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ABSTRACT ’ 

These lectures describe some efforts to understand quark confinement in 
the context of quantum field theory. First we describe the formation of the SLAC 

l’bag” (“bubble” or llshell’*) by the strong interaction of an elementary fermion 

quark field with a quartically self-coupled neutral scalar field. The L%AC bag 

is derived using a variational approach and a semi-classical (“tree approxima- 

tion”) treatment of the field theory. Physical properties of the SLAC bag are 

discussed. Next we show that the SLAC bag is “soft” to deformations and discuss 

the general formalism for studying bag deformations and the low lying bag excita- 

tions developed by R . Giles. Next we discuss the relation of the SLAC to the 

MIT bag. Finally we discuss the quantum corrections to the semi-classical 

treatment of field theory used in constructing the SLAC bag. Beyond the one- 

loop approximation we describe the initial progress in formulating the field theory 

on a discrete lattice and studying its quantum behavior and spontaneous symmetry 

breaking using variational methods. 

(Lectures given at the “Ettore Majorana Int’l Summer School,” 
Erice, Sicily, 11 July - 1 August 1975.) 

*Work supported by the U. S. Energy Research and Development Administration. 
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QUARK CONFINEMENT SCHEMES IN FIELD THEORY* 

Sidney D. Drell 

Stanford Linear Accelerator Center 
Stanford University, Stanford, California 94305 

Evidence supporting the idea of quarks as the hadronic constituents has been 

strengthening since they were first proposed by Gell-Mann and Zweig in the 1960’s. 

In particular there are the successes of the SU(3) symmetry scheme. Hadrons of the 
same spin and parity form multiplets each of which corresponds to an irreducible 

representation of SU(3). Experimentally the multiplets are observed to be octets, 

decuplets, and singlets, whereas the fundamental representation of SU(3) is a triplet. 

Therefore the simplest picture of hadrons is to build them as bound states of triplet 

quarks from which they derive their individual quantum numbers of electric charge, 

strangeness, etc. 

Moreover, beyond their simple and attractive role in the group theoretic struc- 

ture of hadrons, the quarks, though still unobserved, have acquired strong support 

from phenomenological analyses of hadronic properties and interactions. Among 

these successes of the quark model we include: 

1) Static properties such as mass spectra of hadrons and low lying resonances 

2) Transition matrix elements 

3) Quark recombination rules (viz. Zweig’s rule) for dual models and graphs 

4) The quark-parton description of deep inelastic electron and neutrino 

scattering 

5) Quark line counting rules for scal.ing laws in large transverse momentum 

exchange processes and the constituent interchange model 

6) Constancy of the hadron to muon production ratio in electron-positron 

annihilation, in between thresholds for the onset of “new physics.” 

Despite these impressive successes several issues must be resolved before a 

real understanding of hadron dynamics based on the quark idea.is possible: 

1) Why do we not see isolated quarks? f 
2) In the observed hadronic spectroscopy, why do the quarks appear to obey 

symmetric statistics in spite of their half-integer spin? 

The second of these issues is resolved by adopting the “color hypothesis.” A hidden 

SU(3) of color is introduced together with the assertion that the dynamics permits only 

color singlet states to be bound to form hadrons. In effect the anomalous quark 

*Work supported by the U. S. Energy Research and Development Administration. 
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statistics are avoided by tripling the number of quarks (analogously to the introduction 

of electron spin doubling the number of electron states). 

However the nonobservation of isolated quarks is a new one to particle physics. * 

Are they permanently confined, never to be observed as isolated particles? Or are 

they so heavy when they are isolated from the extremely strong forces binding them as 

effectively light constituents within hadrons to form color singlet-or zero triality- 

states that their production thresholds lie above presently observable energies 

w auark > 10 GeV) ? 
~A Theoretical efforts to understand quark confinement have developed along both 

lines-of permanent and of approximate quark confinement. I will be discussing in 

these lectures primarily an effort to understand approximate quark confinement that 

is based on the conservative approach of local canonical quantum field theory, with 

the quark fields included among the fundamental fields of the theory when it comes to 

writing interaction currents and forming asymptotic states. It is physically clear 

that weak coupling perturbative expansions are quite hopeless in such an approach. 

By no reasonable approximation can they span the gap between the starting point of a 

bare vacuum and a Fock space of free quark states created from this vacuum by inter- 

action representation fields on one hand, and the observed hadronic spectrum of low 

lying quark bound states with a binding so strong that it essentially cancels their 

large bare masses. 

An alternative class of models’) that I will not discuss is that in which the funda- 

mental fields do not create asymptotic states at all. In such “long range force models11 

one has contrasting behaviors at short distances and at long distances. At short dis- 

tances the forces seem to weaken to the point that free field theory scaling laws are 

applicable and one speaks of asymptotic freedom at high energies. At large distances 

the opposite is assumed to occur: the forces grow so strong that the fundamental 

fields do not create asymptotic states. In particular the bonds between quarks can- 

not be broken and they are bound permanently to one another by flux lines due to their 

color charges or monopole moments. However, if a particle is in a color singlet 

state so that no flux lines are emerging from it it will not be bonded to an additional 
quark. This general idea was first explored by Schwinger 1) in two dimensional 
quantum electrodynamics. When summed to all orders in the coupling, the infrared 

singularities in Green’s functions involving bare quark lines are so severe that they 

*Although not a new one to the Bible, I thank V. F. Weisskopf for pointing out to me 
the following quote from Chapter 11, Verse 3, of the “Book of the Hebrews”: 
“By faith we understand that the world was created by the word of God, so that what 
is seen was made out of things which do not appear. ” 
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prevent the existence of bare quark states. In a one space-one-time dimensional QED 

the flux lines between two charged quarks produce a constant “electric field, ” i. e. , a 

potential growing with separation. The analogous possibility exists for magnetic flux 

tubes in Lagrangians with Higgs fields. Or one can just speculate more generally that 

the infrared divergences in a massless non-Abelian gauge theory of color fields are 

very severe as well as complicated and generate long-range confining forces-i. e. , 

infrared slavery. 

Our concern here will be primarily with “bag models” derived from canonical 

field theory which reproduce a number of the successful naive quark model results 

and which provide a basis for additional speculations 2) , The intuitive idea of the bag 

models is, for the present, clearer than their mathematical basis. The fundamental 

idea is that the vacuum is highly polarized in the presence of quarks. The “bags” 

themselves are extended, coherent vacuum excitations to which the quarks, which may 

have an extremely large bare mass, are bound. A non-Abelian colored gauge inter- 

action is introduced following Nambu 3) so that this binding occurs only when the 

quarks form color singlet states. These color singlet bound states of low mass are 

the hadrons. Within the bag the interaction between the quarks is taken to be small in 

contrast to the strong interaction between the quarks and the bag. This gives a pic- 

ture of hadrons as bound states of two or three almost free quasi-particles from which 

they derive their SU(3) properties. However there is an energy associated with the 

size of the bag-or vacuum excitation-containing the quarks which prevents their 

being separated. 

The mechanism for polarizing the vacuum and forming ‘*bags” is the same one 

giving rise to the abnormal states in the Lee-Wick theory of uniform nuclear matter 4) . 
In their example with many particles, a classical treattnent with neglect of surface 

effects is valid. To illustrate this idea, consider the following classical energy 

expression for a statistical ensemble of N nucleons, each of mass M, plus a scalar 

field with the self coupling illustrated in Fig. 1. 

E = IpdV[M+go(x)] + /dV U (a) (1) \ t u(cT) 

p(x) represents 

cleans, 

the number density of nu- 

N=Jpm b / 

and g is a measure of their interaction 

strength with the field strength o’. The 

“normal &ate1 of matter is described 
Fig. 1 



by setting u=O so that the field state is at the minimum energy U(O)=0 and the assem- 

blage of nucleons, neglecting surface and kinetic effects (i. e. , the height of the fermi 

surface relative to their mass energy), is 

E normal = MN = POVOM 

in terms of the uniform nucleon density p. within the volume Vo. 

The “abnormal state” is described by “polarizing the field vacuum” and exciting 

the field strength g=ac, the value at the local minimum in Fig. 1, within the volume 

V. of nucleons, i.e., 

@‘=-CT 
C 

inside V. 

CT=0 outside V0 

The total energy is now given by 

E abnormal = o0 v (M -is-q + wJc)Vo 0 

=E normal + v. C -gyp0 + w-q 1 (2) 

and evidently at large enough densities p. the abnormal state (2) will be at a lower 

energy than the normal one. 

The Nambu mechanism is a generalization of the observation that the classical 

electrostatic energy of a charged system is positive, corresponding to the repulsion 

between charges of the same sign. As an example, consider first the effect of coup- 

ling nucleons via the vector isospin current. This interaction leads to a nonrelativis- 

tic description of the isospin coupling in terms of two-body potentials of the form 

Vij = VT * T. , v>o 
J 

where -ii is the isospin of the ith particle and V contains the dependence on the other 

degrees of freedom. The potential energy of an n-nucleon system may be estimated 

as 

V(n) = f $ 'ij 
. . 

=$v CTi.i: 
i#j J 

= $ V[I(I+l) -nt(t+l)] , 

where I is the total isospin of the system and t is the nucleon isospin. This force is 

seen to be attractive for the deuteron (I=O) and repulsive for the dineutron system 

(I=l). 
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To extend these ideas to quark bound states, the quarks are endowed with the 

additional internal quantum numbers of color so that there are three triplets of quarks: 

red, blue, and yellow. The color interaction is mediated by an octet of non-Abelian 

gauge bosons coupled to the SU(3) vector currents of the color symmetry. 

In analogy with the isospin interaction, the effective potential energy for an n- 

quark system is 

V(n)=$VC 2 haha , 
i#j a=1 ’ ’ 

are octet coupling matrices to the quarks. The potential energy may be 
reduced to the form 

V(n) = +V(C-nc), v>o (3) 

where C is the eigenvalue of the Casimir operator.for SU(3) of color for the n-particle 

system 

c=x xq2 , 
( ) a i 

and c=4/3 is the equivalent eigenvalue for the quark. Since C is positive-definite and 

has zero eigenvalue only for color-singlet states, the strongest attractive interaction 

occurs for those states which are color singlets. 

Returning to a field theoretic description of the color interaction in terms of the 

color current operators and their contributions to the self energies as well as inter- 

action strengths, we recall that for an electrically neutral system in a state of definite 

charge conjugation the expectation value of the charge density operator vanishes. 

Hence, so does the electrostatic energ-v in a semi-classical approximation which 

neglects higher order fluctuation energies. By the Wigner-Eckart theorem this is 

also true for color singlet states in the same approximation. 

Hence for hadronic states that are color singlets, the color interaction plays no 

direct role and we can concentrate on the binding mechanism responsible for bag formation. 

In a literal sense, quark confinement to form hadrons is the result of the color inter- 

actions with their local gauge invariance property. Since the color interaction is 

presumably a strong one, if the thresholds for forming states of colored matter are 

to be large on a scale of -CeV, this semi-classical approximation is of course dan- 

gerous and not defensible . In general, interaction energies are given by the expectation 

value of squares of current operators and important contributions to the energy due 

to the quantum fluctuations are neglected when we replace such an expression by the 

square of their expectation value. Efforts and problems in constructing a fully quan- 

tized “bag theory” will be described in my third lecture. For the essentially classical 
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picture being develcped here, we can neglect the color interaction for hadronic states 

#at are color singlets and concentrate on the mechanism forming the bags, i. e. , the 

extended low mass bound states that are color singlets. 

THE SLAC BAG5) 

Our first task is to show how the bag is created by the strong interaction of an 

elementary fermion quark field with a self-coupled scalar field. Our method is to do 

a variational calculation over a class of trial states and to show that the Hamiltonian 

of this model possesses low energy bound states of quarks and of coherent excitations 

of the scalar field. 

The basic idea of this approach is illustrated by the following simple semi- 

classical model. Consider a quark described by wave function zc) interacting with a 

neutral scalar field P with the Hamiltonian 

H = Jd3x LX?(X) 

3i(x) = $ , 
(4) 

where G, h >>l are large dimensionless coupling constants, and f has the dimension 

of a mass. The form of the quartic self-interaction term exhibits the invariance of 

the theory under the discrete transformation (T -. -(T. In a quantum field-theory des- 

cription, Eq. (4) describes a spontaneously broken theory and (T has a nonvanishing 

vacuum expectation value.. In the vacuum state the field, (T, takes one of two values, 

%f.. Small. vibrations. about. one of these ground states are usually studied by making 

the translation (T-&‘--+f., One readily finds that the small (T vibrations have the 
2 mass m ~ = 8ti2 and the small $ vibrations have mass M Q 

=Gf. By assumption moand 

lYIQ are >>l GeV.. Our choice of the specific Hamiltonian (4) is arbitrary. We con- 

sider it as typical of a class of. renormalizable field theories exhibiting spontaneous 

breakdown . 

Our key questiorris, “Do these theories also have quark states with much lower 

energy than indicated by the bare quark mass ?‘I 

For the purpose of developing an intuitive picture of nonperturbative solutions to 

the field equations,. we approach this problem classically, although this is no longer 

a purely classical question when fermions are present. The point is that in the one- 

fermion sector when the charge 

Q=J&d3x 

has unit eigenvalue we are solving a Dirac equation for the quark in the presence of a 

scalar potential o. We are faced with the usual question of negative-energy states 
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and must specify that all the negative-energy states in the presence of this potential 

are filled, and then focus our attention on the lowest positive-energ eigenvalue. 

Since we are solving for the quark energy in a scalar potential, there is no Klein 

paradox of the familiar type encountered in the presence of strong, sharp vector po- 

tentials and therefore no ambiguity in identifying and interpreting the desired positive- 

energy “one-particle” solutions. 

We proceed classically therefore with A 
(CT) =f 

Q=l. Classically, we expect that the quark- 
wave function and the field amplitude u will 

avoid one another as indicated in Fig. 2, so 

as to escape the high-mass energy MQ. 

The importance of this effect increases 
0 

with the magnitude of M 
Q 

= Gf. At the same 
R 

I 

time, working against the formation of such 1113.1 

a hole into which the quark will trap itself Fig. 2 
are the energies associated with the curva- 

ture of the localized quark-wave function, with the curvature of the g field as it chan- 
2 22 ges its value, and the energy associated with the potential term A (a -f ) extending 

over the volume where af *f. As a simple illustrative example of how these contri- 

butions balance, consider a solution as in Fig. 2 with u -0 within a volume of radius 

R. Denoting by D the thickness of the shell in which the c-field amplitude falls from 

-t-f to 0, we estimate by the uncertainty principle 

s 4 z. a i-- $d3x-1@ , (5) 

/ 
+ I ad2 d3x - + (f/D)2 47iR’D. , 

/ h(a2-f2)2 d3x - Af4(; rR3+4&R2D > , (6) 

where k-l is a shape-dependent number. The energy of this configuration is given by 

the sum of these contributions 

E@‘A N ; + 2nR2f2/D +hf 44 (3 (7) 

Minimizing with respect to D and R, we find a surface thickness given dimensionally 

bY 
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and if h1’2 f >>l/R, i.e., if the volume energy dominates the surface energy, then 

8E 
;5fi: =O=+R-l/h . 1/4f 

Hence the lowest possible energy is given by 

In this case 

E= min E(R,D) =& -fhli4 . (8) 

D/R- h-1’4 << 1 , 

which is consistent with a thin transition-shell region in the strong-coupling limit. 

Comparing with MQ= Gf, we see that a localized bound state is formed if G >> h l/4 . 

According to Fig. 2, the quark moves as a free massless quantum within the 

sharp well boundaries, suggesting some of the popular quark-parton model ideas. 

However, it turns out that this treatment is much too naive and crude, although it 

illustrates the basic idea. We learn from a more systematic and careful treatment 

of Hamiltonian (4) that what actually emerges for the classical theory is a thin-shell 

model of the hadron, with the field rapidly changing from (T= +f outside to CT= -f in a 

region of thickness D - l/A m f << R, and with the quark confined to a thin shell within 

a distance l/Gf of R as illustrated in Fig. 3. 

This comes about as follows. With a 

solution as drawn in Fig. 3, the first term 

in (6) representing the large volume energy 

of the field (the “polarized vacuum state”) 

is not present. Furthermore, although the 

fermion is now confined to a thin shell of 

thickness D << R, its energy remains of the 

same order as in (5). This result which is 

surprising at first can be confirmed by 

direct calculation which can be done exactly 

and simply in one space dimension (in which 

case the contribution of (5) vanishes iden- 

tically). Formally, it follows from the 

D-I/x”2 f 

Fig. 3 

observation that in a representation for an S-wave j = l/2 quark solution 

the energy (5) is expressed by 

J 4J y +d3x = 47r F2 2 (G/F) - F (9) 
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i.e., the rate of change of the ratio of components is what matters, and not their indi- 

vidual curvatures . Physically what is happening is that the fermion energy is given 

relativistically by -F z;’ where $ and z are the momenta and velocities in the localized 

quark packet and their relative sign changes as we go from the positive to the negative 

mass region in the thin shell of Fig. 3. This leads to the calculated cancellation. 

Hence with the thin shell solution, the volume energy term is omitted from (7) and the 

energy found by repeating the steps subsequent to (7) is 

Ed& - fA1’6 << fh1’4 if A >> 1 

for strong coupling. Further details of this classical sol.ution can be found in Ref. 2. 

We turn next to a brief description of the systematic steps leading to the above 

heuristic picture from a canonical quantum field theory. This analysis makes use of 

the variational principle for the expectation value of the Hamiltonian (4) in a trial 

state. In addition to making a suitable guess for the trial state, we must make one 

crucial approximation involving normal ordering. This is the “tree” approximation. 

Corrections to this will be described in the third lecture. 

To start, we must construct a Fock space trial state, Is>, determine an upper- 

bound on the ground state energy by varying the trial parameters 

6<slHls> =o , (10) 

and show that the energy found this way lies much lower than Gf. We demonstrate this 

first for a bound state of a single quark using (4) and ignoring color SU(3). 

Fock space 

To perform the variation, (10X we require only the canonical equal time commuta- 

tion relations and a Fock space basis in terms of which to expand the field operators. 

For the scalar field, we choose a plane-wave expansion 

u(x) = 

where 

uk = (lF2+ mzf’2, mi= 3hf2 

(11) 

and the operators are quantized by imposing the usual canonical commutation relations. 

In (11) we have used the mass rno = 2 &?% for the small (T oscillations after making the 

translation (T +o+f. For the fermion field, we make an expansion in terms of the 

eigenfuncti.ons of the Dirac equation in an external potential to be determined 
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self-consistently by the variational procedure 

The positive- and negative-energy eigenfunctions Un and Vn satisfy the usual ortho- 

normality relations and the expansion coefficients satisfy the anticommutation relations 

fQB;,)= [Dn,DL] = 6m . 

The Hilbert space at t=O is constructed by applying the creation operators 4 and 
t t Bn, Dm to the translationally noninvariant no-particle state I OL > characterized by 

%lO,> = BnIOL> = DmIOL> = 0. 

The relation of this expansion to the usual one in terms of plane waves and a transla- 

tionally invariant trial vacuum can be clarified in terms of the Bogoliubov transforma- 

tion. 

Normal-ordering and definition of the Hamiltonian 

The field-theory model with H given by (4) is a renormalizablc theory. Because 

of the divergences inherent in any renormalizable quantum field theory, the meaning of 

a product of field operators at the same space-time point is ambiguous and has to be 

properly defined via the renormalization program. Within our semi-classical frame- 

work, we define the Hamiltonian by a naive normal-ordering prescription. The pre- 

scription depends on the particular expansion chosen for the field operators. Hamil- 

tonians normal-ordered with respect to two different expansions, such as (12) vs. a 

plane-wave expansion for the quark fieid, differ by a c-number contribution which is 

usually a difference of two infinite constants. In order to give such a difference a 

precise meaning, it would be necessary to regulate and properly renormalize the 
quantum field theory. 

The very fundamental approxirrration we are here making is to ignore these differ- 

ences in normal-ordering prescriptions. In other words, the Hamiltonian we are 

working with its correct only in the so-called “tree” approximation. In the same 

approximation, the true vacuum state also coincides with the free-field vacuum as 

defined for small oscillations about u=f. Our hope is that when renormalization effects 

are included, the conclusions will be qualitatively similar although they may be quanti- 

tatively different. We return to this approximation in the third lecture. 

Boson coherent states 

The construction of the trial state is guided by our intuitive idea that the boson 

field develops a localized expectation value in the neighborhood of the fermion source. 
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To describe such a situation, we employ the so-called boson coherent states 

lg> = U(g) IOL> , 

where U(g) is a unitary transformation 

u(g) = exp -i d3x g(x) 6 (x) (J 1 , (13) 

which displaces the field operator cr 

U--l(g) W(x)) U(g) = ftm+g(x)) , 

u-l(g) &U(g) = b . 

Thus, if f(o) is any polynomial function of owhich is normal-ordered term by term, 

then 

<g If(u) Ig> = <OL If(&g IOL> 

=f(g) . 

The tree approximation rule for talking the expectation value of a function of (T in a 

coherent state is to replace Q by the c-number amplitude g(x). This procedure gives 

a concrete realization of the intuitive picture presented earlier. 

Fermion states and the Bogoliubov transformation 

We shall also want to replace the fermion field operator by an arbitrary c-number 

Dirac spinor wave function when we take the expectation value of H in our trial state. 

For a trial state of fermion number one, we do this by constructing 

Is> = B;IOL> , (14) 

t where Bn is the creation operator for a fermion in an arbitrary state n and IOL> is 

the no-particle state in the basis formed as shown in (12). With this procedure, the 

expectation value of an operator blljnear in the fermion field and normal-ordered in 

this basis is 
a I:$ t (x) qb(x): Is> = U;t(x) run(x) , 

where the arbitrary wave function is to be determined self-consistently by the varia- 

tional calculation. 

Derivation of classical field equations from the variational principle 

We now apply the variational principle guessing as the trial state 

I s> = U(g) B; IOL> 

3 
d x g(x) b(x) t B. IOL> , 
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where B t 0 is the creation operator associated with the ground-state wave function in 

(12), and U(g) creates the coherent boson state (13). This procedure reduces the 

quantum field-theory problem to a classical form to which we can apply the earlier 

heuristic discussion. It can also be solved by mathematical analysis as described in 

detail in Ref. 2 in the tree approximation. In particular, the amplitude g(x) for the 
boson field and the ground state quark wave function x(x) created by Bi in (12) satisfy 

the coupled field equations 

V2g - 4hg(g2 -f2) = Gjix 

(q+Gpg), = EX with /xtxd3x = 1 

and the energy of the ground state is expressed in terms of the lowest positive eigen- 

value co by 
E = /d3x [$ 

In agreement with the form in (5) and (6) this gives for the energy 

which has the minimum at the value 

1 

RO 
Y6 f T 7rJ2 

( 1 

I/3 
SZZ , 

The total energy is then 

E. = 3/2Ro . (18) 

To confront the ideas developed so far for single quark states with physical 

parameters, we must extend this scheme by constructing multiquark states and com- 

pare with observed hadronic properties. We must answer the question: “If a single 

quark prefers to dig a hole in the vaLuum and trap itself, what happens if a three quark 

state or a quark-antiquark pair state is formed, as required for color singlets when 

the usual ideas of the SU(3) of color are introduced?” 

Multiquark bound states may be constructed using the same variational method 

discussed earlier. The variational state consists of a coherent scalar field plus 

quarks and antiquarks. As in the Hartree-Fock approximation, the quarks and anti- 

quarks are assumed to move in the self-consistent scalar field, the source of which 

contains contributions from all of the quarks and antiquarks in the state. As for the 
single quark, the multiquark states are those which minimize the expectation value of 

the energy. The potential g(x) is similar to the Hartree-Fock field in atomic physics 

and the (anti) quarks move in the ground states of this self-consistent potential. 
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To be more explicit, we consider multiquark states of the type 

IS,> = U(g) cl. , . CL IOL> , 

t where C creates quarks (B t ) or antiquarks (D t ) in states corresponding to the poten- 

tial g(x), which defines the coherent state for the scalar field. The energy functional 

becomes 

E = <SNI#ISN> 

= g ~5’~ + ld3x[; (-dff)2 + A(g2 -f2)q 9 (1% 

where the quark energies are given by the solution to the Dirac equation 

and g(x) is determined by 
N 

v2g - 4h9(g2 -f2) = G c iixi . 
i=l 

The solution we obtain from this system is identical in structure to the solution found 

for the single-quark system. 

Following our discussion of the single-quark system, we find the energy of a state 

with N quarks or antiquarks in the ground state to be 

W) 
3’ N2/3 \ 

=-- I 
2 R. ’ \ 

where the radius of the system RN is given in terms of the radius for a single quark, 

Ro, b 

RN=N1/3Ro , Ro= TTflf1’3f-1 I ( 1 (21) 

We wiIl now discuss a few of the consequences of applying these results to hadron 

properties. 

A. qa system 

-: 

I 
Both q and q are in the 1=0 states. These states have odd parity since qe has I 

an odd intrinsic parity. They consist of the O- pseudoscalar and l- vector mesons. 
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These are the 35 in SU(6) classification, and are degenerate with the energy 

EM=;+2)2’3 . (22) 

B. qqq system 
All the three quarks are in Q=O states. These are the positive-parity (by defini- 

tion) states with J=3/2 and l/2, namely the 56 in SU(6) classification. Their common - 
energy is 

EB = ;4(3)2’3 . (23) 

Thus EB/EM is fixed at (3/2)2’3. 

C. Exotic states 

One can form color-singlet states with more than one quark-antiquark pair or 

three quarks. These are the exotic states. So far, there is no experimental evidence 

for the existence of the exotic sta’xs. According to Eqs. (22) and (23), exotic states 

appear in our spectrum. For example, a noninteracting two-nucleon system has a 

mass given by 

E 2B = 2EB 
1 

= ; +- 2/3 2(3) 
0 

, 

while a color-singlet 6-quark state has a mass given by 

E = 3 1 62/3 
6q 2 Ito * 

In general, for an N quark system \ 

EN=N 2/3 . 

D. Magnetic moments 

We are also led to a prediction for the proton magnetic moment that is in close 

1 accord with experiment. Using the thin shell wave function for the quarks illustrated 

in Fig. 3, and as described earlier as the solution of (15)) we find, using the moment 
.’ operator 

W=;J d3x TX T(x) 
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Mp,= <P,jz =$lMZIP, jz =i> 

=5e3 ( 
l/3 Ro) = 3 & i 1 (23) 

where M is the ground state mass of the baryon 56. The experimental proton moment - 
is 

WpJeqt = 2.79 & ( 1 . 
P 

Additional results on Ml transition moments for baryon radiative decay (viz. A+-p+~; 

w - ?-PI’), for baryon radii, and for the F/D ratios are in reasonable accord with data 

(see Ref. 2). 

Although this theory as written does not have a conserved (or almost conserved) 

axial-vector current, we attempt to identify the axial coupling for neutron p decay, gA, 

through the matrix elements of the quark current 

jA/.L = Tjypy5 $(Al+iX2)$ . (24) 

in order to calculate the value of the axial charge. This is a natural choice for’ the 

axial-vector current of the weak interactions since it satisfies the usual commutation 

rules of current algebra. The result we obtain is 

gA = <p I Jd’xbi(x)] In> = 5/9 , 

where both the proton and the neutron are in the jz =-I- l/2 state. This value of gA is 

less than one-half the observed value, 1.25. 

We can’t say whether this unsatisfactory result is an argument against models of 

this type because the models being studied do not incorporate partially conserved 

axial-vector current (PCAC). This is evident from the fact that the 7r and p mesons 

are degenerate, although the r should be a Goldstone boson associa&d with chiral 

symmetry. Whether or not proper inclusion of PCAC will sufficiently modify the 

axial-vector current in this model is an open question. 

PCAC and the role of the pion present a fundamental challenge to all quark models 

of hadrons. It is very attractive to suppose that the successes of SU(2) x SU(2) are 

explained by viewing the pion as a Goldstone boson. On the other hand, in a quark 

model with SU(6) mass spectra, the pion is simply a qi bound-state partner of the p 

meson in the 35 and is accorded no special role. How to make these two different - 
viewpoints mutually compatible is at present an unsolved problem. 
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In our theory we do not have PCAC because the divergence of the axial-vector 

current aV AL = Gv7$y5ha+ is nonvanishing, and, in the strong-coupling limit with G>>l, 

is in no sense a “small operator”. These difficulties with PCAC may be related to the 

unsatisfactory result for gA which we have obtained since (24) may very well define 

the wrong operator in contrast with the magnetic moment operator which is constructed 

from the known and conserved electromagnetic current. 

We turn next to the question of excitations of the hadron. So far we have consid- 
ered only the spherical ground state of the hadronic shell, or bubble, and now we ask: 

“How soft is this bubble when one of the quarks is excited?” 

The key question in the treatment of excited states is how rigidly the ffclassical” 

potential g(x) (the u expectation value) resists changing when a quark is excited. If 
g(x) remains very nearly spherically symmetric, then a quark with nonzero orbital 

angular momentum Q will have an energy Ma = (Q+l) 2/3 MO which is the spectrum for the 

Dirac equation in the potential Gg(x) = Gf tanh (m (r-R)), the approximate spherical 
solution to (15). However it is evident from (15) that g(x) will not remain exactly 

c?pherical when the quark is in an Q#O state. 
.In fact, if angular momentum is imparted to a quark along, say, the z direction, 

its wave function will develop nodes along this direction and extend primarily in orthog- 

onal directions as illustrated in Fig. 4. We, therefore, expect the scalar potential to 
collapse in shape around the quark while extending along the direction of momentum F 

since it can reduce the surface area of the confining bubble and, thereby, also the field 

energy carried by the scalar field g(x). At the same time, this deformation will not 
further squeeze the quark-wave function which, when Q >O, is not using all the space 

available to it and so it will not increase its energy. Thus, we intuitively expect that 
the shape of the self-consistent scalar field will be distorted when the confined quarks 

carry angular momentum reflecting the softness of the bag. This speculation can be 
extended further to a description of final hadronic states and of the origins for Zweig’s 

R,Je. Basically, the idea is that the quark in the hadronic shell that is struck by an 

incident (virtual y or WY current recoils 

stretching the surface (and also destroying 

local corer neutrality and unshielding large 

color current densities when the color 

gauge interactions are included). 

As the surface of the shell increases 

in area, the threshold for producing quark- 

antiquark pairs decreases since they have 

more space in which to move, and so there 

will be a critical distance at which the 

, 
Fig. 4 
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energy stored in the confined color fi.eld 

will exceed the qi production threshold. 

At this moment, a qc pair will be produced 

and the color field will break and join sep- 

arating sets of quarks. The shell will then 

break in two, corresponding to two states 
having the quantum numbers of a baryon 

and a meson for the example illustrated in 

Fig. 4. The process will repeat itself un- 

til the resulting fragments no longer have 
enough energy to separate any further as in 

Fig. 5 

Fig. 5. They will then oscillate and decay into hadrons via a different mechanism. 

As a consequence of the existence of these two different mechanisms, one would ex- 

pect to have a set of excited clusters formed, possibly spaced by a fixed distance in 

rapidity, which would decay into ordinary hadrons. Hence the general picture of an 

inside-outside cascade producing a plateau with short-range correlations in rapidity 

would seem natural from this point of view. 

This mechanism for the breakup of a hadronic shell illustrates Zweig’s Rule be- 

cause the basic process corresponds to a local q{ pair production as illustrated. This 

is precisely the mechanism as illustrated in the usual quark line graph also shown in 

Fig. 5 correspon.ding to the shell breakup. 

A formal development of the theory of deformed shells has been given by Roscoe 

Giles (to be published; Stanford Ph. D. Dissertation 1975), the main points of which I 

will now discuss. 

DEFORMED BAG@) 

The basi.c idea of this approach is to take advantage of the thin shell character of 

the semi-classical solution described so far; i.e. ) of the smallness of the ratio of the 
surface thickness D - l/h 1’2f to the bubble radius R - 1/h1’6f. Generalizing to arbi- 

trary bubble shape we shall keep (A l/f3 f) fixed with A, G - to and f -0 so that the thick- 

ness of the transition region l/A l/2 f - 0; we call this the strong coupling limit. 

Retaining the inequality A l/6 <<G as required for strong binding it can 

be shown that for an arbitrary shape the bubble can be pictured as an infinitely thin 

shell (i.e. , a spatially closed hypertube in space-time for the general nonstatic case) 

upon which free quark fields are defined. . 

The procedure for solving the coupled field equations (15) is the following gener- 

alization of that used for the static spherical solution: 

(i) Assume the solution will be a bubble of some as yet undetermined shape 

and solve the field equation for g(x) approximately for such a configuration. 
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(ii) Construct the approximate solution to the Dirac equation in the presence of 

this g field to leading order for large A and G. This gives the Dirac energy 

up to corrections which vanish in the strong coupling limit. 

(iii) Show that if the shape of the bubble surface is chosen to minimize the total 

energy, all further corrections to the fields give vanishingly small correc- 

tions to the total energy in the strong coupling limit. 

To begin with we define the bubble surface-i. e., the nar- 

row transition region of space inside of which g= -f, and outside 

of which g=+f as in Fig. 6. The boundary surface of the bubble 

is defined by giving its points as functions of three “internal” 

coordinates. u”, u’, u2; i.e., by 

RP (Us) cl!=o,1,2 
(25) 

/~=0,1,2,3 

In the static case there are two coordinates u’, u2 and Kis 

defined as that closed surface in space at which the g field goes 

through zero. Let us first work out explicitly the static solu- 

g=- 

Fig. 6 
tion. 

Because all fields will have a nontrivial spatial dependence only in a very thin 

shell about this surface, it is convenient to use a set of (non-Cartesian) spatial coor- 

dinates centered about it: 

Y+l[y, 5) = qua) + &u”) 

where A = unit normal to surface at point Us. 

Tne coordinates (u’, u2,{ ) are well defined only within a distance on the order of 

one radius of curtrature away from the surface. Henceforth it is assumed that the radii 

of curvature of the bubble surface, E, are always large compared to D; i.e., the sur- 

facti has no sharp corners. This assumption has no effect on the spectrum of low-lying 

excitations of the theory in the strong coupling limit. 

In the new coordinate system, we can write the gradient: 

where Tll is the “tangential” gradient which, though it depends on 5, involves only dif- 

ferentiations with respect to the ua, and is tangent, as a vector, to the surface. 

Consider the field equation for g. We will choose, as our first approximation to g, 

a function that satisfies the “largest” part of Eq. (15) near the surface. Because g 
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makes its transition from -f to +f in a distance D, we expect: 

while 

In the limit of infinite radius of curvature, R - co the bubble surface becomes a 

kink in one space dimension and the exact solution to Eqs. (15) can be constructed. We 

reproduce this solution here since it contains all essential features of the general prob- 

lem. We have to solve the coupled equations 

d2’ 
- Em - 4wg 
dx2 

2-f2) = G&(x) (26) 

and 

, x(x) = 6’~ . (27) 

Since there is no spin in 1 space dimension, we have the two-component form for x(x) 

x(x) = 
x,(x) 

( 1 xi 64 

and choose a convenient representation in terms of Pauli matrices 

p=o,; cr=ol . 

First observe that if we set G~x= 0 in (26), then the resulting equation admit,s the exact 

solution 

g(x) = f tanh (Jz f(x-x0)) . (28) 

If we now consider this as the inpu.t potential, 

we find that (27) then admits the exact solution 

x(x) = N cash (,/% f(x-x0)) 
C 1 -G’m : (29) 0 

I/Pf 
g(x) =f 

with &=O. Now, using (29) to compute jix = x7&, 

we find 

jix=o (30) 

and so (28) and (29) provide exact solutions to the 
g(x)=-f ta.947 

coupled equations. The general form of this so- 

lution is as shown in Fig. 7. Although the quark Fig. 7 
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is confined to a narrow region, the total energy corresponding to the quark part of the 

Hamiltonian manages to be G=O. The reason for this is basically the same as dis- 

cussed in the three dimensional solution and shown in Eq. (9). 

The fermion source term on the right hand side of (26) vanishes in the case of one 

space dimension according to (30). In the case of the spherical solution it is relatively 

unimportant in (15) and we anticipate that it remains small for arbitrary shapes. This 
assertion, which must be verified to insure self-consistency, leads our first approxi- 

mation to (15) in the neighborhood of the surface: 

a+ 4hg(f2-g2) = 0 
at2 

(31) 

This is the same as (26) and (30.) for the kink of the one dimensional theory. The solu- 
tion of (31) which satisfies the boundary conditions and vanishes on the surface is 

unique : 

g(x) = g(5) = f tallh jzi f5 

Next, we solve the Dirac equation in the presence of this g field. 

+y’Gf tanhmf[ $= Ez/ 1 (32) 

We expect that zj will fall off exponentially as -e -Gf 15 I away from the surface as in the 
spherical and the one dimensional example (29). This suggests that we attempt to fac- 

tor out the leading exponential behavior and then expand its coefficient in l/G. 

We write: 

q(ua,t) = Ne+GF(h’E) [ I/~(u~,~)+~zJ~(u~,~) . ..I 

E=Eo+$E1 

where F, zjo, E. are independent of G, N is a normalization constant,’ $,, zJ1 are finite 

near <=O as G-a, o, 1 E E are finite as G-m , ZJ~+~ zjl is the beginning of an expan- 

sion of the field in powers of l/G. As will become evident, only the properties of the 
first term will be important. 

Substituting this form in the Dirac equation (15) give 

G -iG.zg+ y’f.tanh,/% f[ z+!J,(u~,[) + [-&*z& - i??.q, 
C 1 1 $,(ucy,[) 

tanh Jzf< - iG.-& g] $,(uo,[) = Eo~O(ua,~) +0(i) 

(33) 
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To solve we first equate the coefficient of order G, and then of order unity. The coef- 

ficient of G is 

[ -ik. z $+yOf tanh JZif[ 1 Go(ua,[) = 0 

In order for there to be any solution of this matrix equation such that +,#O, we must 

have 
dF - = -f tanh $% f< 
a 

where the minus sign is fixed by the requirement that F decrease with 15 1. Hence 

(yO&G) eo=o and e +GFtg = [cash m ft;]-G m (34) 

The equation between the terms of order unity in (33) becomes 

Multiplying by (y”-t-i~*~) and using (34) and the fact that (r”+in.s)2=0 gives 

where 

(35) 

The quantity k depends on the geometry alone being proportional to the mean curvature 

of the surface at each point. At .!j=O, where the term in (35) i.nvolving ql vanishes, we 

l&-we 

+&.z $,(u”,O) = EO+O(u@,O) 1 \ 
(36) 

This is an eigenvalue equation for E. involving only the Dirac field on the surface. 

Thus, given only the geometry of the bubble surface, the Dirac energy can be computed, 

up to terms that vanish in the strong coupling limit, by solving (34) and (361. 

The final step in this program is to show that when the bubble shape is determined 

by requiring the total energy in the quark plus the g field to be stationary under varia- 

tions of the bubble configurations, further corrections to the above solutions vanish in 

the strong coupling limit. This condition is the generalization of the energy minimiza- 

tion principle used to determine the radius of the spherically symmetric solution ear- 

lier in (16) and (17). 
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We only sketch this result here. Formally one finds 6) that the only corrections to 

the form of the scalar field, g, that lead to corrections to the energy which are finite in 

the strong couplin, 0‘ limit correspond to motions of the surface itself, rather than to 

changes in the shape of the g field near the surface. The calculation of the total energy 

is accurate in the strong coupling limit, then, if and only if the total energy that is 

computed is stationary under all local variations of the bubble surface. 

The total field energy is the sum of the Dirac energy, E, and the energy associated 

with the g field configuration. To lowest order in D/R, the g field energy is given by 

(Vgj2 + A(g2 -f2j2 1 
(37) 

where g is the solution to (31), C g f JZif3, and &’ = area of bubble. Thus, the g field 

energy is simply proportional to the area of the bubble surface, with the combination of 

the couplings 

playing the role of a constant energy density per unit area. 

Physically what has been shown is that, in the strong coupling limit, only a. very 

special class of solutions exist which retain low energies. These low energy solutions 

are, ,locally , just like the one dimensional kink. The only degrees of freedom that 

remain are those that describe how these local one dimensional kinks are patched to- 

gether continuously in space time-i. e. , R(uQ), and the surface Dirac field, $O(U~, 0), 

which defin.es how the quark is apportioned among kinks. \ 

To summarize the static field equations can be written in terms of this reduced set 

of variables as follows: 

(?‘-I- &*Z) +!~~(u~) = 0 (38) 

( -iT* ii;, + ikG*z) $,(u@) = EOGO(uU) 

6 geometry(EO + ‘&) = O 

As a consequence of (38) we can write the Dirac equation in a two-component 

Hamiltonian form, The spinor structure dictated by (38) is 

(3% 

(40) 

(41) 
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in terms of two-component Pauli o matrices, in the representation 

equation (39) can now be written Hx=Eox with 

H= +o* (;xv,,)+k (42) 

The first term of H is recognized as the angular momentum and the second term shows 

the local mean curvature of the surface playing the role of a mass. 

An exact static solution to (40) and (42) can be constructed in two space dimensions, 

in which case the bubble is a simple closed curve. Giles has shown in this case that the 

total energy is independent of the shape of the curve and depends only on its perimeter. 

There is thus a degeneracy in the energy for all curves of a given perjmeter showing 

that this two dimensional bubble is extremely soft to shape distortions. This result is 
simply exhibited. We choose the length L as the single parameter describing this curve 

x = X(Q) 

and introduce the unit vectors z= &/de and i defined by f;~i = i in the plane of the curve 

as illustrated in Fig. 8. The curvature is 

k&. ii=rz!k 
i; 

2 c-it 2dfI 
Y 

where C#I is the angle of the normal with re- 

spect to some fixed direction in the plane. 

The Dirac equation is 

- iU3 x d x=Ex 1 
which may be integrated immediately to yield Fig. 8 

x(Q) = e 
icr~ [EQ -; c@(Q) - 4 (o))] x (o) 

x must be single valued, so we have x(L) =x(O) where L=total length or 

27rn=EL -$(L)-+(O)] = EL-n 

where n is an integer. The Dirac energy is 

(43) 

E222 
L ’ mEn+-l 2 (44) 
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and the normalized Dirac wave function can be written 

1 icr3(EQ - i+(Q)) 

X=Ilie 
U 

where u is a fixed unit spinor, 

The Dirac energy is seen to depend only on the perimeter of the bubble, L, not on 

its shape, There are paired positive and negative energy levels of the same magnitude. 

There is no zero energy mode. 

We interpret negative energy quark states as positive energy antiquarks. The total 
bubble energy is, then, 

U=27rIml 
L -I- CL 

Minimizing over L, we have 

L = 27rlMI 
l/2 

C 

U = (8nC) I/2 in*, 1’2 

It is straightforward to check that, if L is chosen to minimize U as above, Eq. (42) is 

satisfied at each point on the bubble surface. 

The two dimensional bubble is, then, extremely soft. Static bubble states occur 

only with perimeters fixed by the Dirac quantum number m; but bubbles of all shapes 

with this perimeter are degenerate classically. This shape independence is an expres- 

sion of the fact that there is no intrinsic curvature on the one dimensi.onal manifold 

around which the spinor is being transported by the Dirac equation (42). In the lan- 

guage of quantum theory the bubble’s softness is reflected in the large quantum fluctua- 

tions of the surface. The three dimensional bubble is also soft, but not so soft that 

all shapes are degenerate. \ 
: 

The angular momentum, J3, can be shown to depend on the bubble shape as 

12 J3=M = -R2Tot1) 1 
(45) 

E =- L <a3> J dQ[??x;], = ; <cr3> A 

where To@) are the components of the stress tensor and A is the total area of the bub- 

ble, which of course depends on its shape. Using the expression (44) for E, we can 

rewrite this result: 

J3 = Iml <a3> (46) 
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or 

J3 = (87rC)-’ U2 <f13> 

The ratio A/[r(L/2x)2] is the ratio of the area of the bubble to the maximum area it 

could have, given perimeter L. The state of maximum area is a circle, which is 

unique. Thus, the maximum possible angular momentum of a state of energy U is 

J 3 max(U2) = (87rC)-1 U2 

In a Regge picture, this is the statement that the leading Regge trajectory is nondegen- 

erate, and linear in (mass)2 with slope (87rC)-l. 
Unfortunately, the static bubble equations in three dimensions are not so easily 

solved. In practice one can however carry out variational calculations by choosing a 

form for the bubble surface that depends on several real parameters, solve for the 

Dirac energy as a function of these parameters, then minimize the total energy over 

the parameters that define the surface. Because the total energy functional is positive 

definite, this variational estimate of the energy is always an upper bound on the energy 

of the lowest bubble state, The accuracy of such a variational estimate depends 

entirely on how good a guess is made for the trial surfaces. 

I will cite briefly several of the results obtained by 

Giles using this procedure. A simple two-parameter 

trial surface that is smooth and flattened at the poles is 

the .oblate spheroid, Fig. 9: 

fi(O,$) = R sin 8 cos $, sin 8 sin z,!J, C 42 cos CJ 

R determines the overall size, and d the flatness (d=O 2849A9 \ 
for a sphere and d=l for an infinitely thin pancake): It 

is found that the spheroid is not an adequate trial sur- Fig. 9 

face since the resulting energy upper bound decreases monotonically with increasing d. 

Although the spheroid allows the surface to spread at the equator it does not allow for 

a depression at the poles, and hence for an energy minimum. In any event however 

the energy change is very small showing a decrease of less than 10% from the estimate 
for a sphere as illustrated in Fig. 10 for z-axis angular momentum projections of 

m=3/2 and m=5/2. 

A two parameter surface which does allow for a polar depression is a torus as 

illustrated in Fig. 11. The corresponding results for this choice shown in Fig. 12 

reveal minima for spin > l/2 states. Furthermore the energy estimate in the m=5/2 
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state is lower for the torus than for the 

spheroid flatt.ened to a dish in Fig. 9 

suggesting a toroidal shape for single 

quark bubbles with spin ~5/2. 

Despite the radical differences in 

their shapes and topologies, we see that 

the energies of low-lying single quark 

states on spheres and on toruses are 

not very different. We interpret this as 

a reflection of the “softness” of the 
three dimensional bubble. This three 

dimensional result is analogous to the 

complete shape degeneracy of the two 

dimensional bubble. 

We turn now briefly to time- 

dependent bubbles and generalize the 

static discussion to include the internal 

time coordinate u” and a boundary sur- 

face R’(uo) as in (25) that is a hyper- 

tube forming a closed surface in space 

and infinitely extend.ed in ti.me. The 

covariant generalization of (38)) (39)) 

and (40) has been given by Giles and 

requires introduction oi a unit space- 

like outward normal nP to the bubble 

surface. In the static case nP w (0 ,ii) , 

and generally nP has -he following 

properties: 

n nP= -1 
P 

where 

+“” 
&lQ! 

are the tangent vectors to the surface. 

(The remaining fundamental tensors 
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describing the surface are the induced metric g, 

ficient of curvature is h 
+ 

z - n l arol/auP = 
p = (T~)‘(T~)~ = TV - TV and the coef- 

h 
PQ! 

in terms of which the local mean cur- 

vature is expressed by 

where (a ,,& = [-&, VII) is the generalization of the tangential gradient. ) Multiplying (38) 

and (39) by y. and introducing the time dependent Dirac wave function 

II@,) = #I, emiEt (47) . 

gives the covariant equations 

idzl, = $ (48) 

(ig,, I- ik$$ = 0 (49) 

Equation (40) which expresses that the total energy is stationary under arbitrary vari- 

ations of the static surface geometry is naturally generalized to an action principle 

with the general bubble having a constant action density, -C. Thus we have 

(50) 

where d& is the invariant area element on the hypertube and the variation can include 

the geometric variables defining the bubble surface as before; a variation 6 in (50) with 

respect to $ just reproduces (49). 
Application of this formalism to the special excitation of the three dimensional 

bubble in a spherically symmetric “breathing” mode has been made by Giles 6) and 

shows that such surface oscillations have large amplitudes indicating once again in a 

‘qualitative way that the bubble surface is “soft” to distortions. 

RELATION TO THE MIT BAG7) 
\ 

: 

In the MIT model a hadron is a finite region of space to which almost free quanta 

of the hadronic fields (quarks or partons) are confined. It is obtained from free-field 

theory with two modifications: 

(1) adding to the stress tensor TPV a term $“B, called the volume tension, 
which acts to compress the bag against the outward pressure of the quark 

gas; 
(2) imposing boundary conditions such that the hadronic fields be confined in 

a finite region of space: the interior of a hadron or the bag. 

Because of the boundary conditions, the MIT bag model is not a local field theory 

as is the SLAC bag. In contrast, however, it builds in permanent quark confinement 

as a result of the boundary conditions. 



- 29 - 

Formally, for massless fermion quarks moving within the bag, which. is the 

hadron, one writes the stress tensor 

TIP’ = TP’ + BgPu within the bag (5 1) 

where TPV is the usual stress tensor for a spin l/2 massless Dirac spinor field and 

the positive constant B represents the volume tension. The boundary conditions are 

constructed by the requirement that the energy and momentum be conserved within the 

surface of the hypertube representing the trajectory of the bag in space-time. These 

are given by 

n T” = 0 on the surface 
I-L (52) 

as illustrated in Fig. 13. In terms of the 

spinor fields (52) becomes 

i@ = $ 
on the surface 

2B = #a,($$) 
(53) 

The first of (53) coincides with (48). Within 
the bag the Hamiltonian derived from (51) 

for a single fermion quark is just that of a 

massless spin l/2 particle plus a constant 

term given by the positive constan.t B multi- 
Fig. 13 

plied by volume. Thus in a one-particle semi-classical treatment the energy for a 

static spherical bag of radius R is 

E=$+B %R3 (54) 

where cx2 is a constant characteri.zing the energy of a massless fermion in a spherical 

well of radius R with infinitely high walls. Minimizing (54) with res,ect to R gives a 

bag as described earlier in (8) with 

The volume tension B corresponds to f4h in (8). The numerical predictions of the 

MIT bag have generally been very successful 8) in reproducing static properties such 

as described in my first lecture. In particular a value has been found for the axial 

charge (-1.1) which is much closer to experiment than found by the SLAC model al- 

though here too one does not have an almost conserved axial current. Additional cal- 

culations including SU(3) breaking effects have had considerable success (see lecture 

in this volume by V. F . Weisskopf) . 
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There is an obvious difference between the MIT and SLAC bags when we compare 

their semi-classical solutions. Whereas the SLAC bag is a thin shell with a surface 

tension created by the quartically self-coupled scalar field to contain the quarks, the 

MIT bag forms a volume within which the free massless quarks are contained by a 

volume tension B. At a more fundamental level it is important to understand the rela- 
tion between the two approaches since one (the SLAC model) is based on conventional 

local field theory treated nonperturbatively, whereas the other (the MIT model) modi- 

fies the familiar stress tensor within a finite region of space and imposes boundary 

conditions turning the model into an effectively nonlocal theory. Is conventional field 

theory adequate or not to describe hadrons and their confined constituents? Or must 

we make fundamental new dynamical models a’la the MIT bag? Or is the MIT model a 

valuable phenomenology in the same spirit as the Feshbach-Lomon boundary condition 

model for nuclear reactions? 

A possible connection between the two approaches has been discusseh by M. Creutz 

and K. Soh 9) who have shown at the semi-classical level (i. e. , a tree-approximation 

calculation as described in the first lecture) that the MIT bag can be derived as a limit- 

ing case from local field theory if we assume a quartic potential that does not exhibit 

the symmetry of the self-interaction term in (4) but has the similar form illustrated in 

Fig. 1 in describing the Lee-Wick model. Essentially a large bare quark mass M 
Q 

is 

added to (4) with a value to cancel precisely the field strength-Gvc corresponding to 

the abnormal vacuum state inside the bag-i. e. , 

so that inside the quark is massless. Bowever at large distances we must revert to the 

normal vacuum at a=0 in order to avoid an infinite field energy proportional to U(d,) 

times the volume. The limiting parameters to make this transition very sharp with 

strongly rising potential walls in Fig. 1 and the character of free massless quark mo- 

tion within the bag can then be readily derived. 9) Note only that the value of the quartic 

self-coupling potential within the bag must be nonzero or else the ground state will cor- 

respond to (~=a c everywhere and there will be no bag. It is easy to see that the MIT 

volume tension is just the energy density in the abnormal vacuum state, i. e. , 

B = U(-oc) . 

In contrast to the SLAC bag according to which quark confinement is approximate- 

i.e., isolated quarks as well as color nonsinglet states exist in principle but with 

(arbitrarily) high production thresholds-the MIT bag model admits only color singlet 

states when the quarks (i. e. , the spinor fields) are coupled to non-Abelian gauge fields 

associated with color. This is an exact selection rule which follows from the boundary 

conditions for the color gauge fields in the MIT bag model and from Gauss’s law. We 
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can illustrate it most simply for an Abelian gauge field 7) by writing the extension of 

(52) and (53) to a vector gauge field 

The total (color) charge is then 

Q = color / 
Bag 

d3x dk$ko= / 
Bag 

dSnC1gFto=O . 

volume surface 

(55) 

(56) 

Hence only coior singlet bags can be formed. Note however that (55) corresponds to 

‘tan= Enormal = 0 on the surface in contrast to the usual condition of Bnormal = 0 by 

Gauss’s law for no magnetic monopoles. The problems that this switch of the roles of 

E and B creates in the non-Abelian case for local field theory are discussed in Ref. 9. 

QUANTUM CORRECTIONS 

Finally we come to a discussion of the quantum corrections to our semi-classical 

discussion of field theory. We can illustrate the importance of this question by con- 

sidering the Hamiltonian (4) in one space-one time dimension. In the classical or tree 

approximation this is exactly soluble as shown in (26) - (30) and the ground state energy 

is given by neglecting the vacuum fluctuations; according to (37) it is just 

Eo=C=$m f3 (57) 

in lx-It dimensions. The lowest order corrections to this result in an expansion in 

powers of the coupling parameters A and G is given by the one loop corrections to the 

tree approximation. Physically these corrections correspond to the shift in the zero 

point fluctuations of the quantized scalar field for small oscillations about the kink 

solution (28) relative to the constant g(x)=f, plus the shift in the energy of the filled 

negative energy quark sea when the potential (28) is introduced into (27) relative to the 

energy of sea with g=f. These energy shifts are dropped in a tree approximation in 

which, as we saw, one assumes B to always be normal ordered in whatever basis. 

However they must be included in comparing the energy of excitation of a kink relative 

to the constant solution g=f which leads to the bare quark mass M Q 
=Gf. 

Formally we arrive at this result by a small fluctuation expansion in (4) in l.X-lt 

dimension 
a(x, t) = g(x) + ‘w(x, i) 

with g(x) defined as a solution of 

3 - 4wg 2-f2) = 0 
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and,quantum field amplitudes 6~ satisfying the usual boson commutation relatj.ons. This 

leads to a Hamiltonian density 

Lx?= ; 2 I 2 
+A(g 2-f2)2 

1 

+ I +q2++ F2+ $ (sq2 [4A(3g2 -f2) 
II 

+ 4hg(6cq3 + A(&q4 (58) 

The first line of (58) gives the classical kink energy. The second line of (58) can 

be expanded in normal modes 

with en defined by the wave equation 
-- 

+ 4A(3g2 -f2) en = Enen 1 
The zero point energies of these small oscillations sum to 

and the difference 

_ $ c Etno kink) 
n n 

(59) 

gives the shift in energy due to small boson fluctuations about the kink solution with g 

given by (28) relative to the free solution g=f. 
The third line of (58) gives higher order boson corrections. The fourth line of 

(58) gives the fermion or quark energy as the one particle ground state plus the sum ~ .- 
over the filled negative energy Dirac sea and again the difference between the kink so- 

lution (28) and the constant g=f gives the fermion contribution to the kink energy-i. e., 

Finally the last line of (58) gives higher order corrections. 
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The sums (59) and (60) can be performed exactly 10) and display two important 

properties for us to consider; 

(1) The boson fluctuations (59) are lowered in energy by an amount proportional 

to fi whereas the negative energy sea (60) is pulled up in energy by the 

binding of the low lying states to the kink by an amount proportional to Gf. 
Therefore since the zero point fluctuations are shifted in opposite directions 

it is possible by a proper choice of the ratio G/A to arrange for their pre- 

cise cancellation. 10) 

(2) However the individual shifts, being of order of JA f and Gf, which are the 

large bare masses in the theory, show that in the region of interest a weak 

coupling expansion about these kink (or l’so!ition’l like) solutions does not 

converge and therefore we cannot proceed in this manner. 

We are now faced inescapably with the challenge of strong coupling field theory if 

we are to hope to push on beyond our semi-classical solutions and verify the results 

obtained thus far by our semi-classical approximation. We adopt the following 

approach. We shall again make variationa guesses for the state functions but will 

keep quantum fluctuations and not resort to a tree approximation as in the first lecture. 

Since we avoid an iterative weak coupling expansion and the actual implementation of a 

renormalization procedure which is usually performed in the Feynman graph expansion, 

we work with a cutoff field theory that is finite at each stage. This cutoff in practice 

can be expressed either by introducing a finite maximum momentum in the Fourier 

expansion of the field amplitudes or by formulating the field theory on. a lattice.. To be 

specific I wilI work on a Iattice of finite length L (i..e. )’ volume L3 in 32 dimensions), 

with L - m eventuaIIy, and with a finite Iattice spacing, l/m, as illustrated in Fig. 14 

such that 
-(N-l) (N-l) 

IL = (BN+l)/m @l) c 
j=-N 

/ .* ..*#I*lal ,..h! 

In the remaining portion of this lecture I wilI z 

describe work in progress with M. Weinstein L 

11d.1. 
and S. YankieIowicz at SLAC in which we 

have formulated the self-coupled neutral sca- 

lar boson fieId on a lattice and studied the 

L=(ZW+II/m 

Fig. 14 

quantum behavior and spontaneous symmetry breaking using a variational method for 

bounding the energy from above. To illustrate our method and the mathematical 

diseases that are pitfalls on the way, we concentrate on the strong coupling behavior 
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of the boson Hamiltonian 

H = /dx[; r2+; (g)z + hg($2-f2)2] , (64 

ignoring couplings to the spinor quark field. Equation (62) is re-expressed on a lattice 

bY 

(63) 

where for simplicity we work in one space dimension, defining dimensionless variables 

and 

xj = C@(X) at x=x., 
J 

the jth lattice site 

n(x) at x= xj, the jth lattice site 

[ 1 Pj’xj’ = -is.. 
JJ’ 

hE 1 A is dimensionless. 
m2 O 

(64) 

According to the usual approximation of the gradient as a finite difference operator 
1 ifjzjr 

*(j-j’) = -1 if j=jf-1 

0 otherwise 

Analternative definition of the gradient in terms of the Fourier expansion 

SC&c 
k= 27rN -m 

L 

leads to long range correlations via 

where 

W-Wm = 
7r2/6 if j=jt 

j-qj-j’ 
for N-co. (65) 

if j+j, 

(j-j? 2 
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Either form for A leads to the same conclusions i;l the following. We can illus- 

trate the essential points most simply by further simplifying (63) to a Schrodinger 

problem for the anharmonic oscillator in order to recall general properties of the solu- 

tion, i. e. , consider 

2 
H = & + $(X2 -f2)2M 

c36) 
1 =- 

2Mf2 I 
p2+g2(x2_D2 

I 

where p =fP, and x f 1 f X are canonical variables and g2 = 2M2f6hs is the effective 

coupling strength. Relative to the field theory problem we have dropped the gradients 

in (63). Recall that for the anharmonic oscillator of positive mass-i. e. , 

g=L 
2Mf2 

p2 + g2(x2+1)2 
I (67) 

a perturbation expansion in g2 does not converge but a variational solution can be made 

very accurate with very little work. In particular a gaussian packet for a ground state 

trial solution 

ewe 
4x2/2 

, 

with width l/&z varied to minimize the energy, gives a ground state energy in error 

by < 2% over the entire coupling constant range. 

Let us derive this in field theory language and illustrate the weak and strong cou- 

pling limiting behavior as a guide to the field theory (63). The trial state for the 

vacuum or ground state energy is constructed by expressing the coordinate in terms of 

creation and annihilation operators 

XZ -.L 
( 1 
aa+a f 

\ 

$z a!. 

P- = -iJZ!72 a0 -a: 
( 1 

and defining the ground state lOa> by 

acr IOQ> = 0 . (69) 

The ‘*massl’ a! is the width parameter of the gaussian (68) and by varying Q! we find the 

best energy: 

6,<Oa IR lOa> = 0 (70) 
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‘The weak coupling limit corresponds to g2 -+~a; i. e. , by (67) the oscillator stays very 

near x-0 and the motion and energy are controlled by the curvature near the minimum. 

In terms of the constants in (66) weak coupling means As--O for fixed Asf2 so that 

g2=2M2f6A -m. 
S 

In this case (70) gives a2= 2g2 for the minimum, corresponding to 

a narrow oscillator packet at the bottom of the potential well, and the zero point energy 

is to a leading approximation just that for the simple harmonic motion of small ampli- 

tude. In the strong coupling limit g2 -0 corresponding to As >>l for fixed hsf2. In this 

case the simple solution of (70) gives a3 = 3g2 and a ground state energy of 

E. = $ (6hs/M)1’3 

(71) 
= 0.68142 (As/%I)1’3 

which is less than 2% hi.gher than the exact result 

EExaCt = 0.66799. . . (As/M) l/3 . 

The solution also has the physical property of a broad packet of width l/&! N g-1’3. 

So much for the obvious. Let us return now to (66) with the double minimum in the 

potential as illustrated in Fig. 15. In this 

case we expect physically that the strong cJ*(x*-l)* 
coupling behavior of a broad packet centered 

at the origin x=0 for g2-0 will change to a 

narrow packet centered at the two minima at 

x=&l for weak coupling. How does this tran- 

sition actually occur and how can we ilius- 

trate it by-the variational calculation? I I 
Evidently the above procedure used in -I 0 \ I X 11.9111 

the case of positive oscillator mass ;:an be 

repeatedland the good result of (71) will be 
Fig. 15 

obtained again in the strong coupling regime of g2<<1 since the small bump at the center 

of the well has negligible impact on the eigenstate and on the energy eigenvalue in this 

limit. It is also clear that the trial form (69) is inadequate to give a low lying energy 

state near x=*X for g2 -+OO and therefore it is a very poor guess. In fact a simple cal- 

culation gives cr=3/2 in the g2 -.co limit corresponding to a ground state energy growing 

as g2 since there is a finite probability for the oscillator to be found at x=0 where the 

potential energy is increasing with g2 according to Fig. 15. This then gives us the 

clue that a much better trial state is one that is displaced away from the origin at x=0 
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and suggests the form 

Sa> =e -ipc lOa> ; 

so that (72) 
<so, lx ISa> = c 1 

Equation (72) has two parameters: mass, cz, and displacement, c, which are varied to 

determine the ground state energy via (70). In particular for g - ~0 in the weak cou- 
pling limit the minimum will occur for c -41 at one of the potential minima. 

To illustrate the behavior for weak and strong coupling regimes it is convenient to 

plot the ground state energy E. as a function of the displacement c, as derived by mini- 

mising <So IH ISa> with respect to the mass parameter a. A series of graphs for the 
weak, intermediate, and strong coupling regions is shown in Fig. 16 and summarizes 
the results of straightforward calcula- 

tions using (66), (69), and (72). The 

important feature of this result is that 

the energy always shows a local mini- 

mum for a centered oscillator state at 
c=O. It also exhibits a point of inflec- 

tion at finite c when g2>1 which 

develops into the true minimum in the 

weak coupling limit as c approaches &l, 

and the oscillator falls into the bottom 

of the well. The existence of the local 

minimum at c=O suggests at first that 

the oscillator undergoes a phase tran- 

sition from the solution with c=O which’ 
describes the ground state when the; 

coupling is sufficiently strong to a dis- 

placed solution with c#O when g2 

exceeds a critical value g2=gEr as illus- 

trated in Fig. 16. Intriguing as this 

E \,li 
-C 

ency at g2 =35/26 

w.,L~nerac y at 

Fig. 16 

may be such a first order phase transition violates a general property of solutions of 

the S&r&linger equation. 

It can be proved rigorously for this Hamiltonian that a behavior as in Fig. 16 for 
the ground state which exhibits a sudden shift in the mean value of <x> from <x> = 0 

for g2<gzr to <x>#O for g2>gEr is not compatible with the mathematical properties of 

the Hamiltonian (66) and is hence simply a disease of our particular trial wave 
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function. 11) Physically what is going wrong here is that as we move the wave packet 

away from <x>=O by the displacement in (72) with c#O we initially increase the energy 
because of greater overlap of the trial function with the quartically rising cutside poten- 

tial wall toward which it has been displaced. A packet with <x>#O seems to illustrate 

spontaneous symmetry breaking since it can move in either of the two degenerate 

directions toward <x>=&l. This however is a false evidence of spontaneous breakdown 

of the underlying symmetry of the Hamiltonian since as we well know from the exact 

eigensolutions of the Schrodinger problem with a symmetric well as in Fig. 15 the 

ground state eigenfunction is symmetrical about x=0, and for a high barrier at x=0 

( i. e., large g2 or weak coupling) the probability density is peaked at both x=+1 and 

x=-l. The first excited eigensolution is antisymmetric with a node at x=0 and is peaked 

again at the bottoms of the well. However these two solutions become degenerate only 

in the limit of infinite height of the central bump or of infinite separation between the 

two wells so that there is no tunnelling between the two solutions with <x> -+l and 

<x>--- 1. Thus the spontaneous symmetry breakdown occurs only in the g2em weak 

coupling limit. For finite g2 there is always tunnelling, the symmetric solution lies 

lower than the antisymmetric one, a-0, and there is no symmetry breakdown. 

One can of course make more elaborate variational guesses than (72) (such as, for 

example, by making a symmetrical displacement 

(e 
ipc * ,-ipc 

) lOa’ ; 

this removes the minimum at c=O and with it the disease), but the important point of 

this example is to display and recognize an incorrect result so we can avoid it in the 

more difficult field theory problem (63). 

Returning lo the field theory example of interest and setting up a variational cal- 

culation for the ground state energy for’Hamiltonian (63)) a natural first guess is the 

mean field approximation. To do this we expand the canonical fields and momenta in 

a Fourier series with arbitrary “energies” a! 

xj = F j/j-j& (a,+ aTk) eikj’m 

pj = F (-i)& (ak-a’,) eikj’m , 

27rN where the discrete momenta are given by k= - 7 2ml ,...,- L , * * - t + 8-rrN and L 

(74) 
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In terms of this basis the trial ground state analogous to the use of (69) in the 

S&r&linger problem is defined by 

for all k. The ground state energy is then determined by taking the expectation value 

of (63) in the state IO> and varying with respect the ok. One immediately finds upon 

carrying out this procedure that the para.meters o k for different k are related by 

to a single variational mass parameter oo. Equivalently we can ab initio introduce the -- 
Qk in (74) in terms of a single variational mass parameter o 0 via the energy-mass 

relation (76). The discussion of the ground state energy for this field theory example 

is entirely parallel to that already given for the Schrodinger problem. The next natural 

step is to introduce a two parameter trial state with the field displaced from zero 

expectation value in order to study the spontaneous symmetry breaking. Correspond- 

ing to (72) we introduce a constant displacement 

-icC.p. 
s> = e J J IO> (77) 

Both trial forms (75) and (77) are products over the individual momentum cells for each 

k and are equivalent to the mean field replacement 

X3 + 3 <x2,x 

X4 -6<x2>x2+ 3<x4> 

in (G2). The results of a variation calculation based on these trial forms are the same 

in all essentials, including the disease, as found in the Schr’ddinger problem. Further- 

more the symmetrical analogue of (73) fails to remove the illness in this case. Note, 

hoT*rever, that in the limit L ~00 and it> = c#O this wave function describes spontaneous 

symmetry breaking (unlike the corre- 

sponding wave function in the Schrbdinger x(x:-f’)’ 

problem) since <s (+c) Is (-c)> = I 
e-Lc20!o - 0 and there is no tunnel- 

(L--+~) 
ing between the two minima at SC and at -c. 

Let us try now to understand physi- 

cally what is going on here; why we are 

led to a “disease11 by our momentum base 

procedure via the trial state (77) and what 

can we do to avoid the pitfall and do better. 

One way to illustrate the problem is to Fig. 17 
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observe from (63) that the potential has a bump of height hf4 near its center at xj-+O 

whereas for small oscillations about the minimum near x.4 f, the zero point energy is J 
-m f, as illustrated in Fig. 17. For weak coupling, i.e. , for small field amplitudes 

and harmonic motion near the bottom of the potential well we have the inequality 

Af4 >> A1’2f or A1’2f3 >> 1 . (78) 

In this limit the two lowest energy levels are the symmetric and antisyrnmetric solu- 

tions, as described above Eq. (73) for the Schrodinger equation. Their energy splitting 
is very small due to the suppressed tunnelling of the oscillator amplitudes through the 

center bump, and hence mixing between these two even and odd oscillator solutions due 

to the gradient term in (63) will be large. Therefore, it becomes important to treat 

the last term of (63) accurately, which of course is precisely what we do by working in 

cspace by the expansion (74) and the choice of ground state (77). This basis diagon- 

alizes the kinetic energy or gradient term. It is also in this weak coupling region 

described by parameters (78) that the system is safely in the c#O phase for its ground 

state; this is the g2> 1 region of Fig. 16. The trouble arises as we approach the strong 

coupling region. Formally the energy difference between even and odd solutions in- 

creases as h l/2 3 f decreases into the intermediate coupling region, the gradient term 

of (73) also decreases, and a site basis-i. e., a trial state diagonalizing the terms at 

individual lattice sites j-is the more natural approach for guessing a solution of (63). 

Indeed the region of A l/2 3 f < 1 in the strong coupling domain is precisely the one that 

our earlier classical discussions lead us to look to as the one appropriate to our kink 

solutions. In fact for the kink energy in Ix-It dimensional case we deduce from (37) 

that 

hli2f3 << 1 (79) 

or in terms of the original dimensional’coupling in (73) and (64) 

hO ‘I2 f3 -x m 

if the kink energy is to be finite (~1 GeV) and therefore very small on the scale of the 

arbitrarily large cutoff mass m introduced via the lattice. 
We are led therefore to introduce a trial form for the variational calculation that 

is’ diagonal in a single-site basis on the lattice. To do this we introduce creation and 

annihilation operators at each site j 

xj = ---& aj+aJ 
( 1 

pj = -id> (aj-a:) 
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c 1 a at =6 
j’ Y jj’ (80) 

where oj is a parameter to be varied for the energy extremum, and write for the trial 

state 

IS>= Nn 
j 

with 

-ip . C. +ip . C. 

‘OS 5 e 
J J + sin ej e J J I Oj> 

I 

ajlOj>= 0 

(8 1) 

and N a normalization constant. Cj and Oj are also variation parameters in terms of 
which the mean field amplitude is measured; viz. 

Calculations based on (81) are in progress at the time of these lectures (July 1975) with 

M. Weinstein and S. Yankielowicz and we are learning simpler methods of analyzing 

the ground state properties using (8 1). However several important properties have 

been found already that I want to report in concluding these lectures: 

(1) The disease of an illegal first order phase transition encountered earlier 

has now been avoided and a transition from <xj>= 0 for strong coupling 

to an arbitrarily small <xj># 0 as h or f2 increases has been exhibited. 

Therefore we have displayed that spontaneous symmetry breaking actually -~ 

occurs in this model. We have also constructed (since these lectures) a 

low lying energy state with a kink structure analogous to the classical re- 

sult as in (78). 
(2) A r’good*’ energy for the ground state can be achieved. In particular 

Weinstein and Yankielowicz have explicitly established that this approach 
in terms of a single site basis gives lower (i.e., better) ground state 

energies for the parameters A and f2 of interest than found in the momen- 
turn basis (77) if several higher configurations are mixed in with the ground 

state oscillator (8 1). 

We believe therefore we have now a valid basis for studying low lying coherent 

excitations in strong coupling field theory and are presently engaged in studying the 

coupled, fermion (quark)-scalar field Hamiltonian. Eventually it is our goal to work 

with gauge theories and to view the self coupled scalar field that gives rise to the 

spontaneous symmetry breaking in the present treatment as no more than a phenome- 

nological crutch. 
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