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The meson theory of nuclear forces provides a good qualitative, and often quantitative, 
description of NN scattering, but nevertheless suffers from some major defects. Thus, by 
adjusting certain TN and KK amplitudes (including a fictitious “o”) one can construct a 27~ 
exchange potential which, together with OBE terms corresponding to 7rTT, p, and w exchange, 
can produce a reasonably good fit to the phase shifts (with certain exceptions such as the 
3DI). See, for example, A. D. Jackson [l]. However, after 25 years of effort the form of 
the (crucial) 2n contribution is still somewhat ambiguous, and one cannot with any certainty 
predict the effect of still higher order dia.grams. Furthermore, effective “potentials” 
derived from this theory come equipped with a sizeable number of adjustable “coupling 
constants” and “regularization parameters”, which are not (for the most part) independently 
measurable. This introduces a latitude in. the description which is highly unsatisfactory 
for a basic theory. 

Moreover, this approach obscures our understanding of related phenomena, such as r pro- 
duction and absorption, and mesonic corrections to electromagnetic (EM) form factors. 
The reason is simply that the mesonic degrees of freedom are lost in constructing the 
effective “potential”. The resulting predicament is well illustrated by attempts to marry 
field theory and nonrelativistic wave functions in calculating exchange corrections to the 
deuteron form factor, and the rather embarassing comparison to recent data at large q2 
reported by R. G. Arnold [2]. A similar situation could well arise in the near future when 
accurate data on T-N and 7r-nucleus scattering become available. My objective in this talk 
is to discuss an alternative approach suggested by recent developments in hadron scattering 
at high energies. 

Historically, strong interaction field theory was constructed in imitation of the EM inter- 
action, going back to the Yukawa postulate in 1934 that the force is mediated via the ex- 
change of a massive analogue of the photon. The discovery of the r in 1947 was of course 
a major triumph, and the subsequent success of QED suggested an appropriate formalism. 
Physically, the concept of a quantized field is strongly related to the idea of point particles, 
in that the Wick argument R < hc/AE, relating the range R to the ener 

3 
y fluctuation AE, 

permits the exchange of an arbitrarily large number n of x’s (& =lquc ) providing that R 
can’be arbitrarily small. This implies that the NN system is intrinsical1.y a many-body 
system at small spatial separations, and a second-quantized field is a natural way of build- 
ing in the essentially infinite degrees of freedom. On the other hand, if the nucleons had 
some finite intrinsic size (not due to the pion field), the number of +s would be finite and 
the field concept inappropriate. 

A sizeable body of evidence has accumulated in the last several years which indicates that 
this is in fact the case. Thus, a great variety of direct experiments suggest that hadrons 
are in fact composite (e. g . , made up of quarks), in addition to the indirect evidence of 
unitary symmetry. In fact, both EM and weak probes (deep inelastic electron scattering at 
SLAC and neutrino experiments at CERN) have given considerable support to the Gell-Mann- 
Zweig quark model. The relevance to nuclear physics has been noted by Neudatchin and 
coworkers [3], who observe that the concept of composite nucleons provides a simple 
explanation of the repulsive core seen empirically in NN (and other dihadron) scattering. 
The physics is quite simple; given that the constituents obey some exclusion principle, two 
clusters such as NN will resist interpenetration. The effect is thus to keep hadrons apart 
(they have a characteristic “size”). As I noted at Laval, this interpretation also provides 
a ready explanation of the approximate constancy of the logarithmic derivative (LD) of the 
NN wave function at rb= .7 fm, and the relation of rb to the hard core radius rc. This 
empirical fact has led to a very successful phenomenology as developed by Feshbach, 
Lomon and collaborators [4]. 
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This suggests a rather different picture of dihadron scattering, in which the primary effects 
arise from the core properties, but are obscured at low energies by the exchange of (at 
most a few) light mesons. Phenomenologically, the core-core behavior can be well repre- 
sented by an effective radius and a constant LD, which can be determined empirically from 
NN data at TLk 200 MeV. Thus, to the lowest level of approximation, one takes 

QQ@) = 0 , r<r b 

= jQ(Kr) + ie iSQ sin 6Q hQ(Kr) , r>r ; b 

with 2 determined by the boundary condition (BC) ($i/$Q)rb = ?I;, By suitably adjusting rb 
and X 

$ 
one can fit 6Q to the data at energies approaching the x-produc- 

tion t reshold. However, the low energy behavior will be incorrect, and one will in general 
need to introduce an energy-dependent LD TQ(K~) of the form 

~Q(K~) = ̂a” +c ‘Q,i 

i K 
2 2 

-pQ,i 

in order to obtain realistic phases. Even if this is done, of course, $Q(r) will not be real- 
istic except asymptotically. 

It is clear that what this description lacks is the effect of meson exchanges at distances 
r > rb. The approach of Feshbach and Lomon is to add meson theoretic potentials to repre- 
sent l- and 2-n exchange (since rb N (2~) -l, this is presumably sufficient). This leads to 
many of the same problems noted above, since the exchange potentials cannot be unambig- 
uously constructed and the pionic coordinates are lost. However, there is an alternate way 
to proceed. One may instead treat this as a coupled channel problem, in which the (virtual) 
pionic channels are taken explicitly into account. This means that at the next level of 
approximation one regards NN scattering as a special case of NNr scattering in which the 
pion is only present in intermediate states. In practice, this requires that one employ a 
fully covariant description of NN7r scattering as a three-body problem, extract the part 
corresponding to NN initial and final states, and analytically continue this amplitude to 
energies below the threshold for actual pion prodzion. Technically, one just identifies 
tNN as the residue of the double pole arising in TNNr from aPII TN combination at the N 
mass in both the initial and final states. This is formally equivalent to regarding the 
nucleon as an Nx bound state, and the prescription is identical with that used in extracting 
Nd scattering from 3N + 3N. Actually, the same prescription arises in field theory, or 
.S-matrix theory; the difference here is that TNNK is to be calculated on the basis of a 
three-body scattering theory, and not according to some set of field-theoretic diagrams. 

In order to play this game one clearly requires a fully covariant three-body formalism 
capable of dealing with two-particle “interactions” characterized by boundary conditions. 
Fortunately, such a theory may be derived as an unambiguous generalization of the corre- 
sponding nonrelativistic formalism, as I have recently shown [5]. Despite the fact that the 
“interaction” is nonseparable, the corresponding equations reduce to one-dimensional form 
in a partial-wave decomposition, and hence are readily amenable to numerical solution. 
Preliminary applications to xd scattering and the w 37r system were reported at Laval; 
more recent results include an analysis of the Al state of three pions [6]. 

The obvious first approximation is to use the nucleon as an s-wave spectator of the TN state 
which contains the nucleon pole (PII), and the pion as a p-wave spectator of the appropriate 
NN s-wave (lSo to drive the 3S1 calculation, and 3SI to drive the lSo calculation). After 
antisymmetrization in the nucleon variables, the equation takes the form 

Q. 
Xi(qf) = ‘i2(q~) ’ ~ ./ ’ dgj 4~ Kii(c11,qj) Xj(qj) 

j=l 0 



Here XI and X represent series of pairwise rescatterings initiated by a TN pair at the 
nucleon pole; 2 1(X2) corresponds to a final NN (TN) scattering. The variable qj is the 
three-momentum of the spectator particle in the c. m. frame of the pair (j=l corresponds to 
a spectator pion, j=2 to a nucleon). The Lorentz frame used to describe each pair configu- 
ration is uniquely specified by requiring that the pair remain in its own c. m. system when 
the spectator recedes to infinite distance. This reduces to the usual definition nonrelativ- 
istically, but introduces important kinematic effects in eq. (3). For three particles of 
mass ma, m , 
a real specta e 

and m.,, treated as free outside the region excluded by the cores, and using 
or momentum q > 0, the c. m. energy for the @y pair is 

(mi+ K2)1’2+ (rn; + K2)1’2 = (s + miq2/Mi) 
l/2 

- (rni +miq2/Mi) 
l/2 

, (4) 

with MG1 = rn;l+ (mfi+ 9)-l, and s = P2, the invariant four-momentum squared of the three- 
particle system. e upper limit on this energy, and hence on the energy where we need 
the two-body input for our equation, is achieved at q2=0, while the lower limit, implied by 
the fact that eq. (4) can be satisfied only for K~L -min(m$, m.$), fixes an upper limit q=Q, 
(infinite only if mp= 9). 

Since the c. m. energy of the pr pair is bounded by &s - ma!, any three-body treatment of the 
NN system requires two-body input always a pion mass below the two-body output to be 
computed. Thus, in order to calculate NN scattering near elastic threshold (& N 2M), we 
re 
-p LK2 % 

uire only NN input for -M2 < ~~~ < -M (1 -p/4M), and aN input in the narrow range 
< +2 (1 -p2/4M2); th? immedia e vicinity of the nucleon pole. f As noted above, at 

any leve of approximation one can partially account for neglected channels by employing “r- 

energy-dependent LD’s obtained from NN and TN scattering data and analytically continued 
to the required region (since AQ must be meromorphic, the extrapolation is essentially 
unique). Having obtained such fits for the NN system, it turns out that kQ has essentially 
achieved its asymptotic value (hf) in the kinematic region required for a threshold calcula- 
tion (K&N < -MI1). The NN input thus consists of the constant LD parameters taken to 
represent&e core-core (quark) structure, and obtained empirically from the high energy 
NN phase shifts. Ufing rb = .7 fm, we take AC= 0.30 for the ‘So, and h$ = 1.8 for the 
3S1 (from the 3S1- D1 coupled channel fit of %eshbach and Lomon [7]). 

The input for the Pll amplitude presents more of a problem, since the nucleon pole is only a 
pion mass below ?rN threshold and, in contrast to the NN situation, we are most sensitive to 
data up to about a pion mass above threshold, where they are poorly known. We know the 
position of the pole, and its residue can be inferred from the requirement that our three- 
body formulation yields the correct OPE singularity. The simplest fit (one pole term in 
eq. (2)) thus requires only a single parameter (in addition to the core radius r N), and it is 
possible to obtain quite reasonable fits to the PIIphase shift obtained by J. R. zarter [8] for 
rlrN N .2 fm (approximately tic/M). However, in view of the uncertainties in this phase we 
simultaneously consider several alternative fits, 
G2= 14.6 and 15.3. 

and also compare values based on 

At this level of approximation all parameters are thus determined, and we may apply 
eq. (3) to calculate the low energy properties of the NN s-waves, and in particular the 
existence of bound states. The results of the calculation are given in Table I. We see that 

in spite of uncertainties engendered by 
Table I the P1I amplitude, the most significant 

features of the NN s-waves-namely, two 
bound states close to zero in units of the r 

TN 
G2 cd co r mass and split by approximately 2 MeV 

Pm) WeV) WeV) 
-are stably reproduced. Considering the 
simplicity of the model at this level and 

0.180 14.6 3.26 1.41 
0.186 14.6 3.14 1.34 
0.196 15.3 2.96 1.10 
0.198 15.3 3.02 1.17 
0.220 15.3 2.59 0.73 

its close connection to empirical results 
found in quite different experiments, this 
close agreement with experiment (ed’2.2, 
l O = -. 07) is quite remarkable [9]. 



In order to go beyond these results one must work a bit harder. Clearly, there is no point 
in computing phase shifts until the scattering lengths are brought into agreement with 
experiment. By introducing a phenomenological term of range (2~)‘~ and adjusting its size 
to produce a singlet scattering length as = -24.4 fm, it is possible to produce an excellent 
prediction for the IS0 phase up to T~=50 MeV (i.e., the effective range and shape param- 
eter are generated automatically). However, if a similar adjustment is made to produce a 
correct value for Ed in the 3S state the fit is not nearly as good (at N 4.6 fm instead of 
5.4 fm). The reason is that w ile coupling to neglected channels may indeed be represented +i 
by such a term, it is virtually impossible to guess energy-dependence to sufficient accuracy. 
This problfm i%much more acute in the triplet channel, which properly must be treated as 
a coupled S1 - DI system by including the nucleon as a d-wave spectator of the Pll TN 
state. 

Unfortunately, the code used to produce these results was not sufficiently general to permit 
an investigation of additional three-body channels. Quite recently, a new covariant three- 
body code was completed which is suitable for this purpose. In order to complete a calcu- 
lation in time for this conference, I have concentrated on the simpler lS 
a number of possible contributions were assayed (SII, SQI, P3I), the on y significant chan- P 

state. Although 

nel turned out to be P33 coupled to a d-wave nucleon spectator; this is suppressed by the 
d-wave character at low energy, but becomes important as one nears the 7r-production 
threshold. This is shown in fig. 1, in which the solid curve corresponds to the two-channel 
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IO 
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Fig. 1. Calculated ‘So phase (solid curve) for two chan- 
nel model; experimental points from ref. [lo]. Effects 
due to the P33 coupling (dashed curve) and energy-depend- 
ence in the 3SI (dashed-dot) are also shown. 

model discussed above, and the dashed shows the effect of including the P33 (all are 
adjusted to produce as = -24.4). It is clear that this channel contributes a significant repul- 
sion which brings the computed curve into good agreement with the experimental points of 
M. MacGregor [lo] for TL < 200 MeV (this role for the A(1236) was also noted in a simpler 
calculation by P. Haapakoski [ll]). It should be emphasized that the curves shown are not 
a “fit”, but an unadjusted theoretical prediction based on data from other experiments.T 
would almost certainly be possible to produce a high precision fit with minor adjustments 
of the parameters, but our purpose at this stage is merely to explore the general conse- 
quences of our dynamical picture. Fine details will require more effort in pinning down 
accurate input parameters, as well as including more channels. This becomes apparent in 



the figure as T 
3Sl LD parame er begins to show up, as shown by comparing the dashed to the dashed-dot 4 

approaches the r threshold. For example, the energy-dependence of the 

curve (which includes this effect). Nevertheless, it seems fair to conclude that such an 
embodiment of quark dynamics may provide an attractive alternative to field theoretic 
models. 
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