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ABSTRACT 

It is shown that the classical thin-shell states of the “‘SLAC BAG” 

model may be described, in a strong coupling limit, by the motions of 

a surface of constant surface tension upon which free quark fields 

propagate. Classical static and nonstatic solutions in two and three 

space dimensions are discussed. It is found that such objects are very 

easily deformed. The implications for, excited state levels in and the 

quantum mechanics of a model of hadrons based on such states are 

discussed. 
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1. INTRODUCTION 

Recently, Bardeen, Chanowitz, Drell, Weinstein and Yan (BCDWY) have 

proposed a model of hadron structure’ based on a strongly coupled field theory 

of quarks interacting with a neutral quartically self-coupled scalar field. They - 

have argued that though the quark and scalar meson masses are large, very low 

mass bound states containing quarks will form. In the semi-classical field 

theory these bound states correspond to extended, particle-like excitations of 

the fields in which the energy density takes the form of a thin shell. 

This paper analyzes the strong coupling limit of the semi-classical BCDWY 

theory. The strong coupling limit is defined in such a way that the quark and 

meson masses go to infinity while the masses of thin shell bound states remain 

finite. In this limit, the thickness of the shell goes to zero and it may be re- 

garded as a spatially closed curved hypersurface imbedded in space-time (a 

*‘bubbleff). The Euler-Lagrange equations of the field theory can be reexpressed 

as equations relating geometric variables characterizing such a hypersurface and 

quark fields defined only on this surface. The resulting classical equations of 

bubble dynamics are Poincare/ invariant and are equivalent to those derived from 

an action principle. This action principle is similar to those which generate the 

MIT bag2 and the Nambu string. 3 

The bubble theory easily reproduces the results obtained by BCDWY for the 

static spherically symmetric bubble state in three dimensions and provides a 

very convenient starting point for a discussion of excited states of the model. 

We exhibit the complete solution to the static bubble equations in two space di- 

mensions . We find that two dimensions static bubbles are exactly degenerate in 

shape-the energy of a bubble depends only on its perimeter. We analyze several 

approximate static solutions in three space dimensions. Our results indicate 
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that three dimensional bubbles, though not exactly degenerate in shape, are very 

easily deformed. 

We obtain the exact solution to the nonstatic bubble equation for all breathing 

modes of a spherically symmetric bubble in three spatial dimensions. The sur- - 
face motion is quantized in the WKB approximation. In this approximation, the 

mass ratio of the first radially excited state and the ground state is found to be 

very close to that of the Roper resonance and the nucleon. 

The most striking physical property of bubbles which emerges from this 

work is their softness to deformation. The possible implications of this prop- 

erty for any quantum theory of bubbles are quite important. Among these is the 

expectation that the thin shell nature of the semi-classical states need not imply 

oscillatory form factors or the absence of scaling as would be the case for a 

rigid shell. 
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II. THE BCDWY MODEL 

The BCDWY model for the binding of a single quark species is developed 

from the field theory defined by the Lagrangian: 

L = ; (ac$ - A(02-f2)2 + $(i$-Go)$ - 

whose Hamiltonian is 

H = /dx+(g) + -$V~)2+h(02-f2)2+ Q+(-io.V+Cay”)$ 

This is a theory of a Dirac field Z/ interacting, via the Yukawa coupling, with a 

quartically self-coupled, neutral scalar field, o. The theory is characterized 

by three coupling constants: G, A, and f. 

This Lagrangian is symmetric under the discrete transformation: 

The classical potential of the o field has symmetric minima at cr=&f. One there- 

fore expects that, in the corresponding quantum theory, y5 reflection symmetry 

will be spontaneously broken and that the o field will assume a vacuum expecta- 

tion value l<cr> I=f, which we choose, by convention, to be +f. In a perturbative 

approach one would then conclude that this theory is one of interacting quarks of 

mass M Q =Gf and scalar mesons of mass MO=@. We consider a limit of 

coupling constants in which both of these masses are “large”. 

It is easy to construct a semi-classical arguement that the lowest lying quark 

states need not have mass Gf. It is only in zeroth order perturbation theory that 

the scalar field is not free to decrease its value from f in the neighborhood of 

the quark, so as to reduce the total energy. The particle-like excitations of the 

semi-classical BCDWY theory are formed in just this way. 
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The “semi-classical” field equations which we use to discuss the BCDWY the- 

ory consist of the (one-particle) Dirac equation for $ in the presence of a classical 

o field: 

(ig-Go)$ = 0 (1) 

where the wave function must be normalized to unit charge, 

Q = jdx $+$= 1 

and of the classical equation for the o field in the presence of a fermion source: 

-8% + 4ho (f2a2) = G&6 (2) 

In the “static” case, o=w(y), q=+(T) emiEt these reduce to: 

(-icr*V+Gay’) $0 = E$J@) 

V20+ 4ho (f2-02) = G&j 

The differential equations (1) and (2) are the classical Euler-Lagrange equa- 

tions of the theory. The system is “semi-classical” in the sense that ZJ is inter- 

preted as if it were a single-particle Dirac wave function: it is normalized to 

unit charge and negative energy fermion states are to be given the Dirac inter- 

pretation as positive energy antifermions. We note that the Dirac equation is one 

with a scalar potential, so that no Klein paradox arises-the distinction between 

positive and negative energy states is always unambiguous. Thus, the prescrip- 

tion by which we define a “semi-classical” theory is also unambiguous. The 

normalization of the fermion charge to 1 and the interpretation of the negative 

energy seen as antiparticles arise naturally in the work of BCDWY where the 

semi-classical equations are derived from the quantum field theory via an approx- 

imate variational technique. 

The mechanism by which low mass quark bound states can form is most 

clearly evident in the solution to the static field equations in one dimension. 
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Taking the representation of the gamma matrices: 

this solution is: 

ICI(x) = 5 j%, f(x-x0) ]-G/m (i) 

where N is a normalization constant that insures Q=l, and x0 is a constant. 

One finds 

E=O 

Etotal = 2 J-TX f3 

;i;q= 0 

In a strong coupling limit defined by 

G,h-a 

f -0 

G >> 71~‘~ 

Al/G f = fixed , 

this is clearly a one quark state of much lower energy than the usual free quark. 

There are several aspects of this one dimensional solution which point toward 

more general features of the theory. First, because $$vanishes, the CJ field 

equation is actually independent of $. The above solution for u is the well-known 

rfkinkf’ solution of the spontaneously broken quartic scalar theory in one dimen- 

sion. 4 The dynamics of the scalar field is determined primarily by its self- 

coupling, rather than by its coupling to fermion sources. This will remain true 

in higher dimensions. The width, D, of the transition region of the a field is on 
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the order of the c Compton wavelength, which will always be small compared 
-1 to (1 GeV) . 

Perhaps the most striking feature of the solution is that the Dirac energy is 

small even though the Dirac wave function is very sharply peaked. Intuition 

based on the quantum mechanics of bosons would suggest that the energy should 

be comparable to the dominant Fourier components of the wave function-on the 

order of the bare quark mass. 

This intuition need not be correct because the hamiltonian is linear, rather 

than quadratic, in the quark momentum operator. This point is fully discussed 

inRef. 1. 
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III. THEORY OF BUBBLE STATES 

In higher dimensions, as discovered by BCDWY, the low-lying bound states 

analogous to the one dimensional kink have the form of finite domains within 

which o=-f and outside of which a-i-f. The transition of the o field between these 

values is very sharp and takes place in a thin shell about some closed surface in 

space (Fig. 1). Quarks can be trapped on this domain boundary as they are on 

the kink. We refer to such states as 7fbubbles11. In general, a bubble’s surface 

may vary in time. Thus, the most natural description of a bubble is as a domain 

in space-time whose boundary surface is timelike hypertube (Fig. 2). 

In this section, we discuss a general approximation scheme which affords a 

characterization of all bubble solutions to the Euler-Lagrange equations. Our 

approximate solutions become exact in the infinitely strong coupling limit. The 

approximations we use in this discussion will give physical quantities to lowest 

order in a small parameter which we may denote schematically as f’D/‘R”. Here, 

D is a length on the order of the Compton wavelength of the quark or the meson 

and R is on the order of the smallest radius of curvature of the bubble surface. 

Thus, D/R is the ratio of the thickness of the shell to its size and, as we shall 

see, vanishes in the strong coupling limit. 

Our procedure is as follows: 

(1) We assume that the desired solution to the field equations is a bubble of 

some undetermined shape. The (T field equation may be solved approximately for 

any such configuration. 

(2) We solve the Dirac equation approximately in the presence of this G 

field. 

(3) Finally, we derive a self-consistency condition which guarantees that 

the next order corrections to this approximate solution are, in fact, small. 
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The net result is a reformulation of the Euler-Lagrange equations in terms of a 

particularly convenient set of dynamic variables which characterize the bubble 

surface and quark fields on it. 

We begin with the assumption that the field configuration will be that of a 

bubble (Fig. 2). In n-dimensional Minkowski space, the bubble surface, u(x)=O, 

is an n-l dimensional hypersurface which we can parametrize by n-l “internal 

corrdinate@, uo. 

x’ = RP(uo) 
a=0 ,...,n-2 

N=O ,...,n-1 

Because the fields are expected to have nontrivial space-time dependence only in 

a thin shell about this surface, it is convenient to adopt (noncartesian) coordinates 

(uo, 5) centered about it. 

#(ucr,[ ) = RP(uIy) + [n’“(u”) 

where nP(ucy) = outward unit normal at R’“(u(y). 

The coordinates (uol, [) are well defined only within a distance on the order 

of one radius of curvature away from the surface. We assume that the radii of 

curvature of the bubble surface are always large compared to D. This assump- 

tion has no effect whatsoever on the spectrum of low-lying excitations of the 

theory in the strong coupling limit. By increasing G and A, D may be made 

arbitrarily small without affecting either the spectrum or the surface geometry. 5 

In the new coordinate system, we can write the gradient: 

where 8 ,, ~ is the ‘Vangential” gradient which, though it depends on 5, involves 

only differentiations with respect to the uo, and is tangent as a vector to the 

surface. 
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Consider the field equation for u, Our first approximation to u must be a 

function that satisfies the “largest!’ part of Eq. (2) near the surface. Because 

u makes its transition from -f to +f in a distance of order D, we expect 

while 

aIIu -$f <<&f 

We also anticipate that, in analogy to the one dimensional case, the fermion 

source term will be relatively unimportant in (2)-an assertion which must be 

verified later to insure self-consistency. Thus our first approximation to (2) 

in the neighborhood of the surface is: 

2 
q + 4hu (f2-02) = 0 
at 

This is the same as the equation for the kink of the one dimensional theory. The 

solution of this equation which satisfies the boundary conditions and vanishes at 

[=O is unique: 

u(x) = u(t) = f tanh $5 f[ (4) 

Next, we attempt to solve the Dirac equation (1) in the presence of this u 

field 

We construct an approximate solution valid as G -co, using a technique similar 
n 

to one invented by A. Chodos” to derive boundary conditions for the Dirac field 

in the MIT bag theory. We expect that the Dirac wave functions will fall off 

exponentially away from the surface as -e -Gf 15 I . It is clear that such a 9 is not 

an analytic function of l/G as l/G - 0. However, we can attempt to factor out the 

essential singularity in l/G and then expand its coefficient in l/G. 
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We write: 

Xl!(ua,[) = Ne @‘l&t) (6) 

where F and $ are independent of G, $ and +I are finite near 5 =0 as G --*NJ , 

#+$ $1 is the beginning of an expansion of the field in powers of l/G. -Only the 

properties of the first term will be important, so we use simply the #1 term to 

represent all higher corrections in l/G. 

Substituting this form in the Dirac equation (5), we have 

0 = -G[u([) + i$ a+ 

(7) 

This equation must be satisfied order by order in l/G. The equation for the 

coefficient of G is: 

$=O 
To have a nontrivial solution of this matrix equation for $ requires 

The requirement that F decrease with I < I necessitates that we take the “-” sign 

above. We have 

G 

eGF = 1 -jii $K f5 
63) 

The equation between the terms of order unity in (7) then becomes 

(iBll - irig) zl, - WHl-i4 el = 0 

Multiplying both sides by (l+id) we find 

3 = -k+ 

(9) 

(10) 



- 12 - 

where 

k f i a llP (n’) 

The quantity k depends on the surface geometry alone. In the next section we 

show that k is proportional to the local mean curvature of the surface.- 

At [=O, where the $, term in (9) vanishes we have: 

(iOIl +ki$) $(uo,O) = 0 (11) 

This reduced Dirac equation involves only the behavior of $ on the surface. This 

equation and the equation of constraint, id+=+, completely characterize the quark 

degrees of freedom of a bubble in the strong coupling limit. 

Finally, we must show that the expressions we have obtained do constitute 

an approximate solution to the field equations. We will be led to a further equa- 

tion of motion relating the surface geometry of the bubble and the distribution of 

quark energy-momentum on it. This condition is the generalization of the 

energy minimization principle used by BCDWY to determine the radius of the 

spherically symmetric statis state in Ref. 1. The detailed derivation of this 

condition is straightforward but technically complicated. We simply sketch the 

idea here and present the proof in Appendix B. 

Suppose we have fields u and -(I[ in the neighborhood of a bubble surface, 

such that 

CT([) = f tanh JZi f[ 

where 
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l- * J c cash $% f[] 
-2G/$Ti 

g= q 
-co 

These fields will be approximate solutions to the equations of motion in the 

strong coupling limit only if further corrections to them are of order D/R. In 

Appendix B, these corrections are estimated as follows: The action functional 

is expanded quadratically about the classical fields u and 9. In principle, the 

resulting quadratic functional can be minimized, and shifts in the fields 6u and 

&l? and the corresponding change in the action 6s can be computed. 

Because of the sharp gradients in the fields near the bubble surface, varia- 

tions of the fields relative to this surface correspond to very high frequency 

excitations which do not enter 6s to lowest order in D/R. The only variations 

of the fields which can cause a finite shift, 6S, are those which correspond to a 

motion of the surface and its associated fields as a whole. Only if the action is 

already stationary to order D/R under such variations will the fields a,* be an 

approximate solution to the Euler-Lagrange equations. 

That is 

6 

GRP (Us) 
d4x F(i$-Go) + + f (8~)~ - a(02- f2)2 1 = 0 (13) 

The lagrangian density in (13) is very sharply peaked in the neighborhood 

of the bubble surface. Thus the integral over 5 can be performed to lowest order 

in D/R. 
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We have 

Sb,*] = 1 dx N2 [coshm f<]B2G’m $[$ll-ipi $- - Gf tanh,6 f[ (l-$4$ 

a f2 sech2 fi f{ sech2 fia f[ 1 
2 - 

J 
-2c/na 

z $(i@ll+ki@j - 2A f4 sech4 (mf[) 

x a da C 
ypertube 1 

where da = element of surface “area” on the hypertube and 

co 
CE dt 2A f4 sech4m f[ = $ &%f3 

Thus we are led to a further equation of motion in the form of a ffsurface 

action principle”: 

0 = 6 / da [$(i$,,+ki&# - C] (14) 

where the variation is to be performed over all possible bubble surfaces, RP(uo) . 

We note that the requirement that S be stationary under variations of the 

surface Dirac field I/J leads to the correct surface Dirac equation (11). Thus, 

the dynamics of bubble states in the strong coupling limit can be completely 

described in terms of the geometric variables RP(ua), the surface Dirac field 

z/, and the finite coupling C. The Dirac field obeys the constraint i&= $. The 

equations of motion for $ and R’ may be derived from the surface action 

principle (14). 

These results may be easily understood physically. In the strong coupling 

limit, only a very special class of solutions to the field equations retain low 

energy. The requirement that their energy remain small forces these solutions 

to mimic, locally, the one dimensional kink. The only remaining degrees of 
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freedom are those which describe how such kinks are patched together contin- 

uously in space-time (R’(u~)) and the quark distribution among them ($(u~)). 
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IV. BUBBLE DYNAMICS 

The three equations (8)) (11)) and (14)) completely characterize bubble 

solutions to the BCDWY field theory. In this section, we discuss some general 

properties of solutions to this system. The most natural language for the 

description of bubbles is that of the Riemannian geometry of surfaces. We will 

introduce some basic geometric notations and concepts in the following short 

discussion. The reader is referred to Appendix A and the references contained 

therein for further details. 

The surfaces whose geometry is of interest here are spatially closed n-l 

dimensional timelike hypertubes imbedded in n dimensional Minkowski space. 

Such a surface may be parametrized by n-l “internalfl coordinates’, {u”). 

Surface: 

x! = R’(u@) 

Our notation will be such that cr, p, y, 6 run from 0, . . . , n-2, while p, v, h, o 

run from 0, , . . ,n-1. The choice of internal coordinates is arbitrary. There- 

fore, physical quantities must be represented by tensors that are manifestly 

“covariant” under general coordinate transformations. 

The fundamental tensors characteristic of the surface geometry are as 

follows: 

Tangent Vectors: 

Induced Metric: 



- 17 - 

Outward Unit Normal: 

n’(u”): n-7 a=o, n2= -1 

Coefficients of Curvature: 

h 
QP 

=-n.701,P = n,ol.7p =h Pa 

where we adopt the notation 

A i3A =- 
IQ! ‘&Q! 

for any quantity, A. 

The induced metric tensor g and its inverse g w 
QP 

are used, in the usual 

way, to transform between the covariant and contravariant forms ‘of tensors. 

The metric is “induced” in the following sense: If VP is a tangent vector, 

the length of vc” in Minkowski space can be written in terms of its components as 

T+vp = (-va~)(vP,pp) = gopvav~ = vava 

The invariant element of rrarea” on the surface is 

da = dn-‘um, g= det (ga! 
d 

The n vectors form a local “n-bien” in terms of which any 

Minkowski vector can be expanded: 

(r”!)P(r,)v - nPnv = 7” , the Minkowski metric 

The tensor h 
W’ 

called the “second fundamental form”, describes the local 

curvature of the surface. At any point, the principal values of hap are the 

reciprocal radii of curvature of the surface. Along a timelike direction, the 

reciprocal radius of curvature is proportional to the normal acceleration of the 
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corresponding spatial surface in its local rest frame. The quantity k is then 

Thus k is proportional to the mean curvature of the surface at each point. 

The flat Minkowski space induces natural laws of parallel transport along 

such a surface both for vectors and spinors. For a coordinate shift SuY, these 

are: 

Vectors: 

where the “Christoffel symbol” is: 

Spinors: 

The parallel transport law for spinors is just such that the quantity, $s”+, 

parallel transports as a vector. There exist corresponding “covariant deriva- 

tives” of vectors and of spinors: 

A little algebra gives the following relations, which will be of some use to 

us later: 
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7a!llp = h@n 
V%! = ---& (J7ij-i V”),cu for any Va 

Using this notation, the bubble equations of motion can be rewritten 

(I) ti$=$ 

0 ipI+= 0 

@I) 6 /dn-’ uJGJi [$il&-C]= 0 

The Dirac equation (II) has a clear interpretation as that of a free massless 

fermion confined to a curved surface. The equation of constraint (I) on the 

Dirac field is consistent with the equation of motion (II) by virtue of the relation 

l&d=-yiq. ’ 

The equation of motion arising from the variation over RP(ua) is now 

straightforward to derive. For 

R’ (uLy ) + R’(u~) -I- 6R’ (Us) 

after using (I) and (II), we have 

where 

T”@ E cg@ - Im $ ;PLG$ 

We shall see presently that Top is the canonical energy-momentum tensor of 

the bubble. 

The corresponding equation of motion is 

()=L QP P 

4-m P-- Igl Tap T$,* = T@IIcu$+hcypT n 

The tangential component of this equation, T aPll Q! = 0 follows from (II). This 

simply reflects the fact that an infinitesimal tangential variation of RP(uo) is 
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equivalent to an infinitesimal coordinate transformation-the surface itself is 

unchanged. The normal component of this equation provides the third equation 

of motion in local form: 

Accepting, for the moment, that To!’ is the energy-momentum tensor of 

the theory, this equation has a simple physical interpretation. The contraction 

of spatial components of h 
@ 

and TQP gives the net normal force density exerted 

on the surface due to its stresses. The orthogonal timelike component gives the 

rate of change of normal momentum density. Equation (III) is nothing more 

than Newton’s Second Law on a relativistic hypersurface under stress. 

The charge, momentum, and angular momentum of the bubble may be 

expressed in terms of surface fields. In the original field theory these quanti- 

ties are spatial integrals of densities which are very sharply peaked at the 

bubble surface. As in the case of the action, the integral over the normal 

coordinate, f; , can be performed explicitly, to lowest order in D/R, leaving an 

expression which involves only surface quantities. 

-An easier approach is to derive the conserved charges directly from the 

surface action using Noether’s theorem. If the Lagrangian density is invariant 

under a transformation 

then the current, 

is conserved: 
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The following are the symmetries, currents, and conserved “charges” of 

the bubble: 

Fermion Number: 

Energy Momentum: 

Lore& Rotations: 

6RP = 6~~ vRv 

The integrals above are to be taken over any closed spacelike submanifold 

(“spacelike cut”) of the hypertube (Fig. 2). The differential Ga is the oriented 

element of area defined by: 

ycqAdu 
tcu) = dn-lu (no sum on a) 
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The theory we have developed is manifestly Lorentz invariant and generally 

covariant. Mathematically, this is a trivial consequence of the fact that all 

quantities are represented as tensors under Lorentz transformations and under 

internal coordinate transformations. We note that the spinor Z/J is a spinor only 

in Minkowski space; it is a scalar with respect to surface coordinate transfor- 

mations. One immediate consequence of Lorentz invariance is that static solu- 

tions, which have zero spatial momentum, correspond to particles of mass equal 

to their energy. 

The conserved currents are tangential to the surface at each point. This is 

a physically and mathematically sensible result. If a current had a normal 

component, one would hardly expect that its charge could be conserved on the 

surf ace. Mathematically, only a tangential current can be integrated over a 

spacelike cut to produce a conserved “charge”. The condition which insures 

that the conserved currents are tangential is Eq. (I). This equation of constraint 

on the Dirac field severely restricts the possible fermionic currents that can be 

constructed. Essentially, we have a two-component fermion. From (I) and the 

= 0, we have: 

ijf 5 . . . ynq = 0 if n is even 

ij% Y . . . ia”r,+ = 0 if n is odd 

Thus (I) guarantees that the usual fermion current agrees with the Noether cur- 

rent derived above: 

In contrast, the “axial current” $py5$ is purely normal: 

tir,iii = $(-hf) r,$= W7f5)+~ 
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This axial current cannot be “conserved” in any sense in this theory, nor can a 

Lorentz and coordinate invariant integral over it even be defined. Every cur- 

rent constructed from the Dirac field can be expressed in terms of the vector 

and pseudoscalar currents. The expressions for the standard currents are given 

in Table I. We note that the scalar current vanishes, so that the lagrangian 

cannot be modified in such a way as to give surface quarks an effective mass. 

The generalization of the bubble equations to the case of several independent 

quark species is completely straightforward. Each quark field appears in the 

action separately, 

s= /du m ~$,ib#,-C 
a 

Therefore, each quark field obeys the equations of motion (I) and (II), while the 

fermion contribution to the stress tensor in (III) is the sum over all species. 

In the bubble model of hadrons proposed by BCDWY, strong color gauge 

interactions are introduced which serve to unbind all states which are not singlets 

under SU(3)color * The energy of color singlet states remains unmodified, at 

least at the semiclassical level. Thus, the BCDWY scheme is equivalent, for 

our purposes, to a bubble theory of three independent quarks of different colors 

with the additional selection rule that only color singlet bubble states are allowed. 

Equations (I), (II), and (III) give a complete classical description of the 

dynamics of single bubble states of the BCDWY field theory in the strong coupling 

limit. These equations involve only the surface geometry and surface quark 

fields, and can be derived from the action principle (14) with the constraint (I). 

The bubble theory could have been formulated directly in terms of surface quan- 

tities, without reference to the BCDWY field theory. Such a canonical bubble 

theory shares many qualitative features with the Nambu string and MIT bag. 
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In four spacetime dimensions, the string, bubble, and bag theories consider 

respectively one, two, or three dimensional extended objects whose geometric 

degrees of freedom contribute to the action in proportion to the invariant 

f%olume*f. Unlike the original Nambu string, the bubble theory describes an 

extended object upon which quarks are confined. 6 Because the imbedding of the 

bubble surface in spacetime is nontrivial, the surface is a dynamic object car- 

rying energy momentum in contrast to the geometric degrees of freedom of the 

MIT bag. 

Which, if any, of these theories may best serve to describe hadronic struc- 

ture is an important question which will not be finally resolved here. 
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V. STATIC BUBBLE STATES 

In this section and the next, we consider several exact and approximate 

solutions to the bubble equations (I), (II), and (III). Before examining these solu- 

tions in detail, it is important to recognize the relevance such solutions to a 

model of hadron structure based on the bubble. The semi-classical theory 

accounts approximately for the quantum nature of the quarks. The bubble sur- 

face motion is treated entirely classically. Classical surface motion is incon- 

sistent in principle with quantized Dirac fields. In practice, we will see that the 

semi-classical theory has a continuous spectrum of surface excitations and that, 

although the theory is Poinca& invariant, the states of the theory do not trans- 

form as irreducible “particle” representations of the Poincare group. 

The bubble model of hadrons is developed from a theory of SU(3)color 

quarks trapped in bubbles .-Our goal in discussing solutions to the bubble equa- 

tions is not so much to estimate hadron masses in the theory as it is to investi- 

gate and characterize the physical properties of bubbles. We will, therefore, 

consider, for the most part, only bubbles containing a single quark species. 

This section is devoted to the analysis of static solutions to the bubble equa- 

tions in two and three space dimensions. We find that all static solutions in two 

space dimensions can be found. In two dimensions, the energy of bubble states 

is independent of bubble shape. We also easily reproduce the spherical three 

dimensional solution obtained in Ref. 1 by BCDWY. We consider the problem of 

nonspherical static bubbles in three dimensions. In such states, the quark is 

orbitally excited though surface remains static. It is found that the surface is 

highly nonspherical even for the lowest quark orbital excitations in three dimen- 

sions. This is a reflection of a most important general property of bubbles- 

they are extremely l’softf’ to deformations. 
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In the case of a static surface, the geometric formalism introduced in 

Section IV simplifies considerably. Taking internal coordinates u”= t, 

u1 u2 , ,... un-2 we have 

R’(t, ua) = (t, s(ua)) ; { = <l,~) , -rl* = (O,Ta) - 

, gabs a -7 as;’ b 

nP = (0, fi(u”)) 

h 
’ 

k-‘ha -Z a 

Here, a,b,c,d ,... are spacelike internal coordinate indices (1, . . . , n-2)) while 

i,j,k,l,... are indices in Euclidean space (1, . . . ,n-1). gab is the induced metric 

tensor on the spatial surface %&ua) and will be used to raise and lower indices on 

spatial tensors. 

By virtue of Eq. (I) we can write the Dirac field in terms of a two compo- 

nent spinor, x : 

-iEt 

where we have used the Dirac representation of the gamma matrices. In terms 

of x , the Dirac equation is 

(II’) HX = EX 

with Hamiltonian 

H=k-iT.(;l*a,,) 
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The conserved currents of the theory can be written in terms of x as follows: 

Jo = x’x , J" = x+%(k?)x 

T O” = C + EX+X 

T Oa = Im (x+a”x) + 2 L hab Jb 

Tao ZZ- EJa 

T ab = -cg ab + $ hab x+x + Im z. (k?) abx 

The normalization of x is 

Q=/du m x+x = 1 

and the total energy is _ 

U= [du m Too = E+CA 

The requirement that the action (14) be stationary is equivalent to the condi- 

tion that the total energy, U, be stationary under all variations of the spatial 

surface: 

6 

SR’(uQ) 
u=o 

or 

(IW 2ck = 4 (h”” hab) x+x + hab Im x”T. (nhT;a) abx 

The system of coupled equations (II’) and (III’) is very difficult to solve 

exactly or approximately in three dimensions. Before attacking the three dimen- 

sional problem it is instructive to consider the two dimensional case, where an 

exact general solution is available. 

In two space dimensions, the bubble is a closed curve in the x-y plane (Fig. 3). 

We can choose the single parameter describing this curve as its length, I. 

3 = ‘ii(Q) 
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A & 
e= - = unit tangent vector de 

Ah * 

nAe = z 

The curvature is then 

where Q, is the angle of the normal with respect to some fixed direction in the 

plane (Fig. 3). 

The Dirac equation is 

which may be integrated immediately to yield 

ia 
x(Q) = e QE C -; G(Q)+ i+(O) 1 x(O) 

x must be single valued, so we have 

x(L) = x(O) where L = total length 

or 

2n7r = EL -i[+(L)-Q(O)] =EL -n 

where n is an integer. The Dirac energy is 

and the normalized Dirac wave function can be written 

Ae 
io3 EQ ( - + +tQJ) 

x = JL 
U 

where u is a fixed unit spinor. 

The Dirac energy depends only on the perimeter of the bubble, L, not on its 

shape. There are paired positive and negative energy levels of the same magni- 

tude. There is no zero energy mode. These results can be readily understood 
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geometrically. A one dimensional manifold has no intrinsic curvature; from the 

point of view of a quark trapped on a curve, the geometry in the neighborhood of 

any one point is equivalent to the geometry in the neighborhood of any other point. 

This leads to a 3ranslatiorP invariance along the curve. For spinors, this c 

translation is realized by parallel transport, under which the spinor changes only 

in phase. The Dirac Hamiltonian is just the generator of such translations. Be- 

cause the quark has spin l/2, transport around a closed path induces a phase 

factor -1, which must be compensated by the factor e 
iG3EL 

. Hence, the energy can- 

not vanish. 

We interpret negative energy quark states as positive energy antiquarks. 

The local bubble- energy is, - then 

UZ2nlml 
L + CL 

Minimizing over L, we have 

L = 2nlml [ 1 l/2 

C 

U = (8nC) l/2 mm 

It is straightforward to check that, if L is chosen to minimize U as above, Eq. 

(III’) is satisfied at each point on the bubble surface. 

The two dimensional bubble is then extremely soft. Static bubble states 

occur only with perimeters fixed by the Dirac quantum number m; but bubbles of 

all shapes with this perimeter are degenerate classically. It is not to be expected 

that a fully quantized theory will have such an infinite degeneracy. 7 The reflec- 

tion of the bubble’s softness there lies in the large quantum fluctuations of the 

surface. We shall see that the three dimensional bubble is also soft, but not so 

soft that all shapes are degenerate. 
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We note that there is one conserved quantity which does depend on the bubble 

shape. This is the angular momentum, J3, 

J3 zz Ml2 = $ &l[R1To(2) _,z,"(ljl 

where (1) and (2) refer to a spatial index, i. 

TOI = Im ic3(E-k) 2 1 JL 
+ i (2k) u’D3u 

E =-<u > L 3 , where <o >=usb- u 3 3 

* Then 

J3 = i; E <a3> $ dQ @A;], = $ <a3>A 

where A is the total area of- the bubble, and, of course, depends on its shape. 

Using the expression for E, we can rewrite this result: 

J3 = Iml <03> 

or 

J3 = (874 

is the ratio of the area of the bubble to the maximum area 

it could have, given perimeter L. The curve of maximum area with fixed per- 

imeter is unique-a circle. Thus, the maximum possible angular momentum of 

a state of energy U is 

Thus the leading Regge trajectory of the two dimensional model is nondegenerate 

and linear in (mass):! with slope -1 (87rC) . 
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Unfortunately, the static bubble equations in three dimensions are not so 

easily solved. The only known exact solution is a spherically symmetric one 

corresponding to the approximate solution of the field equations found by BCDWY. 

It is simply a very difficult technical problem to simultaneously solve the Dirac 

equation and satisfy the condition that the total energy be minimal under all local 

variations of the surface. In principle, however, one can find all solutions to 

the static equations as follows: (1) Solve the Dirac equation exactly on a general 

closed spatial surface, i?(ua) . Because the surface is compact, the Dirac spec- 

trum is discrete and the energy levels can be labelled by two discrete parameters, 

ml, m2 such that the Dirac energy is a continuous functional of the surface 

variables: E f,a 
1 1 w ) - 

m1m2 
(2) Choose which levels are to be occupied by quarks 

or antiquarks. (3) Minimize the total energy functional, 

’ ptua;l = “[ficua,l + oc&ied Emlm2 [R(ua)l 
levels 

in the space of functions Z(u”). 

Such a procedure is much too difficult to be carried out in practice. It sug- 

gests, however, a practical scheme for finding the energy levels approximately. 

Namely, we attempt to carry out the above procedure, not on a general surface, 

but over a class of surfaces sufficiently limited that the Dirac equation is tract- 

able. We will choose a form for the bubble surface that depends on several real 

parameters, solve for the Dirac energy as a function of these parameters, then 

minimize the total energy over the parameters that define the surface. Because 

the total energy functional is positive definite, such a variational estimate of the 

energy is an upper bound on the energy of the lowest bubble state with the assumed 

Dirac quantum numbers ml, m2. The accuracy of such a variational estimate 

depends entirely on whether the trial surfaces we consider are sufficiently %ear7’ 
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the true solution. This in turn depends, as a practical matter, on how well we 

understand the character of the distortions of the excited states of the theory. 

We begin by considering the simplest possible trial surface-a sphere. We 

rederive the BCDWY solution of the static Euler Lagrange equations, now 

expressed in the geometric language of bubble theory. Let the sphere have 

radius R and be coordinated by the usual polar angles 0, Cp. Then we have 

g ab =R ii = &, $) 

The two component Dirac Hamiltonian is 

Hz: -ia. &AT,,) = i (1 +X-F) 

Its normalized eigenfunctions and eigenvalues are 

where $Q 
Jm 

is the Pauli wave function of spin j, m and orbital angular momentum 

8. 

r j++ 

R if j = Q+i 

E= 

1 

I 

j++ 
-- 

R 
if j=Q-$ 

We interpret states with j =Q+1/2 as quarks, those with j =Q-l/2 as antiquarks. 

The total energy is: 

u= 
j+f 
R -I- C 4rR2 
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Minimizing over the parameter R, we have 

R = (8nC) -‘I3 (j +fjl/3_RO(j +$)1’3 

This gives the best approximation to the energy of single quark states with the 

quantum numbers (j, m) over spherical surfaces. 

The local equation for the minimization of the total energy is 

0 = -h 
QP 

Tap = habTab E F 

F = outward normal force density 

For the spherical quark state (j;m), 

This vanishes locally only if j = l/2 so that I $irn I 2 = & is independent of 8 , $J. 

For j = l/2, the solution obtained by varying over spherical trial surfaces is 

exact. In the bubble with j = l/2, the net surface tension vanishes locally. 

Physically, this reflects the exact balance of the uniform surface tension C and 

the uniform fermi pressure due to the quark field. 

For j > l/2, the surface tension and fermi pressure balance only on the 

average; there is a tension induced normal force that will tend to distort the sur- 

face from sphericity. From (l?‘), we see that this force tends to push the surface 

out where the quark density is high, and allows the surface to collapse where the 

quark density is low (Fig. 4). A particularly simple example is the case of a 

quark of maximal z-component angular momentum, m = j =Q + l/2. The normal 
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F = 2[$$]1'3 C[""$$~'!! (sin8)2e-1] 

This is a force which is axially symmetric and has a single peak in the equatorial 

plane. It will tend to stretch the sphere at the equator and depress it at the poles. 

The force densities associated with quark states with I m I < j have one or more 

azimuthal nodes, and tend to distort the sphere to rather more complicated 

shapes. 

The angular dependence of these force densities on the sphere suggests the 

shapes we should use for trial surfaces in a variational estimate of excited state 

energies. We note that, because the force densities differ for spherical quark 

states of the same j but different m, the surfaces which actually minimize the 

total energy will presumably be of different shapes. Thus, it appears, the semi- 

classical spectrum will not necessarily consist of (2j + 1)-fold degenerate levels 

corresponding to particle states of the same j but varying m. This result, though 

disturbing, is not terribly surprising. It is a consequence of the semi-classical 

treatment of the surface degrees of freedom. In a full quantum theory, the sur- 

faces-corresponding to states of the same j but different m will, because their 

shapes differ, have slightly different energies associated with their quantum fluc- 

tuations. This relative shift should precisely cancel the sem-classical splitting, 

and restore rotational invariance to the spectrum. 

We will sidestep this problem by considering only quark states corresponding 

to Im I= j, and interpreting the resulting energies as estimates of the energy of a 

multiplet of spin j. We can adduce several arguments for this interpretation. 

The surfaces corresponding to Im I = j states are simple and smooth. Those 

corresponding to other values of m will be complicated and “bumpy. l1 As a 
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practical matter, it is extremely difficult to do the required variational calcula- 

tions for surfaces of very simplicated shapes. Further, because these surfaces 

are “bumpy, l1 we suspect the effects of their quantum fluctuations to be relatively 

more important than they are for smoother surfaces. Thus, the most-relatively 

consistent way of neglecting quantum fluctuations is to estimate the energies 

using states which have smooth surfaces. Finally, as we shall see, the effects 

of distortions of static surfaces are numerically small for the lowlying excited 

states, In no case will our variational estimate of the energy of single quark 

bubbles be more than 10% lower than the value estimated from the sphere. Thus, 

whatever approximation we make, we commit no gross numerical error. 

As a simple- trial surface that is smooth and flattened at the poles, consider 

the oblate spheroid: 

where 

fi(e,$) =R sin8 COSC+, sin8 sin$, \;_d2 I cos8 I 

This surface depends on two parameters: R which determines its overall size, 

and d which determines shape. For d=O, the surface is a sphere. As d increases 

from zero, the spheroid becomes flatter and flatter, until at d=l, it is an infinitely 

thin “pancake. I’ The area of the spheroid is 

l-d2 = Qn$$ 47rR2 1 
The Hamiltonian of the surface 

H= 

R 

cot 0 (cos $ol + sin $a,) - a3 
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Because the surface is axially symmetric, the z-component of angular mo- 

mentum is conserved. 

[ J H, J3 =0 where L.1, 
J3 = -i a@ 2 3 

Thus, we can choose Dirac wave functions which are eigenstates of J3: 

The remaining diagonalization of the Hamiltonian must be done numerically. 

The level on the spheroid which corresponds to j=m on the sphere is simply the 

lowest positive energy state in the sector J3=m. We compute the total energy, 

U, of a spheroidal bubble occupied by a single quark of spin m, and minimize it 

over R at fixed d. The ratio of this energy to the corresponding energy estimate 

on the sphere , 

is plotted as a function of d for m=3/2 and m=5/2 in Fig. 5. 

We see immediately that, in both cases, the total energy decreases mono- 

tonically as a function of d. Indeed, these calculations show that the energy of 

the spheroid is lowest in the limit where it becomes a completely flattened disk. 

Despite the fact that such a disk has very large curvature at its edge, the Dirac 

energy remains small. This result is actually quite general-the static Dirac 

equation can be solved on surfaces with sharp edges. In the limit that an edge 

becomes infinitely sharp, the Dirac equation gives a boundary condition across 

the edge: 

x(2) = e 
-+AT21.;; 

x(l) 

where AT2, is the vector rotation angle of the normal at its discontinuity across 

the edge between surfaces “1” and rr2f’ (Fig. 6). 
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To oblate spheroid is not an adequate trial surface. It takes into account the 

tendency of the surface to spread at the equator, but does not allow for sufficient 

depression at the poles. We note, however, that although the energy decreases 

uniformly as the spheroid flattens, the numerical size of the decrease-is rather 

small. Even the completely flattened disk has energy down by less than 10% from 

that estimated on the sphere. 

We want to find a trial surface which is both spread at the equator and dips 

inward at the poles. We could begin to consider surfaces that are defined by 

three or more parameters, but it is computationally more straightforward to 

continue to work with two parameter surfaces as long as possible. A simple two 

parameter surface in which the region near the poles is completely depressed is 

the torus (Fig. 7). This surface may be regarded as one where the poles have 

dipped in so far as to create a hole through the center. 

We coordinate the torus as follows: 

X(0,@) =b[(y+sin8)cos@, (y+sine)sin+, COST] 

where 

b is the radius of the circular vertical cross sections of the torus; rb is the radius 

of the torus in the x-y plane. The area of the torus is 

a = 4gyk2 

The surface Hamiltonian is 

r-l 1 1 $y+sin0 
H’lT i 

Aa * a 
y+sine - CF.+--+ ’ ae y+sin0 0.9~ 

J 
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where 

$ = (-sin 4, cos $, 0) 

0 = (cos 6 cos $, cos 6 sin $, -sin 0) 

As before, J3= -i 1 +L G dcp 2 3 commutes with H, and we can work in a se&or of 

definite J3 : J3=m. The state corresponding to j=m on the sphere is again the 

lowest positive energy state in this sector. 

This Hamiltonian must also be diagonalized numerically. We compute the 

total energy, U, of single quark states with m=3/2 and m=5/2, and minimize over 

b at fixed y. The ratio 

pm@) =. 
Urn(Y) 

3 1 2’3 
q “+-z ( i 

is plotted versus y in Fig. 8. The minima of the total energy in y are given in 

Table II. The energy estimate of the m=5/2 state is lower than the corresponding 

estimate on a flattened disk and suggests that single quark bubbles of spin 5/2 

and larger will have a toroidal shape. The energy estimate for the spin 3/2 bubble 

on the torus is larger than the estimate on the flattened disk. Presumably, the 

m=3/2 state is extremely depressed at the poles but remains connected. 

Despite the radical differences in their shape and topology, we see that the 

energies of low-lying single quark states on spheres and on toruses are not very 

different. We interpret this as a reflection of the l’softness” of the three dimen- 

sional bubble. This three dimensional result is analogous to the complete shape 

degeneracy of the two dimensional bubble. In order to estimate static energies 

more accurately, we should consider trial surfaces defined by more than two 

adjustable parameters. As a practical matter, as long as we are interested in 

only the energies of low-lying states, the computational difficulties involved in 
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such calculations are not justified by the results we would hope to obtain. For 

single quark states of spin less than 5/2, we have seen that the correction to the 

energy due to distortions is less than 10%. For multiquark bubbles where one 

or more quarks remain in the lowest state, the effects are still smaller. Three 

quarks of spin 5/2 could combine to form baryonic states of maximum spin 15/2. 

There are not yet observed hadrons of such high spin, nor are the experimental 

masses of the higher resonances known to within 10%. We have neglected the 

effects of SU(3) breaking, which must be sizeable in the higher multiplets. 

Further, as we shall see in the case of the radial mode, quantum fluctuations 

may be expected to give corrections to the energy levels at least as large as those 

due to static distortions of the bubble shape. 
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VI. THE RADIAL MODE 

So far, we have not discussed either semi-classical states in which the 

bubble surface is nontrivially time dependent or the effects of quantum fluctua- 

tions of the surface on the spectrum. It is quite difficult to find nonst@ic solu- 

tions to the bubble equations (I), (II), and (III). No general prescription for 

quantizing the surface motion exists. 

In this section, we hope to shed some light on these problems by studying 

the one class of nonstatic bubbles in three dimensions for which an exact semi- 

classical solution has been found. These are spherically symmetric bubbles 

with a time dependent ratius-the “breathing modes.” We first exhibit the exact 

solutions of the semi-classical equations. Then we “quantize” the’set of all such 

modes using the WKH approximation. We will see that the llsoftness” of the 

bubble is reflected dynamically in the large size of quantum fluctuations of its 

surface. 

We begin with the semi-classical time dependent equations of motion. Let 

us assume that there is a solution of these equations whose surface is a sphere 

of time dependent radius R(t): 

R’(t) 6, $) = tt , R(t) Ge, $)) 
Defining 

. 
R = $ = tanh w(t) 

we have 
1 cosh2 0 0 w 

gctp = 

\ 

0 -R2 0 

0 0 -R2 sin2 6 
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&g= R2 sine 
cash w 

np = (sinh w, cash CA;) 

cash wci, 0 0 

0 cash w R 0 

0 0 - C, cash 
R 

We take a form for the Dirac field that has ‘lL=O” and automatically satisfies 

where F(t) is some two component spinor. The Dirac equation becomes: 

k(t) = - k 
cosh2 w 

(i+sinh w) F(0) 

whose integral is t dt k(i+ sinh w) 
2 

F(t) = e ‘Osh w F(0) 

L 

I 
L 

-i dt k 

=R(O)JG e ‘0 ‘Osh 
2 

R(t) m) 
cd F(0) 

The normalization condition, 

allows the wave function to be written 

t 
-i dt l+l. 

1 cash o R z w [ 1 
F(t) = e U 

4aR(t)2 cash w(t) 

where u is a fixed two component unit spinor. 
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We see that the Dirac equation is solvable exactly for arbitrary R(t). Equa- 

tion (III) will determine which of these surfaces are actually allowed dynamical 

states. Putting the solution for tc) into Eq. (III), we have 

0 = l-Rcj- - 

This equation can be more simply expressed in resealed variables 

R. = (87rC)-1’3 

t = rRO 

w = PWO 

we have: 

do- l- -- 
& p(l+;;3) ' %=p=tanhw 

this can be integrated once to give 

c=“fi ($+ip”) 
'P 

where E is a constant. A straightforward integration of the energy density shows 

that the total energy is 
3 

U=ET- 

Thus E is the total energy of the radial mode measured in units of the static 

ground state energy. 

If e=l, we recover the static solution, p=l, b=O. For ~1, there are no 

solutions. For each 01, there exists a unique solution in which p(7) is periodic, 

with turning points determined by 

CA+ 
3P 
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The equation for p is similar to that for a relativistic particle in a scalar poten- 

tial 

shown in Fig. 9. 

We note that the total energy is continuous. As mentioned in Section V, this 

is an effect due to the classical treatment of the surface degrees of freedom. In 

order to get some idea of the level structure of the radial modes, we “quantize” 

t 
this excitation in the WKB approximation. 

We treat the equation for p as if it were, indeed, the equation of motion of a 

relativistic particle in a potential. We take the expression for the,total energy 

(18) to be the Hamiltonian 

H= & (g+ip”i 
1-p 

The most general Lagrangian from which this H could have been derived is 

Ltp,id = - 

where f(p) is some undetermined function. The canonical momentum conjugate to 

p is 

P=* [$+ip2]+f@) 

1-b 

The WKB approximation gives the discrete energy levels from the quantization 

condition 

2n(n+i) = frbit Pdp = 2 

This equation can be easily solved numerically. The first few values of en and 

the corresponding turning points are given in Table III. 
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In the lowest state, n=O, we see that the effects of surface zero-point motion 

are very large. The radius fluctuates by a factor of two about its static value. 

The energy in the surface excitation is 60% of the static ground state energy. 

This is a quite dramatic illustration of the softness of the bubble dynamically and 

suggests that if fluctuations are properly accounted for, the bubble will be quite 

smeared out in space. 

__ 

The n=l state is the lowest radial excitation of the bubble. Its energy is a 

factor el/eO = 1.60 higher than that of the ground state. It is easy to convince 

oneself that, in the case where several quarks occupy the lowest level in the 

bubble, all the energies of the radial mode simply rescale. Thus, the model 

predicts radial excitations of baryons and mesons with energy 1.6 times higher 

than the ground state energies. 

No radially excited meson candidates have been confirmed experimentally. 

There is, however, a presumed radial excitation of the nucleon-the Roper 

resonance-of mass 1470 MeV. We note that 1470/940 = 1.56. In the face of our 

inability to derive solid numerical predictions of excited state masses, this is a 

pleasing bit of numerology. 
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. 

VII. SUMMARY AND CONCLUSIONS 

The principal result of this paper is that the low-lying bound states of the 

semi-classical BCDWY field theory can be completely characterized in the 

infinitely strong coupling limit by the geometric theory of bubbles. The non- 

trivial field degrees of freedom describing such states are equivalent to the geo- 

metric variables defining the bubble surface and a set of quark fields defined on 

it. 

The Euler-Lagrange equations of the field theory go over to the equations of 

bubble dynamics which can be as well derived from the surface action principle 

(14) with the constraint (I). The theory of bubbles is classically Poincare/ invari- 

ant. The conserved charges derived from the action principle agree, in the 

strong coupling limit, with those of the original field theory. 

We have examined several exact and approximate solutions to the semi- 

classical bubble equations. The most important physical property of bubbles 

with emerge from this work is their llsoftness. l7 This property is reflected for 

static bubbles in the small cost in energy for large deformations of the bubble 

shape. Bubbles in two space dimensions are degenerate over all shapes of given 

perimeter. Even the lowest excited static bubbles in three dimensions are highly 

distorted from spericity. The softness of the bubble is reflected dynamically in 

the large size of the estimated quantum fluctuations of the bubble surface as seen 

in the example of the radial mode. 

In this paper, we have not seriously attempted to compute the hadronic spec- 

trum in the bubble model and to confront experiment. The principle obstacle to 

such a procedure is the absence of a fully quantized theory of the bubble. The 

indication from the WKB quantization of the radial mode is that the inclusion of 

quantum fluctuations is essential to the calculation of masses as functions of the 
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coupling C. It may be hoped that the static semi-classical spectrum gives an 

indication of the relative levels of excited states, but there is presently no com- 

pelling argument that such is the case. 

In principle, there are two routes to a quantum theory of the bubbie. One is 

to go back to the quantum field theory defined by the BCDWY lagrangian and look 

for low-lying states in the strong coupling limit, 8 The other is to begin with the 

classical bubble theory we have developed and attempt to quantize it. At this 

moment, neither approach has been sufficiently successful to allow for systematic 

calculation of the quantum spectrum of bubble states in three dimensions. Indeed, 

it is not immediately evident that the quantization scheme of the classical bubble 

theory which is free of anomalies exists, or whether, if it exists, it is equivalent 

to the strong coupling limit of the quantum BCDWY field theory. 

We remark that the explicit quantization of the bubble theory in two space- 

one time dimension is possible. In this context, some of the problems related to 

the more general questions of quantization can be intelligently discussed. 
7 

Accepting for the moment that a quantum theory of bubbles can be constructed, 

the softness which we have seen is characteristic of the semi-classical theory has 

important implications e The softness of the bubble suggests that quantum fluctua- 

tions of the surface will be large and have the effect of smearing the sharp clas- 

sical energy-momentum and charge distributions of the classical theory over a 

finite volume of space. One might expect that, unlike the form factor of a shell 

of charge, the form factors of hadronic states will be smoothly falling functions 

of q2. The softness of the bubble affords a qualitative explanation of how scaling 

might occur in the bubble model. A quark is free to move tangentially to the 

bubble surface. Because the bubble surface is easily deformed, a quark is nearly 

free to move normal to the bubble surface by dragging that surface along with it. 
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Thus it need not be surprising if, at large momentum transfers, a quark trapped 

in a bubble appears to be a free particle. 

It is to be hoped that such simple intuitive pictures of hadron dynamics in 

this model can be supported by calculations with which one might hope to confront 

experiment. 
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APPENDIX A 

The description of the bubble surface developed in Section IV characterizes 

its geometry both in terms of W&rinsicll geometry objects (eg. , g 
OP’ 

ha! 
d 

existing in the local tangent spaces to the coordinate manifold U= {uoi,_ and in 

terms of the imbedding of the surface in Minkowski space, 71S’Jnrr. In this appendix, 

we briefly discuss some aspects of the relation of these two points of view. The 

discussion is quite 9,10,11 standard and is included for completeness only. 

Locally, the connection between intrinsic geometric quantities and 

Minkowski space is described by po and nP. TL is a mixed tensor-it transforms 

as a vector in U and independently as a vector in Q. nP is a scalar in U and a 

vector in a. - 

The “completenessff relation for the local basis T”,,n” of a 

allows us to transform between the intrinsic and external description of geometric 

objects. 

As a Rimannian manifold, the surface is characterized by gap. It’s im- 

bedding in fi is characterized in the intrinsic description by the coefficients of 

curvature, h 
QP. 

The Gauss-Codazzi theorem states the relation between the 

fundamental forms g 
aP’ 

ho,@ and the imbedding of the surface in &: 

There exists a unique (up to Lorentz transformations) surface in 

112 whose induced metric is g 
QP 

and whose coefficients of curvature are 

h 
QP 

if and only if 

R 
QprS 

=h h 
QT PS - ha6hpy (A. 2) 

hc@lly 
=h 

aY IIP 
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where R 
QPYS 

is the Riemann curvature tensor defined from g 
QP 

and 

its derivatives. 

In principle, the bubble theory can be discussed purely in terms of tensors in 

U as long as we append the Gauss-Codazzi equations to the equations of motion. 

In this approach, the geometric variables are g up, hoLP rather than RP(uo). 

Such an approach is extremely difficult in practice, as the equations are highly 

nonlinear. 

The parallel transport laws of spinors and vectors introduced in Section IV 

are quite natural when viewed from Minkowski space. If VP is a tangent vector 

field 

VP = (v.PjT~ (A. 3) 

Then the natural parallel transport of ? is to slide v(-I along the surface while 

preserving its length: for , 

a! o! 
U -2+&l , (A. 4) 

Then 

VI-1 - VP + nP(&r*V) 

no! = &-ff.v+7a!.g7 

which is identical to the usual parallel transport on a Riemanman manifold. 

The spinor fields which we consider are spinors only in Q; they are scalars 

in U. The parallel transport law we have assumed for spinors is 

np-yb (A. 5) 

Under parallel transport, a spinor field is rotated by the same Lorentz rotation 

suffered by a tangent vector transported along the same path. 
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Finally, we note the form of conservation laws in a curved space. If Ka! is 

a vector field, KQ! is locally conserved if 

O=KQ!lla!=Ka!Icx+ (m K”) Ia! . 

Then the charge defined by 

Q=/ 
spacelike 

dCo, m I?- 

cut 

is conserved. A tensor field WQp satisfying W”PII p= 0 does not in general, -’ 

lead to a conserved vector charge. 
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APPENDIX B 

In this appendix, we present a more detailed discussion of fields u. and 

qo, constructed in Section II, are good approximate solutions to the Euler- 

Lagrange equations (1) and (2) in the strong coupling limit. w 

The proof proceeds along the following lines. 

Solutions to the Euler-Lagrange equations are local extrema of the 

action functional in function space. If co, 3?. are a good approximate solution, 

there will be a true extremum of the action in the neighborhood of go, eo. In 

this neighborhood, we may expand the action functional to second order in 

deviations about a0 , Q o : 

s~o+-6u, PO+&] = s[oo, *o] + 6s 

+ J dx ; (mq2 - 2+a; - f2) (sa)2 

where 

f SB (i8 - Gao) 6% - G&J 

a) 

and 

b) n = (iti- Gao)‘Eo 

(B. 1) 

The deviation of the true solution from cro, *o may be estimated as the 

position of the extremum of the quadratically expanded functional (6.1) if 6a 

and W are, indeed, small. The equations that must be satisfied by 6a and 6Q 
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are simply the first order corrections to the Euler-Lagrange equations: 

a) [Ia2+4h(30i-f2fl ga + G[Go6Y+ s$B~] = J 
(B. 3) 

b) (idl-Goo) 6+ - GAUGE= -77 
- 

for which the shift in the action is 

6S = + /dx [Jfia + <6?& + &ST] P.4) 

If go, PO were exact solutions, J and n would vanish and therefore 60, 6P would 

also vanish. 

We prove the following theorem: 

If a,(x), *,(x) are chosen to satisfy 

a) ao(x)=ftanh $Z ft 

1 
-G/ J?!i b) f,$ $,(8 5) 

9 ibjo = $0 

d) (ifill + kiti) e. = o 
03.5) 

for spacetime coordinates #(uo, [) = R’l(uo) + [nP about some bubble, then the 

corrections 6a, 6Q computed (B. 3) are ‘lsmallVt in the sense that they induce a 

correction 6S which vanishes in the strong coupling limit. 

The size of 6S may be estimated by a detailed examination of the equations 

(B .3) and (B, 4). We will classify the behavior of quantities in the strong 

coupling limit by giving their power dependence in f. For example, we write 

h = (72) fs6 N fm6 as f --, 0 . 
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For convenience, we take G - fi ; this choice simplifies the discussion, but 

is not essential. 

The “currents*, J,q computed from (B. 2) and (B. 5) are 

a) J(x) = 2j%i f2[k+ 6(t)] sech2( $% fl ) - 

b) 

+ W2) (B. 6) 

Both J and n are nonzero only in a thin shell I< I 5 D - f2. Inside this region, 

a) J-f b) 77-1 (B-7) 

The leading terms in J and n arise from the crossterms between normal and 

tangential derivatives in the field equations. If the normal direction were the 

only one, the solution to the equations of motion would be exact. 

Because J and n cutoff sharply in 6, we need only determine 60 and I%? in 

the thin shell 15 I 5 D in order to estimate 6s. If the integral (B .4) for 6S is to 

remain nonzero as f - 0, we must have, in the thin shell, 

b) s+ 2 1 
f2 

P-8) 

That is, in the SCL, the leading terms in 6~ and Szj must be of orders l/f and 

l/f2 for 6S to be nonvanishing. Below we show that no such leading terms arise. 

The shifts do, 6* are not uniquely determined by the equations (B. 3) alone. 

To any given solution of (B. 3) a solution to the corresponding homogeneous 

equations ((B. 3) with J and n set to zero) can be added. This ambiguity corre- 

sponds to the possible translations along the surface in function space of all 

exact solutions to the Euler-Lagrange equations. Here we are interested not 

in such translations but rather in those solutions to (B. 3) which vanish as 

J ‘77 - 0. We may pick out such solutions by imposing the boundary condition 

that AU, 6k - 0 where J and n - 0. That is, 60, 6$ vanish rapidly for It I > D. 
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Now, consider the behavior of the terms in (B.3) as f -0. We note that, by 

the boundary conditions and the fact that J,n are of width l/h 1’2f, a/at N h l/2 f 

on 6a or 6* while 8/8uoL N finite. 

We have for the various terms which arise in (B.4a): 

4A 3U2 
.i 1 0- f2 &a- 

f5 

while 

It is straight-forward to show that the terms of order 1 1 

if the leading terms Go(uo, [), S*(uo,[ ) satisfy 
f7 

1 cancel only ’ 7’ f3 

Go&P = 0 or ifiS* = 6k (B-8) 

GWC 0 = p,@3 e 
-2k{ 

+(f) (B* 9) 

where p,(uo) is finite in the SCL and is determined by the details of the l/f terms 

on both sides of (B. 3a). 

Similarly, using (B. 9)) the consistency of the Dirac equation as f -. 0 

requires: 

6*l leading 
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where S$l(uo, 5) and its derivatives with respect to 5 are finite as f - 0. “$1 is 

determined by the detailed form of n . 

We may now put (B. 9) and (6.10) back into the equation (B.4) for 6S, keeping 

only the terms which give finite contributions to 6S in the strong coupling limit. 

1 z J dx J&r M + J J da q 4Af2k sech4m p,(u”) 

= $ /da 2ck o,(u”) (B. 11) 

2G -- 

= 
.t ha @ N2[coshfi f[] fi 5 

x Im (B. 12) 

Now, if F(t) is any function with finite derivatives in 4, we have 

Thus, the 6$1 term in (B. 12) does not give a finite contribution to 6s. Further, 

we have 

/dt N2[coshj% ,-’ 5 GoF([) 

= J@ (F([) (($4) G2boshmf*jE] 

2G -- 

z J a = f F(0) (B. 13) 
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Combining (B. 12) and (B. 13)) we have: 

So the finite contribution to 6S is: 

=; da po(ua) h J w 
TQCP 

= 0 . (B .14) 

Thus, corrections lead to no shift which remains finite in the strong coupling 

limit. QED. 
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TABLE I 

The Dirac Currents on the Bubble * 

The condition (I) allows all Dirac currents to be expressed in 

terms of the tangent vector and pseudoscalar currents: 

;ii,= 0 
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TABLE II 

Energies on the Torus 

m=3/2 

-@mfi 

2.09 .973 

m=5 /2 4.04 .910 

TABLE III 

Excitation Energies and Turning Points for the Radial Mode 

n E n Pmin Pmax 

0 1.615 .429 1.956 

1 2.577 .261 2.641 

2 3.381 . 198 3.081 
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FIGURE CAPTIONS 

1. A. schematic representation of a bubble state, 

2. A hypertube. 

3. The two dimensional bubble. 

4. The normal force density on a spherical bubble for various single quark 

states. The dotted line is the zero of force. 

5. p,(d) for the oblate spheroid. 

6. Geometry at a sharp edge. 

7. Coordinates on a torus. 

8. pn(~) for the torus. 

9. The scaled radial potential.. 
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