T) > 0 , 

xO = x-(&o= 0) , X 7r = x-(T,O=lT) . (3.31) 

Now we define the total (+) momentum 

pzp+= 
PO + P7r (3.32) 

and make the canonical transformation (3.18) with null-plane metric variables 

replacing the timelike variables. The Hamiltonian then becomes 

where we have written 



H = L,2p(i+2 
2 4 -k2)-1 + y/r/ . 

The invariant mass-squared is simply [9] 
2 

14 

(3.33) 

M2 = 2PH = +2 + 2~1~1 , 
--K 

lK/ + > 
4 

(3.34) 

where the transformation 

(3.35) K = k/P p = rP 

has eliminated all reference to P and made Lorentz invariance manifest. 

It is clear that the 1-1 -+ 0 limit of the lightlike gauge description of this 

system is quite pathological, in contrast to the timelike gauge. However, the 

agrees with that found in the timelike gauge. We can 
T 

semiclassical spectrum of M2 

see this exp licitly by calcu 

the standard techniques. We 

lating the action-angle variables for 1-1 f 0 using 

find the result 

where 

J=2PI 
Ey-'(l-2u2/EP) 

0 
dr[l- 2u 

2 
] l/2 

P (E-v-) 

= t(2PEo. - 2v2 Rn [ e ] ) 

= +{M(M~ - 4u2)lj2 - 4u2 ,Y,n [ M + ( M2 
21.1 

--1) 
41_r2 

1'2] 1 

a = [l - 2u2/EP]1'2 . 

(3.36) 

(3.37) 

The variable J is well-behaved as p2 + 0, giving 

M2 = 2PE = yJ , (3.38) 

so the Bohr-Sommerfeld quantum spectrum is the same as in the timelike case. 
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4. COMPARISON TO ORTHONORMAL GAUGE RESULTS 

The motion shown in Fig. 3.3 strongly resembles a class of solutions to 

the massless string studied by Patrascioiu [4] in a timelike orthonormal gauge. 

In this Section, we will review Patrascioiu's orthonormal gauge analysis and 

can be mapped identically into ours by an-appropriate show that his solutions 

gauge transformation. 

A. Orthonormal Gauges 

We begin by review ing the properties of the orthonormal gauge. We recall 

that the orthonormality conditions 

x2+x2=0 
T rs 

x l x =o - 
T cl 

allow the massless string Euler equations to be written as 

xT*p - xoop = 0 ) 

x ' = 0, at o = 0, 7r. 0 

These equations can then be solved in the form 

Pi-l, xP(-c,a) = qv + v + - 7f-y .so ii onu 
-in-c cosna e 

subject to the constraints 

Lo = 2 1 1 am*cxm + +P' = 0 
m#O 

Ln = ; c am’an-m +P*a =o. 
m#O,n 

n 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

In the orthonormal gauge the canonical momentum is simply 

ipll(T,cl) = yxTp(T,o) . (4.6) 

It we take the nonvanishing canonical PB of the Fourier components of xu to be 
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{PU,qVI = -gVV 

{Cl 1-1 
m ,anvl = -ivy guV rndrn -n 

, 

then the equal-r PB of 8u and xv are 

{ I$“(T,o), x’(T,o’)) = -gpv A(cr,o’> . 

(4.7) 

(4.8) 

Here 

A(a,a') = y [rS(o - CT' + 2nV) + rS(o+o' + 2n7r)] (4.9) 
n=-m 

is just that modification of the periodic delta function necessary for compatibility 

t with the boundary condition (4.3). 

B. Simple Longitudinal Motions 

Patrascioiu has observed that a general solution to Eqs. (4.1)-(4.3) is 

X0 = -rE/~y 

i&s) = z + &T Er T + a) + %(T - a) ] 

provided 

%(7+ 2Tr) = ?'(T) 

$1 ('I + CT) ] 2 = fi'(T-o)]2 = 3 

where f'l (z) = af'/az. We note that 

3 (T,cr) = ys, = g [%I (‘I + 0) + f (T - CT) ] 
&(T,O) = & $1 (T + 0) - fJ; (T - a) ] . 

The conserved total momentum may thus be written as 

$ = j' do s&a) = $ [&,+,rr) - 8(r- IT)] 
0 

for arbitrary T. 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

Suppose we now choose the simplest rest frame solution 
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a I a(‘) = -E/2y 

f(z) - f(')(z) = Iz iperiodic = y cn einz 
n=-oo 

aci) = fci) = 0 , i # 1 , 

where 

1 C n = --7j- [(-l)n - l] 
Trn 

(4.14) 

We now show that this motion is precisely that shown in Fig. 3.3 and examined in 

Section 3 as the massless limit of the string with massive ends. Working from 

the plot of f(z) in Fig. 4.1, we may construct P(r,a),, x(T,o), xo(-r,o) for 

appropriate values of r to find the motions presented in Fig. 4.2. We can thus 

see directly how this solution contrives to have 8xo = 0 without forcing either 

P - 0 or xo G 0. If we follow the motion of the end points on Fig. 4.2, we find 

that the endpoints of our solution, shown in Fig. 3.3, follow the same paths. 

The motion of the endpoints is physical and cannot be gauged away, so we conclude 

that the physical meanings of the two pictures are very likely the same. 

The motions of the interior points in Figs. 3.3 and 4.2 differ because this 

motion depends on the o-gauge chosen. We can complete the identification of the 

two systems by making a a-reparametrization which maps the orthonormal gauge 

into the uniform-xo gauge. The appropriate transformation is found by requiring 

X(T,G) = iz(T,S (T,O>) (4.16) 

and taking the o-derivative, 

(4.17) 
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Now suppose xo is in the orthonormal gauge (uniform 6") but "x3 is independent 

of 5 (uniform-xo gauge). Then we can do the integral immediately, finding 

Z(T,O) = F(r) jo do 
0 

X&P) , (4.18) 

where F(r) = [X,1-'. The requirement that the endpoints stay fixed, 

E(T,O) = 0 

E(T,T) = Tr , 

then fixes the function F(r) uniquely, giving 

(4.19) 

(4.20) 

Taking x,(r,o) from Fig. 4.2, we plot ~(T,cT) in Fig. 4.3. 

The effect of this transformation is clearly to map the finite-width plateaus 

in 6' and the zero-regions of x 0 in Fig. 4.2 into the endpoints c = 0, 3 = V, of 

the new system. For example, when 0 <T '5 , gvanishes for the entire interval 

0 <o <r, where x = 0 and 6' # 0. 0 

If we define the momentum accumulating near an endpoint as 

7T/2 
P,(T) = I do 'f(a) (4.21) 

0 

in the orthonormal gauge, we see from Fig. 4.2 that p. increases linearly with r 

forO<r<:. In the xo-uniform gauge, @((T) vanishes 

except at 3 = 0, n, so a(??) necessarily becomes proportional to a delta function 

at the endpoints. pa(r) is thus precisely identifiable with our endpoint 

momentum (3.13), which does indeed change linearly with time. 

In Fig. 4.4, we plot the new functions c(E), X(Z), gG(s) versus ?r and T. 

Comparison to the properties of our solution (3.15) for the 1-1 + 0 limit of the 

massive-end string shows that the motions are identical. Having demonstrated 
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the equivalence of the orthonormal gauge and xo-uniform gauge treatment, we 

remark that the latter approach has a more obvious physical interpretation; 

the system consists solely of massless point particlesinteracting via linear 

potentials. 

* 
C. Longitudinal Fourier Components 

Because of Eq. (4.11), the longitudinal solutions are not linearly super- 

imposable and behave like kink solutions of a nonlinear field theory. In fact, 

if we identify the coefficients in Eq. (4.4) with those in Eqs. (4.15) and (4.16), 

we find 
7 

q=P=O 

ia n = Encn = & [(-lP - 11 , (4.22) 

so that the extraction of quantizable amplitudes from the Fourier coefficients 

of the classical solution is nontrivial. 

It is instructive to note that the solution (4.22) satisfies the constraints 

(4.5) in an unusual nonlinear manner. For Lo, we find 

= 6 G(2) - 7~ 2, o , 

where c(n) is the Riemann zeta function. Examining Ln, n f 0, we see that 

( = [l + (-l)n] 1 (-Urn- 1 
n-m mfo n m(n-m> ' , 

which vanishes trivially for odd n. For even n, one may use 

1 
m(n-m) 

(4.23) 

(4.24) 

(4.25) 
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and the fact that (-l)m+n = (-l)m to prove that there 

in the sum which makes L s 0. n 

is a cance llation of terms 

D. N Fold Longitudinal Solutions 

We saw in the beginning of this section that the simplest longitudinal 

solution (4.14) of the constraint Eq. (4.11) corresponded to our solution (3.15) 

with only the endpoints of the string moving at the speed of light. More general 

solutions for f(z) give longitudinal motions with arbitrary numbers of interior 

points moving at the speed of light. 

The only restrictions on f'(z) are that it be periodic and have unit magni- 
T 

tude. If we confine ourselves to the rest frame d= 0, then Eq. (4.13) implies 

that f(z) itself has period 27~. Wherever there is a discontinuity in the slope 

of f(z), there is a point moving at the speed of light; we will hereafter refer 

to these points as "folds". 

In Fig. 4.5, we depict f(z) for a mode which has N folds; for simplicity, 

we have chosen f(z) = f(-z) so that the initial o-positions 

C n' n = l,..., N 

of each discontinuity are identifiable with the initial position of each fold. 

For this solution, the initial momentum density 6' (0,O) vanishes for all o. 

More general choices for f(z), with f(z) f f(-z), have 2N free parameters giving 

nontrivial initial momentum configurations. 
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5. HAMILTONIAN APPROACH TO N FOLD MODES 

In the previous two sections, we examined the Hamiltonian for longitudinal 

oscillations of the string with endpoints only moving at the speed of light and 

related that motion to a particular solution of the orthonormal gauge string 

equations. Motivated by the existence of N fold solutions in theprthonormal 

gauge, we now turn our attention to the Hamiltonian description of longitudinal 

string oscillations with N interior points moving at the velocity of light. 

For pure longitudinal modes, the Hamiltonian (2.8) can be written 

where a o-gauge remains to be chosen. We argued in Sec. 2 that p(r,a) remains 

nonzero in the massless limit only in those o-regions where the string moves 

at the velocity of light. By making a suitable choice of o-gauge, we may 

write H in the form 

N+l 
H = ngo IP,I + Ynfo lx,+1 - xnl 

(5.1) 

(5.2) 

where x 0 = x(0=0), %+1 = XT = x(o= 7~) and similarly for p. and pN+l. Here 

x,(r) labels the n-th point moving at the velocity of light along the string, 

and P,(T) its conjugate momentum. 

In this section, we will first analyze the motion and action angle variables 

for the one-fold mode. Then we give the form of the general N fold Hamiltonian 

expressed in terms of action variables alone. 

A. One Fold Mode 

The string with one interior point moving at the velocity of light is 

described by the Hamiltonian 

H = Ipo/ + 1~~1 + lp,i + Ylxl-x01 + YIxn-xlI * (5.3) 



22 

It is convenient to rewrite the above in terms of a set of relative coordinates 

and momenta. Defining the new coordinates and momenta 

=x -x rl 1 0 

=x -x ‘2 Tr 1 

R = +(x0 + x1 + XT) 

and 

kl = &2P. + Pl + P,) 

k2 = + C-p, - Pl + 2Pr) 

p = PO + Pl + P, > 

we find that the Hamiltonian takes the form 

H = I$P-kll + I$P+kl-k21 + IiP+k21 + ylrll+y[r2( . 

Hence in the P = 0 frame the Hamiltonian reduces to 

H(P = 0) = M = Ikl/ + lk2-klI + \k21 + ylrll + ylr21 . 

Yet another set of interesting variables is the choice 

(5.4) 

(5.5) 

(5.6) 

(5.71 

'2 = 2 L(rl 2 r2) . (5.8) 

In this case 

M= $Ik++k [ + ++-k-j + b-1 +Y~x++x-1 +Y~x+-x-1 - (5.9) 

To proceed with the Bohr-Sommerfeld quantization, we must analyze the most 

general periodic motions in phase space. We begin by choosing the initial 

conditions 
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kl = k2 = 0 

mc -- 
'l= Try 

'2 = (7r - c) & (5.10) 

where m is the rest-mass and c corresponds to another constant of the motion. 

This particular choice of initial configuration is suggested by the type of 

one-foldorthonormal gauge solution discussed in Section 4.D, for which all 

momenta initially vanish. Hamilton's equations of motion determine the subsequent 

periodic motion of the system, which we plot in phase space in Fig. 5.1. If we 

7 calculate the action-angle variables in (xl,kl;x2,k2)-space, we findthatJl and 

J2 are independent of c: 

Jl = # kldrl = m2/2y 

J2 = $k2dr2 = m2/2y . (5.11) 

This is expected because of the exact symmetry of the Hamiltonian (5.7) under 

1 * 2 interchange. 

A typical phase space diagram in (kt,r+)-space is given in Fig. 5.2. The - 

exhibited r-sequence of numbers corresponds to the initial conditions (5.10). 

The action variables J+ and J computed by integrating over these phase-space 

orbits depend explicitly on c; moreover, the regions 0 < c <+ , pc+, 

y < c <r, must be treated separately. For arbitrary c, one finds the result 

2 
J, = 4 k+dr, = y [i 2 g(c)] , - - 

where 

(5.12) 

(5.13) 

We plot J, vs. c in Fig. 5.3. Now we may eliminate the constant of motion c to 

determine M2 uniquely in terms of J,, with the result 



M2/y = m2/y = J+ + J =J +J2. 
1 
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(5.14) 

J+ and J are clearly interpretable as normal modes. We see that when 

c = r/2 (5.15a) 

then 

J+=O, J = m2/y . (5.15b) 

The motion consists of the center point oscillating in opposition to the two ends, 

which remain coincident throughout the motion. This is a completely folded 

string. When 

c=o or c=Tr 

then 

J+ = m2/r , J =O. 

(5.16a) 

(5.16b) 

In this case, the endpoints move exactly as in the no- fold problem of Section 3; 

the "center" point attaches itself alternately to one endpoint or the other, 

always remaining on the right side of the string (or always on the left side). 

In this case there are no folds in the string. We plot these normal mode motions 

in Fig. 5.4. 

B. N Fold Modes 

We have shown in our exp 

H(P = 0) = M = [YJ]~'~ 

licit ana lysis of the no-fold mode that 

while for the one-fold mode 

H(P = 0) = M = [y(J+ + J II l/2 

= [y(J, + J,)]“’ . 

J+ was identifiable with a normal mode indistinguishable from the no-fold motion 

(5.17) 

(5.18) 

described by J; J corresponded to a double cycle of the completely symmetric 
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lded mode of the one-fold motion, as can be seen from F ig. 5.4. It is clearly 

of interest to know whether similar expressions hold for arbitrary P and for an 

arbitrary number of folds. We will now show in fact that for N folds, the 

Hamiltonian can be written in terms of P2 and a sum of appropriate action 

variables alone. . 

We begin by defining the local action variable 

J(o) = 4 6’(~,a> dx(T,o) 
one 

period 

= jT d-rp(-c,o) xr(r,o) . (5.19) 
-TF 

In the timelike orthonormal gauge of Section 4, 6' = yxr and x(r,o) is given by 

Eq. (4.10). Then we may consider the direct sum of all the action variables, 

which we write as 

j' do J(o) = + I" dr I" do@'&@ 
0 -7T -TT 

E2 =- j' d-c j71 do 
4Tr2y -7T -7T 

[l + f'(r+a)f'('I-o)] . (5.20) 

In the last line, we have used Eqs. (4.11) and (4.12). Changing variables .from 

(-r,a) to (r+o,r- a) and using Eq. (4.13), we find 

(5.21) 

This argument extends trivially to D dimensions, with the result 

M2 = E2 _ -62 = y"j' iii do Ji(o) . (5.22) 
i=l 0 

In two spacetime dimensions, we may revert to the xo-uniform gauge and 

write Eq. (5.21) as 

M2 = y y Jn (5.23) 
n=l 
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where 

Jn = 
compfete kn drn 

cycle 

and (P,Q; kn,rn) comprise a complete set of canonically conjugate pairs of 

variables. 

We saw in the one fold problem that a particular choice of (kn,rn) makes 

(5.24) 

one of the J,'s (J+) a pure no-fold variable, the other (J ) a pure single-fold 

variable. In addition, the no-fold variables (k+, r+) went through one cycle while 

the single-fold variables (k , r ) went through two complete cycles, as seen in - - 

Figs.5.2(a) and (b). It is easy to convince oneself that the completely symmetric 

N fold string, with orthonormal-gauge initial o-conditions 

nx C =------ 
n N+l ' n = 1, 2, . . . . N , (5.25) 

undergoes N + 1 identical cycles while the no-fold variables finish one complete 

cycle. The appropriate Bohr-Sommerfeld quantization applies to the variables 

jn = :J, = + kn drn , (5.26) 
single 
cycle 

where the integral in Eq. (5.26) is over one cycle in the (kn,rn) subspace 

instead of one cycle in the full phase space. We thus take 
cc 

M2 = y 1 n jn 
n=l 

where J, represents a pure no-fold str ing, Jx2 is assoc iated with a string having 

one fold in the middle,, J3 with two folds, etc. The Bohr-Sommerfeld quantization 

rule is 

(5.27) 

'n = 2rh[R, + const] , R, = 0, 1, 2, . . . 

The Hamiltonian describing the motion for any number of folds, given 

(5.28) 

appropriate initial conditions, is then 
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H=[P2+yl nJn] l/2 . 

n=l 

Defining en(r) to be the canonical conjugate to j,(r), we find from Hamilton's 

equations 

w n 
‘“,+L=!$= constant . 

aJn 

Thus 

nv ep = ep> + -g-- > 

27 

(5.29) 

(5.30) 

(5.31) 

where en(O) is a constant of motion. Since H is independent of en(~), each of 

the jnls is also a constant of motion. Thus we have been able to express the 

N fold string problem as a completely integrable Hamiltonian system. Equation (5.4) 

for the two-dimensional string parallels exactly the Faddeev-Takhtajan 

Hamiltonian [6] for the classical sine-Gordon equation; both give the complete 

solution to their respective nonlinear classical systems. 
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6. TOWARDS CANONICAL QUANTIZATION 

Although we have completely solved the classical longitudinal string, the 

quantum theory does not follow trivially from the diagonalized Hamiltonian (5.29). 

Even the no-fold Schrcdinger equation (3.24) could not be solved for the exact 

quantum spectrum. Motivated by the desire to have local commutation relations 

among @'(r,o) and ~'(*,a), we devote this section to a timelike orthonormal 

gauge treatment of the string constraints. The constrained oscillators in two 

spacetime dimensions should then determine the canonical properties of the 

longitudinal string motions. 

The first step is to separate the overall center-of-mass variables of the 

system from those describing the intrinsic motion. In the li,ghtlike orthonormal 

gauge, 

X+ = p+-r/lTy 

8+ = p+/n. , (6 - 1) 

the standard overall coordinate variables 

Mu' Q’ = - 
P+ 

(6.2) 

happily commuted with one another. Unfortunately, as we saw at the end of 

Section 3, treating longitudinal oscillations in the lightlike gauge is exceed- 

ingly difficult. In the timelike gauge 

X0 = POr/lTy 

lP” = PO/n (6.3) 

the coordinates are 

Mu0 Q’=--. 
PO 

(6.4) 
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These his do not commute (except in two dimensions), and hence are unsuitable 

center-of-mass coordinates; nevertheless, this system can be mapped directly 

into the lightlike-gauge variables using DDF variables [lo], with the result 

that the transverse sectors of the string in the two gauges are equivalent [ll]. 

Here we investigate a timelike gauge condition used by Rohrlich [7] which 

produces appropriate commuting (Newton-Wigner) coordinates for the string's 

center-of-mass. By going to two spacetime dimensions, we are able to clearly 

exhibit the complicated nature of the longitudinal modes appearing in the 

classical system. 

A. Newton-Wigner Coordinates 

In order to illuminate the canonical properties of the orthonormal gauge 

Fourier coefficients (4.4), we wish to separate out the Newton-Wigner coordinates 

QP of the center-of-mass. A general expression for Q' is 

MU0 MuvP 
Qpu.m.m _ 

PO+P 
v + 

P(PO+P) PPO(PO+P) 
(6.5) 

where 

p = [-p2]1/2 = [(PO)2 - ;*]1/2 (6.6) 

and Q O- = 0 defines Q' as a timelike-gauge variable. Using the canonical Poisson 

bracket algebra of the Poincar6 group, 

{Mu', pa} = gpa pv _ gva pi-l (6.7) 

we find 

{Q'-' Qv} = 0 , 

{Q',p"} = gva _ goa p'-' . 
PO 

(6.8) 

(6.9) 
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P" is seen to act as the Hamiltonian, since 

{6,P0} = $/PO 

is the velocity of the center-of-mass. If Mu' has the form 

My’ = Q1J-p’ _ Qvpp + Suv , 

then the definition (6.5) of Q' is an identity if 

Suvp - p SW0 = 0 . 
V 

(6.10) 

(6.11) 

(6.12) 

1 Taking J1 = 2~ ijk Sjk as the independent components of S W , we see that the 

'I constraint (6.12) implies the usual Wigner representation of the classical boost: 

Moi = ($= (+‘q + , (6.13) 

For massless states, this formalism is modified to replace 5 and 3 by appropriate 

massless-particle variables [12]. 

In any orthonormal gauge the spin matrix SVv for the string mode 

form 

sl-lv = & 1 ; cxnlJ cinv . n#O 

1 takes the 

(6.14) 

Thus Eq. (6.12) implies that the constraints on the Fourier components (4.4) 

necessary to give Newton-Wigner Gts are 

gn = an0 (PO+P) - Gn*P"= 0 . (6.15a) 

along with 

q” = 0 . (6.15b) 

The analogs of the gauge conditions (6.1) and (6.3) on the canonical fields are 

xO(r,a)(PO+P) - &,a,.~ - 
M"uP 
---& = $ P(PO+P) 

PO 

a"(r,o)(Po+P) - $0 8(r,a) = + P(PO+P) . (6.16) 



B. Dirac Brackets 

The canonical Poisson brackets (4.7) are not compatible with the constraints 

(4.5) and (6.15). One may, however, define modified brackets - the Dirac 

brackets [13] - which are manifestly consistent with the constraints. In the 

Appendix we define and calculate the Dirac brackets for the Fourier components 

of the string in the Newton-Wigner gauge; we also present an alternative 

technique, using gauge-invariant variables, which yields equivalent results. 

The computations in the Appendix give the following formulas for the Dirac 

brackets, distinguished hereafter by an asterisk: 

@,qV1* = 0 

(6.17) 

(6.18) 

. . . . . . 
{a l,a m n j}* = -iny 61Jm6m -n + mn(p'~A+~T, - P'c~A+~T~) (fly)2 

, 

+ mna n j{Pi(Um-v,, - ai;,m v&-a} (d2 

- mncLmitPj(un-vn) - 1 VQ"x &nr)* 
R#O,n - 

- ~nbd2 C 
WO,m,-n 

TR ai-2 a:+~ 

na j 
fqi,cL/+* = - n 1 + clRi ciao 

M*(H+M) !L#O 

+ M(H:M) c +gi a;+2 
Q#O,--n 

nPi 
HMW+M) c +a-: ";+a. . (6.19) 

a+o -n , 

Here Tn, Un, Vn are defined in the Appendix. Since the constraints (4.5) are now 

strongly valid, we are free to define 



M2=-P2= 1 am*a-, 
m#O 

even though c1 0 
n contains implicit M2 dependence; similarly, we may now take 

H f p” = [T2 2 l/2 
+Ml 
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(6.20) 

(6.21) 

as a dependent variable. Equations (6.17) indicate that canonical quantization 

is straightforward for G and 3. Unfortunately the Dirac brackets (6.18) and 

(6.19) are so complicated that canonical quantization is decidedly nontrivial. 

C. Two-Dimensional System 

In two spacetime dimensions, the only simple solution of the constraint 

equations (4.5) is 

o=o n 

Pup = 0 
u 

so xu has only translational degrees of freedom, 

1 Pr 
X =q+-. 

v 

The Newton-Wigner coordinate (6.5) becomes simply 

(6.22) 

(6.23) 

(6.24) 

However, the Dirac brackets (6.18) evaluated in two dimensions indicate that 

a highly nontrivial Hamiltonian system still exists if a u = 0 is excluded. These n 

brackets presumably give all the available information about the classical 

Hamiltonian dynamics of the longitudinal modes. We exhibit the brackets of 

a1,a 
n n in the rest frame P = 0, H = M, for simplicity: 
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{P,qI* = -1 

[q,H}* = P/H = 0 
incx 

{H,cx,)* = + 

I%+* = - -+ 
2M 

{P,a!JX = 0 

Iam,",l* = -i(Trym6m -n + mn 
1 

> M2 c R#O,m,-n 
R 'm-J?, "n+R) ' 

t Even in two dimensions, we see that canonical quantization of the longitudinal 

modes will be difficult. 

(6.25) 
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7. CONCLUSION 

We have investigated the massless limit of a model for the massive Nambu 

string and have found that we recover longitudinal modes of oscillation excluded 

from the GGRT treatment. These oscillations are kink-like, not linearly super- 

imposable, and are identifiable with those proposed by Patrasioiu, 

The model was examined in detail in two spacetime dimensions and the 

Hamiltonian expressed in terms of normal-mode action variables alone. The result- 

ing theory was a completely integrable classical Hamiltonian system. The Bohr- 

Sommerfeld approximation to the quantum mechanics gave a linear, integer-spaced, 

mass-squared spectrum. 

Finally, we separated the simultaneously measurable Newton-Wigner coordinates 

of the string center-of-ma% and examined the Dirac brackets of the oscillators 

occurring in the fully constrained, orthonormal-gauge system. The brackets 

exhibit complex structure for the longitudinal mode oscillators even when we go 

to the rest frame in two spacetime dimensions. Our attempts to find a canonical 

quantization procedure have so far failed. We are thus still far from our goal 

of showing that the longitudinal modes permit the string to be quantized for 

dimensions other than twenty-six. 

ACKNOWLEDGMENTS 

Three of us (W.A.B., A.J.H., R.D.P.) are grateful to the Aspen Center for 

Physics for its hospitality during a portion of this work. We thank J. Goldstone 

and C. Thorne for sharing with us some of their insights on this problem. 



35 

APPENDIX 

1. Dirac Brackets 

The canonical Poisson brackets of a constrained system can be replaced 

by Dirac brackets [13] which are compatible with all constraints. Let us denote 

( by @,k Ga W 0, the entire collection of constraints, and write * 

The Dirac bracket of two canonical variables A and B is then defined as 

(A,B)* = {A,B) - {A,$~) c$ IQp,~l . 

, 
It is clear that the Dirac bracket of a canonical variable with any one of the 

constraints vanishes identically. 

For the case at hand, the set of $clts is given by Eqs. (4.5) and (6.15), 

(A. 1) 

(A-3) 

We exhibit below the matrix C aB defined by (A-1) with @a given by Eq. (A.3), and 

its inverse C -1 
aB' 

Defining 

Tn = i 

my (H+M)M 

a0 
lJIn = - -+ Tn 

V =$$anOT n n (A-4) 

we find 
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L m>O 

LO 

Lm<O 

gm>O 

q" 

gm<O 

L n>O 
I 

I 
I 

l/Tsl 

1/Ts2 

C & = {$y@& = 
, 

Ln<O gn>O q” 

-- 

-- 

UT1 

--*--- 

l/T- 1 

-Ralo 

*/5 

0 
-0. 2 -- 

0 -CY. 1 
__----.- 

-H 

-4 -1 

-a0 -2 

Ra20 

Rcl10 
.._I.- 

0 

Ra-lo 

R2O 

(A.51 

g n<O 

--I-- UT2 . ___- 
-l/T1 

___T___ - -‘ 
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(A. 6) 

L m>O 

LO 

L m<O 

L n>O 

I ---r--- --___ .-J_l-_i ..-.., ~I; 
-5 .--- --A-- ’ -V-1 --. i 2T1 

2T2 

-j-- 

j 

L n<O gn>O 

i 

gn<O 
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Using Cai and Eq. (A.Z), we obtain for the Dirac brackets the formula 

{A,B)* = {A,B] - {A,L,} VnCLO,~l + {A,LO) v~{L-~,B} - {A,L-,3 ~T~{L~,B) 

- {A,L-,) Tn(gn,B) - {AJO) $ {q',B) + {A,LO} Un{g-n,B] 

+ i&q’} $ {LO,B} - l&g-,] UniLo,B] - {A,g_,} Tn{Ln;B} . (A-7) 

Here the implicit sums over n exclude n = 0. Equations (6.17), (6.18) and (6.19) 

in the main text follow directly from Eq. (A.7). 

2. Gauge-Invariant Oscillators 

A simple extension of the concepts introduced in Ref.11 allow us to construct 

gauge-invariant classical oscillators obeying the Newton-Wigner gauge constraints 

(6.15). The Newton-Wigner coordinates Qu given by Eq. (6.5) are already gauge- 

invariant, and satisfy Q" = 0. The analogs of the DDF variables [lo] are given 

by 

where in any 

TT 
A’=; j de dX%> 

n d0 
exp inky { X0 (0) (H+M) - I l ’ } 

-IT M(H+M) 

orthonormal gauge X'(6) may be expressed in the form 

Pl-lfl . qu+F+$ 1 $on"e -in6 . 
n#O 

CA. 8) 

(A. 9) 

This express ion and Eq. (4.7) define the canonical PO isson brackets of Xu(D), 

and hence the canonical properties of An' are determined. Note also that 

$ [X'-'(Tr) - Xq-Tr);] = Pi-l . (A.lO) 

All of the arguments in Ref. 11 may now be imitated to analyze the properties 

of A 1-1 
n' The first result is that Anu is invariant under the action of the 

Virasoro constraints (4.5), which generate the gauge transformations. In addition, 
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Anu itself obeys the Newton-Wigner constraints (6.15a), 

A,O(H+M) - xn*$ = 6 n o M(H+M) 3 , 
(A.ll) 

where An' with n = 0 is just the momentum: 

Ao * 
1-I = pu - (A.12) 

The canonical brackets of Anu and Q" among themselves are identical in form to 

the Dirac brackets (6.18)-(6.19) of onu, qu and Pu , Unfortunately no explicit 

solution of the Virasoro constraints obeyed by Any is known, so that the quantum 

analysis of the closure of the Lorentz algebra cannot be carried out. 
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FIGURE CAPTIONS 

Fig. 3.1 Solution of the two-dimensional string equations with masses at the 

ends only. 

Fig. 3.2 r-dependence of p(O), I and xo(o) for string with massive ends. 

Fig. 3.3 Massless limit solution of the two-dimensional massive-end string. 

Fig. 3.4 Phase-space orbit of the massless string with Hamiltonian (3.17). 

The arrows give the direction of increasing time. 

Fig. 4.1 Plot of periodic absolute value function, Eq. (4.14). 

Fig. 4.2 Plot of@, x, xo versus T for simplest rest frame solution of 

orthonormal gauge string equations. 

Fig. 4.3 Mapping from orthonormal-gauge parameter o to the xo-uniform-gauge 

parameter ??(r,o) as a function of -r. 

Fig. 4.4 Plots of@, j;, %-o in xo-uniform gauge as a function of r. Heights 

of 63 (01, I give the coefficient of the appropriate delta function. 

Fig. 4.5 A more general solution f(z) to the constraints (4.11), giving N 

interior points moving at the speed of light. 

Fig. 5.1 (a) Phase-space orbit of l-fold system projected on the (kl,rl) 

plane; (b) projection on (k2,r2) plane. Numbers label sequential 

configurations in T. 

Fig. 5.2 (a) Phase-space orbit of l-fold system projected on the (k+,r+) 

plane; (b) projection on (k ,r-) plane - coincident paths are displaced 

for clarity. Numbers label sequential configurations in T. 

Fig. 5.3 (a) The action variable J + as a function of initial condition c; 

(b) the action variable J-. 

Fig. 5.4 (a) x-space motion for c = 7r/2, a pure J normal mode; (b) x-space 

motion for c = X, a pure J normal mode. + Note that in case (a), the system 

returns to its initial configuration in half the time required by case (b). 
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Figure 3.1 Solution of the two-dimensional string equations with masses at 

the ends only. 
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Figure 3.2 T-dependence of p(O), P(T) and x0(o) for string with massive ends. 
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Figure 3.3 Massless limit solution of the two-dimensional massive-end string. 
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Figure 3.4 Phase-space orbit of the massless string with Hamiltonian (3.17). 

The arrows give the direction of increasing time. 
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Figure 4.1 Plot of periodic absolute value function,? Eq. (4.14). 
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Figure 4.5 A more general solution f(z) to the constraints (4.11), 

giving N interior points moving at the speed of light. 
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Figure 5.1 (a) Phase-space orbit of l-fold system projected on the (kl,rl) plane. 
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Figure 5. 1 (b) projection on (k2,r2 

configurations in -r. 

) plane. Numbers label sequential 



k+ 

I?--- 
/ 

f 
/ 

‘V 

a ---< 
6 

-1’4 \ \ 
a 

\ 
\ 15 

I 
I 

Figure 5.2 (a) Phase-space orbit of l-fold system projected on the (k+,r+) plane. 
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Figure 5.2 (b) projection on (k ,r ) plane - coincident paths are displaced - - 

for clarity: Numbers label sequential configurations in T. 
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Figure 5.3 (a) The action variable J + as a function of initial condition c. 



Figure 5.3 (b) the action variable J . 
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Figure 5.4 (a) x-space motion for c = v/Z, a pure J normal mode; 

(b) x-space motion for c = v, a pure J+ normal mode. Note that 

in case (a), the system returns to its initial configuration in 

half the time required by case (b). 


