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ABSTRACT 

We discover that the set of coupled equations of 

motion of the quark-binding bubble model can be solved 

exactly and completely in two-space one-time dimensions. 

In this three dimensional Minkowski space, the bubble is 

equivalent to a closed string with massless quarks trapped 

on it. The integrability of the equations follows from 

the special simplicity of the geometry of two dimensional 

surfaces. From the set of all classical solutions, a 

Poincarg invariant quantum system is explictly constructed. 

The resulting spectrum is free of ghosts. 
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1. INTRODUCTION 

Recently several dynamical models of quark binding within hadrons 

have been proposed. In particular, (Bardeen, Chanowitz, Drell, Weinstein 

and yan)' proposed a field theoretic model where quarks are boind on the 

surface of the bubble. In a classical picture, the bubble surface 

arises as a domain boundary of a region where a scalar field assumes 

the "wrong'" vacuum expectation value. In the preceding paper2, one of 

us (RG) has reformulated the BCDWY model in the zero thickness (of the 

bubble surface! limit. In this formulation, the scalar field is re- 

placed as a dynamical variable by the geometry of the bubble surface, 

and the quark degrees of freedom are characterized completely by a 

surface quark field. Although the quantum theory can be derived from 

an action principle, quantum corrections of the original field theo- 

retic description become intractable; still the action formulation has 

the advantage of allowing ready calculations of many properties of the 

system. 

In this work we concentrate on the bubble in three space-time 

dimensions. We shall see that all classical solutions to the general, 

time dependent bubble theory can be constructed explicitly. In the 

general case, the bubble executes a complicated, but periodic, oscil- 

lation in time. The quarks trapped on it are massless and move along 

light-like lines imbedded in the surface, There is a degeneracy over 

an infinite class of "shapes" of the bubble. By choosing a special 

coordinate system and a particular Lorentz frame, we can represent all 

possible solutions to the theory in terms of a countable number of 
independent "normal mode" amplitudes. We exhibit a set of commutation 
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relations among these modes which provide a Poincare/ invariant quantum 

theory of the single bubble. 

The bubble in three space-time dimensions is equivalent to a closed 

string upon which quarks are trapped; our method of solution cl.osely 

resembles that of the Nambu action 3 . In the absence of quark fields, 

the spectrum reduces to that of the closed string. 

In the presence of quark fields, the bubble equations of motion 

form a rather complicated set of coupled non-linear partial different- 

ial equations. They are difficult to solve directly. We proceed as 

follows: first, exploiting some special geometric properties of two 

dimensional surfaces and rather gneral properties of the equations of 

motion, we show that coordinates may be chosen in which the equation 

of motion of the bubble surface has a particularly simple form. Using 

this result, we find that the Dirac equation can be solved to give the 

Dirac field everywhere on the surface in terms of the dynamical vari- 

ables describing the surface geometry. Finally, we show that the sur- 

face equation of motion gives an algebraic relation between the Dirac 

field and the surface variables. The complete quantized spectrum can 

then be exhibited. Since the solution is obtained by breaking manifest 

Lorentz covariance, all that remains to be shown is the straight forward 

demonstration of the closure of the Poincarg algebra. 

Classically the bubble energy is proportional to its lengthL, 

independent of its shape. In the quantized system this property is 

reflected by a Hagedorn-like spectrum (where the number of states in- 

creases exponentially with the mass), with linearly rising Regge tra- 

jectories. The Regge slope is inversely proportional to the bubble 
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constant % and the intercept of the leading Regge trajectory must be 

an integer or a half-integer. For some choices of the intercept, it 

takes a negative amount of energy to generate a bubble. This is in 

contrast to the classical or semi-classical situation where generating 

a bubble always takes a positive amount of energy. This particular 

quantum property may allow the avoidance of the apparent problem of 

bubble condensation. 

The rest of this work is organized as follows: Section II contains 

the formulation of the bubble system. For more details of the differen- 

tial geometry and the derivations, the reader is referred to the pre- 

ceding paper. In Section III, we derive some of the properties of the 

bubble which are necessary for the solution. In particular, "reparamet- 

rization invariancetr allows us to choose a "gauge" such that the bubble 

equation of motion becomes very simple, The fermion field can then be 

solved in terms of the geometry, The solution is presented in Section 

IV and the results in Section V. In Section VI we discuss among other 

things the relation of this three dimensional bubble to other extended 

hadron models. 
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11. THE BUBBLE MODEL 

The bubble of interest is a two-dimensional hypersurface imbedded 

in a three dimensional Minkowski space. The bubble surface (Fig. 1) 

is parametrized by the internal coordinates u , and is assumed to be a 

differentiable manifold. The metric in Minkowski space 1 py induces a 

metric on the hypersurface 

P where Tti = G J&p= o( are the tangent vectors. At 

each point on the surface, a unique space-like, unit, outward, normal 

vector rip (8) can be defined 

It is useful to express lrv at each point of the surface in terms of 

the set of vectors at that point 

Another useful tensor is the "coefficients of curuature" tensor 

R 

Its trace 2k = h" 6 is proportional to the local mean curvature of the 

surface. The action of the bubble is 



-6- 

where g is the determinant of the metric tensor gap. q* - 
a 

is an 

arbitrary spinor field satisfying the constraint ~,&I$~$" where H S.$lr; 

fp are the Dirac matrices. This constraint ensures that the 

fermion current density and the energy-momentum density are tangential, 

The index "jrr designates the quark species. For simplicity we 

shall consider only one type of quark field. The generalization to 

many types is straight-forward. 6 is a constant and provides the only 

scale of the system. 

The Euler-Lagrange equation 

gives the Dirac equation 

Using this and the constraint 

we obtain, from the Euler-Lagrange equation 

(lb) 
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the surface equation of motion 

where the energy-momentum tensor T &P is given by 

(IdI 

0 Equations (l), along with the 

global requirement that the surface be spatially closed define the bubble 

system completely. Equation '(1~) describes the vibrations of the 

surface. It is the normal component of the surface Euler-Lagrange 

equation. Equation (la), (lb), and (lc) form a set of coupled equations. 

The tangential components of the surface Euler-Lagrange equation 

(le> 

It is straightforward to show that this follows from Eq. (la)-(Id) and 

hence not another independent equation of motion, This is a reflection 

of “gauge invariance" under coordinate transformation. is the 

Christoffel symbol of the second kind and is given by 



In the three space-time dimensions, both the geometry of the 

bubble and the gamma matrix algebra can be simplified. The bubble 

surface is two dimensional. Our notation will be 

with 

for any quantity A. We-choose the orientation of the internal coordi- 

nates such that 

(2) 

In three dimensions, we need only three matrices satisfying the 

anticommutation relations 

We choose these to be 2 x 2 Eauli matrices rather than the usual 4 x 4 

gamma matrices 

whose algebra is 



I 

-9- 

That such a choice is possible is obvious mathematically. Its 

significance in the theory becomes clear if we begin with a 4 x 4 

representation of the usual gamma matrices 

In this representation, the Dirac equation involves only 1": y1 -f"* , 

Thus, the two component spinors 'y+ and * !- decouple from each other. 

Because the fermion moves in a single plane, there is an extra conserved 

"charge" whose matrix is r3bng. To choose a two component represent: 

ation of the gamma matrices is to impose the condition that the Dirac 

field be an eigenstate of r' y with eigenvalue + 1. 
5 

The theory we obtain by making this choice is a consistent and 

complete theory of a fermion trapped on the bubble surface. That this 

is so is not completely obvious. In a three dimensional theory where 

the fermion is free to move throughout space-time, charge conjugation 

and time-reversal invariance cannot be realized in the two component 

representation. For example, charge conjugation must be represented 
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by a matrix C with the property 

(5) 

In the representation (4), we must take C = rs r" Thus, C do& not 

commute with ~";fs. Because the fermion in the bubble 

fined to the two dimensional bubble surface, however, 

theory is con- 

the requirement 

(5) need be satisfied only by the tangential components of the gamma 

matrices: 

This condition can be realized in the two component representation by 

C = iRf. The two component representation is "complete'r for the 

bubble theory in the sense that P, C, and T can all be realized for 

the Fermi field, 

We must also emphasize that a bubble theory based on a four 

component Dirac spinor is not an altogether trivial extension of the 

two component theory. It may be viewed as a theory of two independent 

two component quark fields, q;- and q - , trapped on the bubble surface. 

However, the two component version of Eq. (1) is different for these 

two spinors: 

(6) 



-ll- 

Through the Dirac equations for these two spinors separate completely, 

both interact withthe surface through Eq. (1~). Because of the 

difference in sign in Eq. (6), the effects on the surface of the two 

spinor fields do not add in a simple way, In this paper we only 

examine the two component case. 
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III. PROPERTIES OF THE BUBBLE 

To solve Eq. (1) we first have to obtain some useful properties 

of the bubble system. Because the system is invariant under arbitrary 

coordinate transformations - 

we are at liberty to choose a system of coordinates which simplify the 

equations. Further, as we shall see below, the requirement that a 

solution to the equations of motion exist at all places very strong 

constaints on the geometric structure of the surface. These constraints 

arise, essentially, from the causal structure of the free, massless 

Dirac field on the surface. 

We shall show that the equations of motion imply there exists a 

coordinate system such that 

and 

(7) 

(8) 

A special property of two dimensional manifolds which we rely on 

to choose coordinates is that any symmetric tensor of signature (1,-l) 

can be brought into off-diagonal form by a coordinate transformation. 

This would, for example, allow us to choose the metric to be off-.. 
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diagonal. It is more useful, however, to work in coordinates where 

the stress tensor TdP is off-diagonal, To do this, we have to show 

that the stress tensor 

is symmetric and has signature (1,-l). 

First, we show that if T M ' is any symmetric tensor with signature 

(1,-l) on a two-dimensional Riemann manifold, then a local coordinate 

system can be found in which T dF is off-diagonal: Too I T1' = 0 0 

Let {V',Vi) m8-s be the desired coordinates, and T be the tensor T 
DiQ 

in these coordinates. 
-d/6 pJy d 

c&J= \ 
I aik." a 

(94 

Both v" and v' must have gradients which satisfy the homogmeous 

quadratic constraint (9a). Because T &P has signature (1,-l) the 

solutions of (9a) are such that the gradient must lie on a degenerate 

hyperbola (analogous to the light cone) in the tangent space to the 

surface at each point. There are two independent real solutions to 

the quadratic equation at each point. These generate two functionally 

independent solutions to the differential equation, which can be taken 
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to be v" and v'. 

Next, we must show that the energy-momentum tensor T df"3 
satisfies 

the conditions for this theorem: that T Q is symmetric and has 

signature (1,-l). 

The metric tensor is symmetric, so the symmetry of T tip 
will follow 

if we show that @ &P ‘ is symmetric, l&P It is sufficient to show that I$ 

is symmetric at any given point in some coordinate system. A tensor 

which is symmetric at a point in one coordinate system is symmetric at 

that point in all coordinate systems. At a given point, u"( , we choose 

locally geodesic coordinates: 

% "p = 

We want to show that @ 
cl, 10 

= 6 
u! 

at the point u g We have: 

(9b) 

Using the Dirac equation 

and the relation, valid in the two component representation of the 

gamma matrices, following from (9b): 



we have 

then (9c) becomes 

But 

oi 10‘ so0 =E; d at the point u . Therefore is symmetric at all 

points in all coordinate systems. 

Finally we must show that T d1d has signature (1,-l). It is 

sufficient to show that det(T tip ) < 0, for then the eigenvalues of 

T”cp have opposite sign. Because T %P is a 2 x 2 matrix, we have 

From the Dirac equation, 
%aiL3~ l 

“P so We can also show that det 
I 

(8 dP )=O. A s will be proven below, the Dirac current, Jti =8&,icI , 

is light-like and satisfies 

It follows immediately that 0 &P is of the form 
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where,, A. is some scalar function, Then 

so 

since 

The symmetry of T d/2 reflects the absence of spin in two dimensions. 

In general, a spin-dependent divergence must be added to the canonical 

stress tensor to form the symmetric "improved" stress tensor. In two 

dimensions, however, the- canonical fermion stress tensor is already 

"improved"+ 

We choose coordinates such that 

(10) 

where T( T ,6) depends on the details of the solution. The coordinate 

system is not uniquely determined by the condition (lo), We still have 

"conformal" invariancer':(lO) is invariant under coordinate transforr. 

mations of the form 

(11) 

So far, we have used nothing but the coordinate invariance of our 

description of the bubble surface, We now show that a necessary 



I 

-17- 

condition for the field equations to be solvable is that R'(T,~) 

satisfy (7) and (8). 

We begin by considering the algebraic relations between the 

fermion current J d 
and the stress tensor T"'i"z . A result which follows 

from the two component representation of the gamma matrices is: 

If 3" is any spinor satisfying qq= 0, then 

Proof: 

For any two component spinor;y, there exists a unique real unit vector, 

& such that: 

Using the 2x2 representation of the gamma matrices (3) we have 

then 

zz 0 

This has the immediate consequences: 

(12) 
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Assuming that J ti is not identically zero, these relations allow us 

to determine some components of the metric tensor in terms of T . 

With the stress tensor of the form (lo), equation (14) implies 

t 

JOJi = 0. We shall see below that the choice of orientation (2) and 

the condition (lb) require that Ji = 0. Putting this result in (13) and 

comparing both sides, we find: 

So the metric has the form 

where A is not determined by this analysis. We note that 

This is condition (8). 

The stress tensor is divergenceless (eqn, (le)) 
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But -i-'T di3 is a constant, so we have 

The equation of motion (1-c) of the surface gives 

The condition (7) now follows immediately: 

We now turn the problem.around. StartCng with a coordinate system 

satisfying (7) and (8), we derive the solutions to the bubble equations. 

Equation (7) implies the surface is of the form 

Defining: 

we have: 

where 

(15) 

(8) 

\ 
/ 

(16) 

‘d- 
- 

(17) 
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In the following discussion, we assume that q2, 0. In fact, we shall 

see that the equations of motion imply that q2 is proportional to the 

fermion energy density, which, as a classical function, is not positive 

definite. We shall proceed as if the energy density is positije, and we 

shall find that our solutions are self-consistent in the quantum theory 

after fermi statistics and normal ordering are taken into account. 

So far, our analysis of the surface geometry has been local. The 

global condition that the surface RP be a closed hypertube in space- 

time places further constraints on Q, and SP . Geometrically, 

equation (15) asserts that the hypertube is a surface that is swept out 

by moving a rigid light-like curve, SP (r), along some time-like curve 

Q, CT) l At each point on the two dimensional surface, there are but 

two light-like directions. Because the hypertube is closed, the light- 

like curve SP contained in it must spiral up the tube, intersecting 

QP infinitely many times (Fig. 2). It is clear that, if the surface 

is to be swept out.by the motion of SP along QP , each of these points 

of intersection must be equivalent geometrically, except for an overall 

time-like translation, Ap . After choosing appropriate coordinates IY 

and CY from one interval to the next, we clearly have the result that 

Q r(~) and SP (Q) are "semi-periodic" functions: 

where 

= fixed period 
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.&A = a constant time-like translation. 

From this analysis, it is clear that the coordinates (-c,c) and (it-&, 
_ 

r-sb ) correspond to the same point on the hypertube. Later, we will 

choose ranges for'Z and cI- so as to bring the coordinate manifold into 

one-to-one correspondence with the points of the surface. 

We proceed to solve the surface Dirac equation in terms of the 

coordinates (15). The two component Dirac field has only one complex 

degree of freedom by virtue of equation (lb). Using (2) and (17) we 

find 

We can rewrite (lb) in the equivalent form 

The Dirac equation becomes 

p,jI;~O& ".+ #Ji i- ,I%)+ = c 

or 

(18) 

(19) 

(20) 
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Because J$ is independent oft , this may be integrated directly: 

Given "initial" data,q(Z,o), equation (21) propagates 9 away 

from the curve CT= 0, along a family of parallel light-like lines. 

The initial data is not entirely free of constraints. First, equation 

(19) must be satisfied: 

&t(8) Wr,N = 0 

Also, because the points (II,%) and (Z+TS ,Q) are the same, 9 ('r, o) 

must satisfy the "periodicity" condition: 

(22) 

The phase integral in (22) is Lorentz invariant, and can most easily 

be evaluated, for a givenr , in a Lorentz frame where 

We find 

@i . 

h I 
dri- 

0 

where ii WJ is the angle through which the spatial part of A$ has 

rotated as d varies from 0 to C, . Over a full period C&G , this 

angle is 2T, so (22) becomes 
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Thus?/(T,O ) must be "anti-periodic" with period % . 

The physical and geometric interpretation of these solutionzito 

the Dirac equation is clear. The Dirac field is parallel-transported 

up the surface along the light-like curves br D This is simply the 

motion of a free massless fermion trapped on a curved surface. On the 

hypertube, there are two disconnected families of light-like lines, 

which spiral up the surface in either the ftleft-handed" or the "right- 

handed" sense. The condition (lb), in the two component representation, 

insures that the orbits of all quarks in the bubble surface have the 

same "handedness". We note that, by equation (6), a bubble theory 

based on four component spinors contains both left- and right-handed 

quarks. This is the reason that the structure of the four component 

theory is rather more complicated. As in the static case2, parallel 

transport once around the tube gives a phase factor -1. 

We can now understand qualitatively how the "causal structure" of 

the Dirac equation induces the periodicity of the surface motion. The 

Dirac field energy propagates along light-like curves. These curves 

must wrap around the surface over and over again. Thus the initial 

distribution of Dirac field energy must be reconstructed after the 

light-like curves have come once around the bubble. As we have seen 

generally above and shall see explicitly below, to the extent that the 

surface is determined by the quark energy distribution, the surface 

motion is then forced to be periodic. 

We now consider the explicit form of equation (lc) in terms of 

q P (~),.L$~c~ andii'l-i,@)O From equations (19) and (20) we find that 
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the only non-zero component of the fermion stress tensor is: 

Using (21), we can show after some algebra that this is the same as 

Then equation (lc) is 

Thus the equation of motion for the surface is 

Let us summarize what we have obtained. The surface is described 

by two periodic vector fields, Q, , SF . The Dirac field is specified 

by the anti-periodic function, y(-C,O). The conditions these functions 

must satisfy in order that they give a solution to the theory are: 

(23) 

(24) 

(8) 

(19) 

(25) 
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With the exception of equation (25), this is a system of 

algebraic relations among 
4 
.~,a, and *(i-c,09 . Before constructing 

all solutions to this system explicitly, we discuss some of its general 

properties. First, we count the number of independent functional 

degrees of freedom of the system. Each of the vectors qp and,+ has 

three real components of which two are independent by (24) and (8). 

'#(t,C) has one complex degree of freedom by (19). Apparently the 

system is described by four real and one complex degrees of freedom. 

However, because the equations are invariant under conformal transfor- 

mations, there are two real degrees of freedom which correspond merely 

to changes of internal coordinates rather than to physically different 

states. Thus, all physically distinguishable solutions to the bubble 

equations are described by two real and one complex functions. These 

may be taken to be: one real function to specify each of qr and-bP , 

and one complex function that determines '&(T,O). 

The charge and momentum can be simply expressed in terms of qr, 

Ail,, and'*(X,o) . These quantities are computed as integrals over 

any-closed space-like curve in the surface. Along such a curve, as S 

varies from .T; to S+To, 

d goes from r to O-- G . We have 

(27) 

Space-like 
cut 
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The result which is analogous to the shape degeneracy of the 

static bubble in three dimensions is now apparent. The energy and 

charge are independent of L+. hyis functionally independent of qP and 

q{s,o), being constrained only by the "initial" condition (19) and 

through its integral (25). Thus, the moving bubble states are- 

degenerate over all "shapes" of "0~ . As in the static case2, the 

angular momentum will depend on ~$through its first moment. 
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IV. THE QUANTIZED SYSTEM 

We proceed to construct the independent solutions of the algebraic 

equations (8), (19), (23) and (24). In order to eliminate the conformal 

degrees of freedom, we must specify a "conformal gauge" by choosing one 

component of qr and+ each to have a definite functional dependence 

on T and c'- ,, Unfortunately, any such choice also destroys the 

manifest Lorentz invariance of the theory. We use the notation 

. . 

*+?Z JJ+ p $- = x9 - x2 

for any vector, x, in Minkowski space. We specify the conformal gauge 

by the choice‘ 

so 

(28) 

+ 
where ? = constant 

and 

A Lorentz frame and conformal gauge can always be found such that (28) 

holds. 

Next, we make use of their periodicity to expand qi and &i in 

Fourier series 
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(29) 

(30) 

The coefficients & and CM must satisfy 

(31) 

in order to ensure that-i?\ (Gcr) is real. 
. 

Condition (19) implies that%TY(;C,oj must be of the form 

where the overall factor which multiplies the spinor has been chosen 

for convenience. We expand F in a Fourier series: 

The sum in (33) is over half-odd integer m, so that F is anti-periodic. 

We can now use (8) and (24) to compute q- and s- in terms of an, 

% bm. 



-29- 

We find 

where 

(34) 

(35) 

(37) 

The representation given in (28-37) satisfies all of the algebraic 

constraints (8), (19), (23) and (24). There remains the integral con- 

straint (25). The " 3 " component of (25) is satisfied trivially: The 

first component of (25) requires c, =A, , an identification which we 

assume henceforth. The " - " component of the integrals in (25) gives: 

x 0 -= fo (38) 

This is a constraint which involves all of the normal mode amplitudes 

and reduces the total number of degrees of freedom by 1. We do not 

use this condition to eliminate any one of the normal modes. In the 

quantum theory, (38) cannot be imposed as an operator condition, but 

rather, must be imposed as a "weak" constraint on the physical states. 
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We can express the coordinate functions and the conserved charges 

of the bubble in terms of the normal mode amplitudes On, Cvl,b.ti. Before 

doing so, it is useful to first specify the range over which ?: and CI- 

can vary. We make this choice as follows: 

let ;tz 6-+-c 

We choose 

This choice is useful because t acts as a "timer', or evolution parameter, 

along the bubble. Unlike curves of constant/t, the curves t=constant 

are closed space-like curves in the bubble surface. 

We may write the 

P 
-i- = 

momentum as follows: 

(39) 

so the mass of the bubble is 

,yf c 

The coordinates of the SC 
R'(t,d - -' 

The coordinates of the surface are: 

where 

.- .I- 
x -1 

and x are constants of integrations. 
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(42) 

and the fermion number (eq. (26)) is: 

(43) 

We now have an explicit representation of all solutions to the 

classical bubble theory in three space-time dimensions. In this re- 

presentation, a bubble state is completely defined by giving the 

classical normal mode amplitudes,Qti,Ch;b,ti and the quantities +, x1, p 

x-, pl. The amplitudes which appear ine, namely beI, UVl ) cm i ( MtLQ'), 

describe the internal excitations of the bubble. P', P' and the initial 

values of X1,X-give the momentum and position of the bubble. 

The static states described in the preceding paper can now easily 

be recovered. For these states, the z coordinate can be taken to be 

the time in the rest frame of the bubble. Then, in order for the 

bubble to be static, we must take &=C! for all n. A Q=l positive 

energy state of the quark field corresponds to b,,,=ifor some value of 

m 7 0. cv\ can be chosen arbitrarily, subject only to the constraint 

(38). P+ must be chosen to be R so that the bubble will be at rest. 

The mass of such a state is 
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in agreement with the calculations of the preceding paper. 

Although we have treated the case of only one quark field, it 

is straightforward to extend the solution to the case where there 

are N species of quarks trapped on the bubble, where (&&;j z! pi . 

We simply remark that eqn. (36) then becomes 

and the fermion number Q also extends to a sum over all species. 

Because all classical solution of the theory are available to us, 

we can construct the quantum theory of the bubble explicitly. The non- 

canonical quantization of the bubble which we present is neither 

manifestly gauge or Lorentz invariant. Its Lorentz invariance must be 

explicitly demonstrated. 

We would expect any quantum theory of the bubble to induce simple 

commutation relations between the normal mode amplitudes of the 

classical theory. In the following discussion, we shall "quantize" 

the-bubble by introducing a set of fundamental commutation relations 

among the independent normal mode amplitudes. Our guide in choosing 

these commutation relations will be the requirement that the canonical 

Poincare/ and charge operators have the correct algebra. 

We require, specifically, that the commutation relations guarantee: 

(i) That the quark have fermion number 1, 

(ii) That the canonical momentum and angular momentum 

operators, (39) and (42), satisfy the correct Poincarg 
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algebra. 

(iii) That the constraint (38) imposed weakly on states is 

consistent with Poincarg invariance. That is, that 

fb-20 commute with all the Poincarg generators. - 

Rather than outline the derivation of the correct commutation 

relations from the requirements (i), (ii), and (iii), we will begin 

with the fundamental commutation relations and sketch the verification 

of the operator algebra. 

We take the commutation relations of the normal mode amplitudes 

to be: 

(44) 

(45) 

with all other commutators of the independent modes vanishing. We 

shall regard &,C, (me) as annihilation operators and 

as the creation operators. The vacuum I 0) is defined by 

&%\0? =o 

(46) 

where (&=bt, 

C&l7 =o 
-or\ are the annihilation operators for the anti-quark modes, 

&,= b.+, 
t 

creates an antiquark, and bm, bqm are the annihilation 

and creation operators for a quark respectively. A positive energy 
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spectrum is thus achieved. The dependent variables qc and s- &YGZ 

given in terms of these by eqn. (34) and (35). There is an 

ambiguity in ordering the operators in ;& and &. Let 

* 

(47) 

where by &o,L we now mean the normal ordered expressions with 

respect to the vacuum defined by eqn. (46). h and'i are constants, for 

the moment arbitrary. With this definition, eqn. (44) and (45)give 

where N is the number of species of quarks. where N is the number of species of quarks. After normal ordering, After normal ordering, 

Q becomes Q becomes 

and the correct charge commutator follows 
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we also have 

(50) 

* 

(51) 

where the quark species index is suppressed. 

We must also define commutators involving the momenta P v and 

coordinates xbkt) . These are determined by the requirement that P' 

generate translations of the bubble. The commutation relations must 

be such that 
[SG',pq *= isf? 

(52) 

where c is the generator of the infinitesimal translation $a, and 

Np- is the infinitesimal shift in Fir . The representation of the 

bubble surface we have chosen is not Poincar: invariant. In order to 

maintain the gauge condition 

R"(r,cr) = x+it) " 

We must perform a conformal transformation along with the translation: 

Thus, the total shift $nt' is ' 
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Through (52) this gives the commutation relations of the momenta 

P' and the coordinates variables X'(t). The non-vanishing commutators 

(53) 

In deriving (53), we note that the relations (50), (51) have been used. 

We take the classical expressions (42) as the definition of 

the Lorentz generators, with the additional assumption that products 

of non-commuting operators in (42) are to be hermitean symmetrized. 

For ~example, we take 

It is straightforward to show that the Poincar: algebra is satisfied, 

both formally and for the normal ordered operators. 

From the commutation relations (46) and (47) it can easily be 

verified that[&-iQ,) commutes with the charge and with all of PoincarL 
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generators. Thus the constraint that physical states obey 

(54) 

is consistent with PoincarL invariance of the theory. - 

We may also introduce an operator which corresponds to the spin 

Classically, in the rest frame of the bubble, 

W commutes with both Q and*, and is unchanged by normal ordering. 

We have now exhibited a self-consistent quantized operator algebra 

corresponding to the bubble theory in three space-time dimensions. 

There are conserved fermion numbers,Qj , and the theory has been shown 

to be Poincare/ invariant. 
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V THE SPECTRUM 

To study the physical states of the theory, we encounter the 

ambiguities associated with the normal orderings of operators. In 

terms of the constants h and 6 , the normal ordered mass operator 

is 

(56) 

and the weak constraint on any state N!p? is given by eqn. (54), where 

It is clear that states of definite particle number are eigen- 

states of Q, & and&. All states lie on straight Regge trajectories 

with Regge slope 

The intercept of the leading trajectory is n.+'K , 

That the Regge trajectories are straight is not surprising because 
'5 

\ the model that of a two dimensional object characterized by a single 

dimensional parameter. Curved trajectories probably require a second 

dimensional parameter to determine its curvature characteristic. 

The Hilbert space of the theory becomes well defined only after 

we have assigned finite values to the constants 
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The actual values we choose for& and h are arbitrary-- they are 

unconstrained by the operator algebra. Further, no matter what the 

value of do, the condition (54) will place severe restrictions on 

the spectrum. g- a$$ u: has only integral eigenvalues. L- 2 has 

integral eigenvalues if Q is even and half-odd integral eigenvalues if 

Q is odd., Therefore, if b is an integer, we form only states of even 

fermion number. If h is a half-odd integer, all states must have odd 

fermion number. 

We shall‘discuss only two of the infinite number of possible 

choices of do and A . Our guide in the selection of $* and A will be 

the classical theory. The operators 2 0 and i0 appear on an equal foot- 

ing in the mass operator. Lo is the contribution of the fermion and 

the "a" surface excitations to the bubble energy; x0 is the contribution 

of the "c" surface excitations. In the classical theory, .L and & 

contribute equally to the mass, and we can write: 

In the case of the static classical bubble, there are no "a" excitations, 

and the "c" excitations are forced to be non-vanishing in the presence 

of any fermions to satisfy the constraint (38). We maintain these 

features in any quantum theory defined by choosing do T a 7/ 0. 

We will consider the spectrum of the simplest such cases, 

fermionic states 

bosonic states do= I!!!=0 (60) 
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In case of eqn. (59) the mass levels of the Q=l states are 

exactly those of the classical static theory: 

ST& 

where *to is the eigenvalue of ;&- LL' , 
T 

a positive half-odd integer. 

We see that the degeneracy of each of these levels is finite. Table 

I lists the degenerate states comprising the first few levels for a 

single type of quark. 

The breaking of the semi-classical degeneracy of levels over all 

bubble shapes is an easily understood quantum effect. Classically, 

the only constraint on I&\ is (38). Because each classical normal 

mode coefficient can take on a continuum of values, this constraint 

can be satisfied by an uncountably infinite number of combinations of 

fcklj. In the quantum theory, however, the energy associated with each 

mode becomes discrete, so there are only a finite number of combinations 

of occupation numbers which sum to any given finite energy, ~cJ-+ i& . 

In the quantum theory, the softness of the bubble becomes apparent in 

two ways. First, the size of the fluctuations in the surface coordinates 

is always comparable to the size of the bubble itself; a result which 

follows from the absence of any dimensionless parameters which might 

serve to set an independent scale for the size of fluctuations. Also, 

as simple combinatorics indicates, as the excitation energy increases, 1 

the degeneracy of the levels increases exponentially as Q'y I 

The spin operator, W, can be diagonalized simultaneously with Q 

and x2. Table I also indicates the eigenstates and eigenvalues of W 
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among the three lowest levels of the Q=l "fermionic" spectrum. 

Because of the normal ordering ambiguities, we have not been able 

to relate the eigenvalues of W directly to a "physical" spin of the 

bubble. The source of the difficu1tJi.s precisely the same as that 

which leaves CL and A undetermined. There are no non-trivial 

commutation relations between W and other operators of the theory 

which might serve to fix the scale of W when the theory is made 

finite by normal ordering. More,concretely, we observe that classi- 

cally the spin is given by 
I 

& = .- 
& 

In the normal ordered quantum theory we have no analogous result. 

If we assume color SU (3) so that baryons are formed from three 

quarks in a color singlet state, then the lowest baryonic state is 

[C?i?((?.: jiJ bt,h$ ~l&yl\9)where i , j, k designate different color 

quarks. 

Next, we consider the spectrum of "mesons," taking dozaG 0 

The mass levels are: ?q+= IjTi G.ko 

i. z. 0, t, 2, -+' 

The states corresponding to the first three meson levels are given 

in Table 2, along with the corresponding eigenvalues and eigenstates 

of w. The "meson" spectrum has many of the qualitative features of 

the "fermionic" spectrum. We remark upon only two special aspects of 

it. First, the lowest state is the state that we have called the 

"vacuum'p . This "vacuum" is not, then, the usual vacuum state of a 
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multi-particle theory. It is, rather, the lowest lying state in the 

spectrum of a single particle with many possible internal excitations. 

With the choice of normal ordering parameters we have made, the 

"vacuum" is a massless bubble state, and has no classical analog. 

Second, we note that the meson spectrum contains states which correspond 

to bubbles containing no quarks at all. These are purely surface excit- 

ations, and are analogous to the excitations of a closed dual string in 

three dimensional Minkowski space. 

In the BCDWY model with color SU(3), there is a problem where color 

singlet states tend to condense, for example, N mesons each with a 

quark-antiquark pair have higher energy than a single meson state with 

the same quark-antiquark pairs, Condensation may be avoided by certain 

choices of the intercept parameter [S(O . For example, in the "bosonic" 

sector with d,= AZ 1 , the vacuum state has negative (mass)2 and is a 

tachyon, the lowest q5 state is massless, and higher(q{ q<)exotics are 

energetically unstable with respect to decay into the lowest qq states. 

In the absence of a theory encompassing interactions, a0 and A 

are completely free. 
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The quantum theory we have constructed is the theory of a single 

"particle", which has many possible internal excitations. In a theory 

which is to reflect more accurately the properties of the real world, 

we must have mechanisms by which these particles scatter and are created 

and annihilated. One might hope that, in analogy with the string theory, 

such mechanisms are already implicit in the formulation of the bubble 

model. 

An attractive classical picture of bubble-bubble interactions is 

that bubbles interact with each other by fusing or fissioning when 

their surfaces touch. Such a picture is the analogy in bubble theory 

of the fission and fusion of MIT bags 4 or of dual strings. 

Generally, string, bubble and bag theories have classical solutions 

which correspond to such processes. For the bubble, such a solution 

would be characterized by the existence of surface singularities at 
e 

which the evolutfon of the classical bubble bPcomes indeterminate. Of 

the possible solutions for the evolution of the system is one in which 

a single bubble state emerges and others which correspond to the for- 

mation of new bubbles. 

Mandelstam5 has shown, in the open string mode13, that string- 

string scattering amplitudes can be computed via a path integral 

method which includes paths corresponding to the classical fission 

and fusion of strings. It seems hopeful that such a procedure might 

be formulated for the bubble case in three space-time dimensions. 

In principle at least, we are in a position to compute the form 

factor of the bubble in three dimensions. The operator whose matrix 

elements give the form factor is the fourier transform of the current 
density: 
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The normal ordering difficulties which arise in any attempt to-evaluate 

a finite matrix element of this operator are non-trivial. 

Since in real life, states of the empty bubble (i.e. states with 

bosonic oscillators only) are not observed, one may hope that bubble 

scattering vertices can be constructed in such a way that all empty 

bubble modes do not couple, We do not know of any other way to exclude 

the pure bosonic modes from the spectrum. 

We observe that in the absence of fermion field in the bubble 

action, the dual string emerges. It follows that the energy-momentum 
"fp cd 

stress tensor simply becomes the metric tensor 1 ! and the 

solution reduces to that of ref. (3). (We choose 
Gdr" 

1 
' off-diagonal 
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instead of diagonal, this simply means our parameters x and @ are 

the light-cone version of the Z and r in ref. (3)). 

The quark field here is a physical quark field in that it obeys 

a Dirac equation in the Minkowski space. It is a conformal scalar 

in the two dimensional (t,(r) subspace. Hence, it is different from 

the Neveu-Schwarz-Ramond model6 where the fermion field is a spinor 

in the two dimensional (~~5) space, and is a two component vector 

field in the physical Minkowski space, the time-like component of 

which has the wrong metric. This has to be eliminated to avoid ghosts, 

which is achieved by having extra dependence among the dynamical 

variables. Actually this quark-binding bubble is closely related to 

the Bardakci-Halpern mode17. 

Topologically we classify different geometrically constructed 

extended hadron models into three types: (1) String: a two dimensional 

subspace imbedded in an n-dimensional Minkowski space. (2) Bubble: a 

(n-l) - dimensional hypersurface imbedded in an n-dimensional Minkowski 

space. (Here one can also include membrance-like model) (3) Bag: a 

finite volume in an n-dimensional Minkowski space. 

Thus in three dimensional Minkowski space, a bubble and a string 

are equivalent. In two dimensional Minkowski space, a string and a 

bag are equivalent. 

The three dimensional bubble (or string) lacks sufficient resembl- 

ance to the real world; because there is but-one component of angular 

momentum and hence no algebraic constraints on the normal ordering 
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terms, the spectrum of states remains ambiguous (i.e. values for n,n ) 

To extend to physical Minkowski space, it is not clear which is 

the proper generalization. The bubble is investigated in ref (2). The 

string is investigated in ref. (8). The latter offers the hope of being 

solved completely. Only a confrontation with experiments can tell which 

is closer to nature: bag, bubble or string, or none of them. 

The quantization of the bubble in this work is non-covariant. It 

will be interesting to carry out its covariant quantization. 

A knowledge of ref. (7) may suggest an approach to covariant 

quantization for the case with four component Dirac particles (see eqn. 

(6)). 
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Figure Captions 

A quark confining bubble in two-space one-time - 

dimensional space. 

A three dimensional bubble generated by curves 

Qp(t) and ‘?,(r>. P oints P and P' are equivalent. 
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. 

TABLE 1 

The Low-Lying single Fermionic States 
of the Three Dimensional Bubble 

d, -= & = '/, 

Li = eigenvalue of : L- dh 
-to = eigenvalue of : 20 -&/z 
w = eigenvalue of : 

+jj 

312 
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TABLE 2 

I------- 

0 

2 

r* I----- 
0 

2 

The Low-Lying "Meson" States 
of the Three Dimensional Bubble 

0 

0 
0 

State Vector .-----------~--------------------------- 

b-7 

where: 


