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ABSTRACT 

We develop a technique for attaching quark quantum numbers to worldlines 
joined by relativistic strings. 

We are able to describe spin 0 and spin l/2 U(n) quarks attached to world- 
lines. One spin l/2 theory based on the Dirac equation yields a classical 
particle with helical motion, interpretable as Zitterbewegung. Another spin l/2 
model has no helical motion, but yields an algebra resembling that of super- 

symmetry. 

Motivated by duality diagrams and some general properties of quark-gluon 
models, we then construct quark-string models of mesons and baryons. The 

analysis of the meson model with unequal quark masses implies a stringlike 

spectrum with broken trajectory intercepts. A simple baryon model suggests 

a dynamical reason for diquark configurations in the lowest states. Physical 
weak and electromagnetic currents for the quark-string system follow from a 

minimal-coupling scheme as in gauge field theories. 
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1. Introduction 

The quark model h%a provided a successful framework for understanding 

many properties of elementary particles and their interactions, such as class& 

fication and spectroscopy, deep inelastic scattering from nucleon& and possibly 

e+e- annihilation into hadrons, The details of the strong interactions between 

quarks, and consequently between elementary particles, are pressally unknown. 

However, some general features of the interaction such as Begge behaviour and 

approximately linear trajectories have emerged. There are at present two 

philosophical approaches to the strong liateractfons, the dual resonance models 0) 

and the quark-gluon color gauge theories (2) . 

, 

The dual resonance model provides a reasonably successful approximation 

t0 the required properties of the strong interaction E&matrix even in the “Born- 

approximation’ I. Mandelstam(3) has shown a direct connection between dual 
(44) models and interacting strings , thus providing an appealing physical picture 

for the dynamics -underlying. the .duaJ models. 

In the interacting string picture a meson is represented by a string with 

two free ends. During interaction, two such strings (mesons) join ends to form a 

single continuous string with two free ends; this object is interpretable as a 

resonance which can in turn split (decay) into two or more strings. 

As shown in Fig. 1, the spacetime paths of the string ends thus form a 

realization Of the duality diagrams which were used originally (5) to keep track of 

the quark model quantum numbers of the intermediate states in dual scattering 

amplitudes. 

This picture strongly suggests that the quark and ant&quark inside the 

meson are bound together by a string, Then we are led to the interpretation 

that in the interacting string model the propagstion of the string is dictated by 

the string action of Nambu, while the interaction between strings is a 10cs.l 

@raction between quarks on different- I ..----. l[kro en&quarks annihilate during 
the formation of a larger string, and a pair of quarks is created when the string 

splits. Thus the meson interacts only through it ‘%alence” quarks. We note 

that in Mandelstamls model, the interior of the string does not interact. Although 



the local quark interaction is sufficient to reproduce the dual model amplitudes, 

it is not clear a priori that the string does not interact also in other ways, 

Another popular approach to the strong interactions of elementary particles ._ 
is the non=Abelian gauge theory of 8W(3)-colored gluons and quarks. Calculations 

in this framework are still at an elementary stage, but there are several ind%- 

cations in the literature that some form of the string model may emerge from 

such theories : Nielsen and Olesen(‘) have argued that vortex-like classical sol* -. 

tions of field theories may be identified with dual strings, and Wilson(‘) and 

Kogut and Susskind (8) have suggested a form of string in their lattice formalism 

for gauge theories; both proposals imply that strings are made of color glue. 

If this picture is correct, then color singlet mesons can be made only if the string 

terminates on color ~lmonopolesll - that is, the quarks must be attached to the 

ends of the string. The endpoints would therefore carry all observable quantum 

numbers such as spin, charge, isospin, etc., while the body of .t-he string carries 

none. In addition, It Hooft @I has proposed a two-dimensional color gauge theory 

model for mesons, The model which will be presented here yields results very 

close to those of 3 Hooft, thus establishing a further connection between the 

StPhg pioture and color gauge theory. Other pictures may also emerge from . . 
the color qu.ark-gluon model, but the color model does not seem to be incoe 

sistent with the idea of placing quarks on the ends of strings, 

With these motivations in mind, we will propose here models for mesons 

SS Stihgs with quarks at the ends and models for baryons as strings with 3- 

quarks. The new feature in our approach is the introduction of quark spin and 

internal symmetry degrees of freedom in the string formalism. Cur new 

variables are not related to the Neveu-Schwarz or Bardakcb Halpern 

variables(lO) -- previously introduced in the string formulation, but rather they directly 

correspond to the usual spin and internal symmetry of the quark fields. Cur 

formulation makes a close connection between the standard phenomenological 

quark model and the string model. 

The physical picture that emerges is appealing: the string action 

produces a relativistic potential which binds the quarks together. Furthermore, 



-3- 

a *+dimensional analysis indicates that the potential energy of the system 

depends linearly on the separation between the quarks; the quarks are thus 

trapped in a manner reminiscent of the proposals of ‘t Hooft (g), Wilson(‘), Kogut 

and Susskind(‘), 

@ur formulation has no&trivial implications that follow from the intr+ 

duction of quark internal symmetry variables. First, the i;?ternal symmetry 

is broken by the unequal masses of the quarks. This then leads to a spectrum 

of Regge trajectories with nondegenerate intercepts. These trajectories curve 

at low energies but are asymptotically essentially linear. The amount of curvature 

. 

f 
increases with the masses of the quarks determining the quantum numbers of the 

trajectories. Second, weak and electromagnetic interactions can be coupled directly 

to the quarks following the same prescription as unified gauge field theories, 

This then leads to the definition of the physical currents in the -string formalism. 

Weak and electromagnetic interactions couple only to the quarks, not to the string, 

just as in the quark-gluon model where the colored gluons do not possess weak 

and electromagnetic interactions. The string, just like the gluons, is the medium 

Of Strong interactions between the quarks, Weak and electromagnetic interactions 

can be treated perturbatively as in the standard field theory approach. 

We remark that there are two very different ways of regarding our model. 

On the one hand, the quarks and the color gluons interacting with them could be 

considered as the fundamental basis for strong interactions. Then our picture 

would be a phenomenological approximation to the string-like vortices of, say, _ 
NielseL CXesen@ ). On the other hand, one might believe that some more Sophis- 

ti@ated version of the interacting string model will give the exact solution to the 

strong interaction problem. If this were the case, then the known connection 

between the zero-slope limit of dual models and nokAbe1ia.n gauge theories 

would suggest a different viewpoint: vector gluon field theories of strong biizc4bg __ 

would be phenomenological approximations to the richer structure of a strtig- 

like theory. From this SeCoAd point of view our model is an atimpt to 

incorporate the quark quantum numbers into the picture, 

We should point out that the observable quantum numbers of the quarks 
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could conceivably arise from topological properties of more complex geometrical 

models, e.g., ftmembrane~~ or “j&y” models. For examp2e, the left-twisted- 
1’ 

allct right-twisted Mobius strips could be associated with two different values of 

a quailtum number. &oh connections between topo2ogy and internal qumtum 

numbers also occur in field theory VU . Thus our model with q.uarks on the ends 

of ‘the string could be an appro,ximation to a theory based on a geometrical 

sbwAxwe more comp2icated than the string, In such a theory gurely topologi6d -. 

quark quantum numbers might appear in some limit to be joined by an extended 

stringlike structure, 

In the end, it might even happen that a perfect quark-gluon model and 

a perfect geometrical mode2 were Ildual” to one another in the sense that both 

wo7uld give equivalent descriptibns of physical processes. 

The present paper deals mainly with the basic principles of Ocr general 
formalism. We will C!.~SC’C?GB variotls simple examples to develop intuition, -but 

will leave for later work a number of difficult problems presented by the most 

realistic models, cm to We begin ti section II by discussing a new approach 

the incorporation of field-theoretic degrees of freedom into potit particles lying 

on a world line. We develop models for spin-0 and spi%l/2 particles carrying 

internal symmetry, These then form the basis of our technique for attach% 

point PIarks to the string* III section III we s=xmmarize what is known about the 
UJ) 

relativistic string with massive ends. , since some cases of our model reduce 

effectively to this one, Nuch of our intuition is based upon our knowledge of 

the strine with mssiv~ ends. Section IV deals with our essential problem - 

that of building mesons by replacing the ends of the s@ing with massive quark- 

like point particles 01 the type discussed in section II, We also suggest a model 

of baryons with 3 quarks. b section V, we genera2ize the field-theoretical 

minimal-coupliilg prticiple to couple etiernal electromagnetic and non-kbelian 

gauge fields to our point quarks. We are then able to define the physical 

amrents of our model in a natural way. Suggestions for future investigatiuns 

and a summary of “the current work are contained in the final section, 
An Appendix is devoted to a general techn@e for restricting fields to a sub 

space of the physical spacetime. 
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II. Point Particles with Internal Symmetry . and 8 m 

Iii order to describe quarks as point particles following world lines 

attached to the ends of the &rtig, we must find a way of attaching spin and 

internal symmetry indices to a world line. O,nce it is clear how to describe 

corrventional fields possessing these extra indices, we will accompiish our goal 

by starting with conventiona fields and restricting them to a world line. We 

begin for simplicity with a free spin2ess u(n) quark, Next, we treat the more 

n?ah’tic case of a spti l/2 U(n) quark. I-;ere two models are considered: the 

first, following directly from the Dirac equation, possesses a classical Zitter- 

bewegung, while the other does not. The quantum theory of the second model 

leads to canonical quaillization rules reminiscent of supersymmetry. 

A. Qpinlesot particle with U(n 

The standard T- reparametrization invariant action for a free, SpinleSs, 
relativistic point particle is 

1-1 aP where p is the mass of the particle and XT = - . CXr metric is 

sL:ch that x2 2 = “X +x2. 
aT 

The ca;zonical momentum is 
O -c 

PM - = p xy / J -x2 

alid obey3 the constraint p2 + lo’ = 0, N?.i.oimizing the action, one finds that p’ 

is a constant of motion, We may thus solve the equations of motion for 2 in 

the form 

Here the T - reparametrization invariant functio;l s( 7 ) may depend a230 on the 
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integration constant3 8 and I?. Choosing a gxge, for example the proper time 
0 gauge x , fixes ti2e form of 3( T ) and 8. In general, we may write 

We thus have a correct classical description of the motion if the particle, 

bxt are able to say nothing about it3 internal symmetries. In order to describe 

a particle which Carrie3 internal symmetry indices, it is clear that we need more 

variables in addition to the position #( T ). We lx@2 by introdr?cing functions 

Ga(T)r c. = 1, s.., n, w&h form a basis fo-s the spinGr representation of U(n). 

As described in the iat~odzction, this u(n) symmetry refers only to observable 

symmetries of the quark at the end of the string rather than hidden color 

synmetry . The $a are also taken to be seala 13 under Lore& transformations 

and 7’ reparametrizations. The simplest action for a massive point particle 

which is invariant under U(n), Poincax transformations and T- reparametrizations 

is 
=2 

s = 1 d-c Lo (0, (d,qa, W) 
5 

where the poinLparticle kagrangian is 

(2.4) 

Kereaiter, sum3 over c, will be implicit. 

This Lagraagian is closely related to the standard field theoretic 
(15) description of a free spinlesa particle with internal symmetry. . To see this, 

consider the spacetime Ugrangian density for a free U(n) Klein-Cordon particle: 
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\.;? 
&I= -ap++(x) a%64 - m24Ax) 4~~) . 

To restrict the field to a world-line, we require that x? be replaced by x!( T ), 

where 7 parametrizes the world-line, The Cartesian Minkowski metric 

y wz diag(-1, 1, 1, 1) can be decomposed at any point on the world-line into a 

complete set of vectors consisting of the timelike tangent to the world-line, 

and alll of the spacelike normals nr( T ). Thus we have 

p) = 
xy x; 

X2 
t ny n; 

T 

where a sum over the index i is implied. Note that 

x1-I XV 2 
TyN T=xT c 0 

(2.6a) 

. 

W The metric I-- is T-reparametrization invariant and raises or lowers indices in 

Minkowski space as usual. Using eq, (2,6a) we can write 

(2.7) 

If the field Q (x) is not to leave the world line, we CUlilOt allow any nonvanishing 

normal derivatives, Thus we take 

n$3p$(x) = 0 . 

Furthermore, we note that by the chain rule of differentiation 

w3) 



Therefore, we may now consider Q to be effectively a function of T, and 

substitute eqs. (2.7, 2.8, 2.9) into eq. (2.5). Multiplying by ,/-x27 (which 

effectively is a Jacobian), we obtain eq. (2.1). The general technique for . 

restricting an arbitrary field theory to a subspace of arbitrary dimension such 

as’ a world-sheet instead of a world-line is discussed in the Appendix. 

The equations of motion are obtained by varying the action in the standard 

wag with respect to both $ ( T ) and 2( T ). We find the canonical momenta 
u 

aLO aT%4 
a(aT$;t) = J,x2’ ‘a T 

and the Euler equations 

(2 JO) 

(2.11) 

The constants of motion of this system are the total momentum pP, the 

Sorentz transformation generators 

and 

MIJV = x%) pyT> - XV(T) pV(T> 

(2.14) 
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t 

We also identify the following constraint, which results from T - reparaJ=etrization 

invariance : 

p* f ).I2 = 0 . 
(U5) 

For arbitrary zP( T), we can solve eq, (2.12) for 0, (X(T 1) UshE th3 
- 

parameter s( T ) defined by eq, (2.3 ). The restit is 

47% $.(T) = aa ewims + bt eims + cc1 + msda , (2 3) 

* 
where a , b , c , and d are dimertsiunkss complex coih~ts. Repladng 

(2.16) if (Xl?), we’fid &~t’the ody ‘way to satisfy the constraint for all T when 

m # 0 is to set 

C = 0 a = do 

lJ = I--- -P2 = m(at aa + ba *ba) . (2 J7b) 

Furthermore, using (2,ll) and (2,13) we may solve for #(I- ): 

This is the same as eq, (2.2). 

Finally, we note that if U(n) is broken by assigning different masses 

to the components of $J~, 

-*i .- 
m1 0 O... 

m= 0 m2 0.. 
0 0 . - m3*. . - 

(2: .19) 

Eq. (2.17b) becomes 
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It is straightforward 

r ., = -P2 = Ana+b?rlb . (2.20) 
to quantize the t&&y in a given gauge such as 

x0 = Tp0/J-p2 by assuming standard commutation rules for p and q and taking ‘1 

[+a;1 = 6aB = b,&;l (2 21) 

and all other commutators zero. This is then consistent with the canonical 

commutation rules [Q , II+ 1 
8 

= i6 
aa 

etc. 

the interpret&on of the solution (2 ,l& ) and (2.20) is that the center of 

mass x moves like a free particle, while the effective mass of the System, J-p2 

is equal to the sum of the number of quanta at the point x times the appropriate 5 
free mass m. 1' The more quanta we put at the point x , the heavier the 

system becomes. The effective mass of the system als: depends on the x 

of quanta we put in if the U(n) symmetry is broken as in eq. (2.19). This is a 
satisfactory description of free scalar particles with (broken) internal SymmetrY. 

Although we have restricted ourselves to a U(n) multiplet for the 

purposes of illustration, it is clear that the treatment can be extended to any 

representation of any internal symmetry group, It is also clear that our 
.4 

approach could be generalized to interacting theories such as! 9 etc., which 

would change the solution (2.16) as well as the spectrum of (2 ,%O). We wi.U not 

attempt to treat these matters here. 

B. C,irac Particles with Internal Symmetry 

Since it is believed that free quarks would obey the Dirac equation, we 

now prooeed to derive the Lagrangian for a Dirac particle restricted to a ~~h”ld- 

line using the methods of the previous subsection. We begin with the spacetime 

Lagra-ngian density for U(n) quakks, 

(2.22) : 
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Eereafter SUMS over the indices 0~ will be implicit, Eecall that the indices a 

refer only to observable synxxetries, not to color. Cur y-matrix conventions - 

are, e.g., those of WeinbepgQ6), 

We now restrict #( 7 ) to a world-line parametrized by 7 aad forbid 

$J Q:( 7)) to leave the world-line by imposing the condition 

+7) a,,+ MT)) = 0 . 
(2.23) 

Then when we replace the metric qv in eq. (2.22) by the expression (2.6a), 

we find the following Lagrangian for a classical pointlike Cirac particle: 

The canonical momenta may now be identified as 

p’ = & [- &J7 y,Zt I/.J t $ m $3 
-x ‘1: ‘I 

To simplify our expressions, we now define 

(2.24) 

(2.25) 

(2.26) 

where s( 7 ) is the parameter (2.3) defined earlier, The Euler equations then 

become 
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p = 0 
.- 
$ - ($2 ii - rn4}# 

f+$(i!j-4ti-m4) 

We may thus derive a iTtimber of cons’iants of motion, 

momentum 13/1 and 

T Xa$ 

= 0 

= 0 

including the total 

where ho, is any U(n) m&3x which commutes with the mass matrix 

C~,,ml = 0 , 
It is convenient to define the constant mass parameter 

(2.29) 

Integrating this equation we find 

p*x = -l.ls + d 
where d is a constant. 

The genera:ors of the Lorentz group are also constants of the motion. .: . 
To derive an expression for them, we note that x?, $ and f transform under 

Eore_M=Lz traflsformationn as 

where 

(2.30) 

Noether’s theorem the:1 implies that 

MPV = xupv M xvpv +,svv 
(2.31) 

is the constant generator of Lorentz transformations and the spin matrix is 



I 

defined by 

-13. 

We note the total momentum can be rewritten as 

From eq. (2.32), we see that 
SPJv’ x0 

xV 

(2.32) 

. 

(2.33) 

(2.34) 

where we have used the fact that 

=u 
VA 

Yci +yvx . 

Epations (2,31), (2.33) md (2.34) are recognizable as the basis of Frenkel’s 

theory of spinning relativistic paLtiicles (17) . Eowever, our theory difiers 

st:bstaMally from that of Frenkel because ol?r p is a dynamical variable 

cleficed by (2.29). We also Zave additional equations of motion (2.27) which 

determine $ , and heace the properties 01 ,u. The variables $ cc (T ) are 

absent in Fre-&ells theory w 1 , 

We also find the following relation among our variables 

2 p s 12 PUS vv + PVs”vsvxPx = - $ (SY3J(J; mU2 . 
(2.35) 

Defining the Pauli-Lra’uailski tensor (in four dimensions) 

we f&Id that eq, (2.35) may also be written 

(2.36) 

(237) 
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where 

so that 

We neti find it coi:ve;xient to separate x?(s) into two parts, 

x%> = q%) tr%) 

rys> = -sFLv P/P2 

P”9 = p*x , par = 0 . 

%amir;ing M W , we find 

qv = (M”p, t p’ p*x)/p2 

. 
qp ? p” p.;(/p* = -llPVP2 . 

Now we define 

RPV r pp - q”pv + C?PV 

r r”pV v 
-rp 

IJ + p 

where 

and 

(2.38) 

(2.39) 

(2.40) 

(2.4la) 

(2.415) 

(2.42) 

RUV P, = 0 (2.43) 

Rpv R W 
= 2$/p* = sl-lv s 

W - 2r2p2 . 

W 
An analysis of the rPoisso;l brackets o-3 the elements of R indicates that they 

ZeileTate the li-ttle grorzp which leaves the ,momenCnm d invariant. 7-P. Thus the 

eonstra~lt equation (2.44) relates the ratio of the two Casimir operators oP the 

Poixa:e group I? an? p2 to the Ca.simir operator ( RuVj2 of the little group. 

Usiq eqs. (2-34) and (2.39), we fisZ 

(2.44) 



-15- 

0 = p:, zP* ;r,/p” = I?*,; . (2.45) 

have used eqs, (%,%9) and (Z.45). Snce eqs. (2.4lbO) and (2.43) imply 

w e Ziinally obtain 

Rpv ; ,,t&lP=O . (2.47) 

E:xamir,ing i;‘;le expression 

(2.42) 

wkic5 follows from eqs, (2.33) and (2.34), we may use eq. (2.39) to express 
‘I-1 x as 

Sixe p l G = -p is a comAa&, eq. (2,4lb) i;-z$ies q “P = 0, Tim ti we 

differentiate eq, (2.403), we fiXI 

wLez-e we wed (2 .40), (2.42) ax? (2.45). 3ut eq. (2.47) indicates y.r' = 0 

ailc;: eq. (2.40) n2akec p l G = 0, T&s fools: eq. (2,4fi), 

suv ?? 
V 

= Ruv ;,, . 

This iAnformatiOn coxhil2ed witk equation (2.47) allows ‘v?s to wirite 

(2.49) 
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where 

Y2 = 2p2/(9B s,8) = p*l.l*/w* 

= 2112/(I?B R9B) . 
(2.5:; 

The variable ?( s ths executes haimouic motion with. anggzlar frequency y 8 so ) 

(2.52) 

From the defi.xIition (2.36) fey VP ad the expression (2.34) for -r”, we see that 

par = 0 

Wer = -pu S *w CJ *A PA/P2 

= - 4.s 1 wq pv== Y 
J-J* flxc where v 

TJJ 
= 0 f0ll0ws fionl s’l v iv = 0, Tl2L.m i J-c moves in a plaice 

peqmildicdar to bot2 pp acd Vjd”. From eqs. (2.47) an? (2; 53), we see that 

ah and VP 8x-e eiEenvectors of I?*: 

i Ruv au +ap ($#‘R 
cl6 

)1’2=0 

i RVv WV = 0 . 

a2 3 0 

pea = 0 

W*a = 0 . 

ileze ap, a *lJ 2;ac yjJ are aslogous to t>e m = 4-1, m = -1 %X! 111 = 0 

components of a spia oae vector. 8 is iilvaAant unde; rotatiolrs by I?“, SO 

l? -L generates the little group of p’. This becomes clear from au analysis of 

the Poisson brackets of iTby. Thus we may finally write 

x%9 = [Mu* p 
V 

t p’(d - us)]/p* 

+ (au e iYS + a*lJ e -iy/Lg ) 

(2.53) 

(2.54) 

(2.55) 

(2.56) 
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so z?(s) comists ol” periodic circ&u+ motion in a plai2e sc?esimposed ::po~ a prrre 

tia3slatior. The ove3ll :lelica3 motioii is ideatifiable as the effective classical- 

Zitte~bewe~cng rewltii2g frown the q::aAm rr,echanical i:iterferenee of positive 

a;zd negative Pequency coaponei2ts in the E&ac a$!ation, The Zitterbeweg>fig is 

a farmiliar comeqr:eme of attemptii32 to localize a Cirac particle, as may be 

seen explicitly ~TOXZ aa appropriate wave packet const~sction 
(W , 

Now we turn to tl2e solr:tioii of tl2e equatiom of ri2otioi2- (2.27) fm $ . 

Equation (2.54) can be used to show that 

Next we define the Lore&z tram3fom2ation ti the space of Dirac matrices; as 

u(6) d U’(e) = 2’ d 
u(0) pl ut(e> = pr 

(2.57) 

(2.58) 

4 1 .55 

The equation of motio? for Q can now be writte:2 

s t MI; = 0 

whex-e ti2e s-iixlepei2dent matrix I\/i is given hjr 

M= 1 
To 

VW R ~* + E-i &OK(O) -tm/bm 

aiid 

I;;(s) = U+(ys) $(s) . 

(Wl) 
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;t, (d = u(ys) eeisM X (2.82) 

whea X is an s-independeb spinor, 

Tke soldion 0: ox- classical spin l/2 Dirac particle pmroblez.. is now 

complete. The qx:a&dm theory, however, is non*Lrivial amI will_ be ciefexxxY 

t0 a late? imestigatior, 

6:. ~upemymmetril: ;;pii? l/2 Particle WithoIzt Zittex%ewe?FX 

The s$a l/2 Cirac padicle disc : ysoed in the previous section, PossemeG 

a classical ZitterbewegWg; wit% the result that the particlels velocity cW mt 

vanish b “t&e frame where p = 0, as seen from eqs. (2.49) ad (2.50). Oi?e 

xxi@t therefoore ask if t:lere exists a spin l/2 particle Lagrangbm which gives 

tie padiclels mome&:m Proportional to its velocity; such a particle woC12 

coi^‘r*ezJponC more closely to the traditional pie-bre of a positive enezgj classical 

Sphning particle. 

A sxfficient condition to make a pafticle’s moixe..bLm and velocity 

proportional is the const;?aid 

(2.63) 

where L’” is the spiil pax% of the Lo;-entz gl-‘o~:p generator (20) . This CQditiOil 

flaxatees that t!le particle’s spin 2egrees of freedor cqnsist o&j of spatial 

rotations ii1 the rest fxme. Tkat rj’ L is pamllel to Si” can 5e seen directly 

fyor,= eq, (2.63) by writing 

MVv p 
V 

= (xl-lpV v -XP IJ + SUV) p, = xpp* - pV xep 

arti takir,g a derivative to yiel< 

PV = P (p2/pd , 

&V Ciie way to ensure that u p = 0 is to search fey a Lagrangia:: 
V 

implying that 
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(2.64) 

instead of sq, (2.32); This can be achieved if our cmonicd momeAa conjsgate 

to y and $ take the for, - 

ii =B i& (2.65) 

instead of eq, (2.25). We have constructed a Lagrangian with all the reqdreci 

invariance properties; it is given by the expzression 

The canonical morfient-zrn coajrgate to I? is 

where 

The equations of motion are 

i a,$ - m 2 J-2 q) = 0 
7- . a2 

(2.66) 

(2.67) 

(2.68) . 

(2.69) 



--L “@- 

-i a$ - m 2 47 F = 0 
7- -v2 

. 

We see that 

u* E i ( X m2.# + i+T m* x) = i j7 $ m $ 
- 

(2.70) 

is a constant of the xxotion, 

The constraint associated with 7 - reparawetrization can now be 

writtea 

p* t 1-12 = 0 . 
(2.71) 

After sofile calculation rrsi;lg the equations of motion and the constraints, we 

find first that 

TFc t x’: - vu A7 / A7 = 0 (W2) 

so that eq. (2.57) may be written 

PU =x9&2+@ . 

Squaring this equation, we finalljy obtais 

SO 

p1-1 = ,,y/m . 

(2.73) 

TI2e zqu&iOilS for $ can now also be simplified: 

(2.74) 



We now fiizd t&e explicit sol&ioas fo7 $ (9) iz t>e form 

e(s) = e- *lJ X 
(2.75) 

The quantum theory 

the x 0 = p” T/P gav..ge that 

provided , 

qp + pl-I,s . 
J-p" 

of this system is straightfox-ward. We fiad in 

the canonical commtation ales are satisfied 

CS’,Pjl = i &iJ 

(2.78) 

(2.77a) 

(2.77b) 

Fdhermox-e, 1JL cornmvteB witL Xc1 
B * 

aizd X ’ 
. . a b’ >ut q1 does not. Eowever, 

both x1 and p1 comrade wit3 9 a:ti X in accordance with the cam&cal 

coxmx~tation rzles. 

We note the zimilarity ol eq, (2.77b) to the siipexymmetry 6on1nx~tation 

relayiT;nS t21). This is why we call JI the ~~~~~pe~sy~mxe%Fic” quark. Eex-e, 

however, the 1: , aYe simply canonical variables, We remark that the b 

03 the right hmd &de of eq, (2,77b) is esse;rtial to obtain oLLy -positive norPi: - 

states. This is best seei in the rest frame @ = 0) where we Cal&ate .&e 

rorm to be 



I 

<olxu, g+10> *“,e =+- 
POP0 

Po(YOYo) 

= 2ma B ->o . 
PO 

(Remember that $7 = 3, ?Y, ,Y4= iy” ). A similar ghost knling f&or was pre _ 

viously discussed in connection with Ghan-Paton type spin factors in the co&e& 

of dual models(14). 
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IL Eeview of Strizg with 7oint Kaoaes 

,‘efore proceedtig to attach park fields to world-lines connected by - 

StrbgS, we Teview the closely related problem of atta&isg structreless poi!?t 

masses (13.) For simple qarks, like those i3 sections IIA and PIG, the 

dyiiamics of the two systems are nearly equivalent (22) , Some of the resrrlts 

of this sectior will therefore be directly applicable to 0uF cp~apk models for - 
mecono aild bsyyons to be given in section IV, ti s&sections k&l and AZ we 

sti&y meson-like cases aac! tin section B we analyze a baryoz-like system, 

The st-ncti?eless point masses v&ich appear ti this section car;-espoild to 

Gose of the TLarks attached to the e&s of the string, as will be demonstrated 

in the itIe:& section . 
P l . Two Lliass Case (Xesons 

)r We first comider tae actioil for two masses, at the poiil^is IL (0) = 

x!yT, u = 0) a& P(r) = :;c”(~, cr = n), joined !~y a relativistic striilg, 

Eere 

XI = ax~(o,~)/aa, X: = ax%,d / aT 

aid 

is the Nam’m: Eagrangi~~ demity for a fTee relativistic str@?. The stzing 

contiibution to the action is effectively a relativistic potential exerting a fcrce 

on the two ~:a89 points, This will become clearer below. 

The actio;I (3 ,l) has been exteacively aaalyzed in ref. ( 13 > so we will 

give heye oi9y a;1 oEtli;Ie of t&e main readts. The ewlations of motion are 
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ar ~90) -yN1-l(o=O,rl = 0 ; u = 0 

: 
ar p’(n) t yN1-l(u=~,r) = 0 ; 0 = n. > 

(3.W 

(3.2b) 

(3.2c) 

(3.W 

1. Tinelike Gav.ge 

We examine the simplest po ss?ole loq#xXd motions of this system, which 

OCCZT whem the string lies always along a single line. Vie Inay then choose a timelike 

gauge s:lch that 

xO(r,u) = T 
(3.3a) 

and x u is indiepended of cr , 

x&d = x(r,o) f ; [x(r,TT) - x(r,O>J 

All other components of X?(T , CT) are assume6 to vadsh. TLe Eac2iltonian 51 this 

~awe is ” v 

H =Jp2(0) t ~“0 + VpTq +ylx(n) J x(O)1 

(33) 

(3.4) 



yJ= *l/2 - 2pG 3nC 

A(M, uo,pT) = [M2 - (PO t 11,)21[fi12 - (PO - p,)21 l 

(3.7) 

where 
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G(k,k') = lim + 1: dr r cos Cr(k - k’)] eBEY’ 
Et0 

IL 1 
(3 JO) 

=P{ 
R(k-k'J2 

and B denotes the principal value, Exact solutions of this equgtion are not known. 

2, Lightlike Gauge 

We now repeat the analysis of the previous subsection in the lightlike 

fsawe 
t 0 

X 5x tx=‘I: 

0 Wl) 
x- 5 x - x = x-(o) + ; [x-(Tr) - x70)1. 

The Hamiltdnian in this gauge is 

p- E p” - p 

2 u2 
= 1-10 +?r 

2$-m 2&T> 
t ylx--(Tr> - x-w 

and the total (+) momentum is 

P+ = P+(o) + p%T) , 

We then make the canonical transformation 

K = (P+(TT) - P+(o))/2P+ 

P = p+(x-(d - x-(o)) 

so that the invariant mass-squared can be written 

2 

M2 e 2p+p- = 1 1-10 
+1 +rld l 

--K 2 TfK 

(3 .w 

(3.13) 

(3.14) 

(3.15) 



The Bohr-Sommerfeld quantization procedure yields the same results 

as before, eqs. (3.6-3.8), while the exact quantum spectrum follows from the 

Sohr~dinger equation 
\ I\ 

“\ 
2 2 

vO Y / dK’ G(K,K’) $(K') + [ 1 
h 

+i---- M2! JI (K) =0,t3m16j 

2 -K Z+K 

- 

where G(K ,K’) is given in eq, (3.10). ‘t Hooft has derived this equation 

using a color gauge theory in two spacetime dimensions. We find it remarkable 

that such similar results arise from such different origins. Exact solutions of 

this equation are unknown. 

B. Three Nlasses (Baryons) 

at the points P(O) = P(r= 0), x?(l)= x&=~l), Now we join three masses, 

xqq = s?(u = r), with two strings. 

S=/ =2 

5 
dT {-uom T 

“1 

We take the action to be 

We now restrict ourselves to longitudinal motions of the string lying on a 

straight line : We use the timelike gauge 

XO(O,T) = r 

and choose the u-gauge so that x u . is independent of Q between masses 

(3.18) 

0 < Q < al: x(r,u) = x(r,O) + c- Cx(-r,al> - xhO)J 
u1 

(3.19) 

5 <u<lT : X(T,U) = x(r,ul) + = [x(r,lT> - Xh,Ul>l l 

7PUl 

All other components of x?( 7 , u) are taken to vanish. The Hamiltonian then 
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becomes 

H = &*(o) t ~'0 t mt? t ip2(s) + v; 

(3.20) 

+yfxw - x(O)1 +y Ixh) - x(l)1 l 

Goirag to the center of mass and choosing appropriate canonical pairs of 

relative coordinates, B becomes the invariant mass 

M= +kl + k2)2 + ~‘0 + t';(kl - k,)* + P; 

+ h$T-$ + y jr, + r21 + ylrl - r21 
l 

(3.21) 

It is simpler to examine the motion of this system in the zer”c-mass limit. 

A typical motion is plotted in Fig. 3 -2. 

Analysis of the action variables for vanishing masses gives the result 

M2 = y(J, t J$; J1 = n, J2 = 231 n,m = integers (3.22) 

The action variables Jl and ~~ correspond to the normal modes of the system. 

When the initial conditions are such that J2 = 0, the motion described by Jl 

is plotted in Fig, 3,3a, When Jl = 0, the motion is that of Fig. 3.3b. We 

ske that J 1 describes an oscillation with a ~%iquarkl~ remaining on 038 edge of 

the system, wjhije J2 gives an oscilla.tion with a “diquark’~ periodically crossing 

the middle of the syste=. The lowest modes are then purely of these two types. 

The experimental data on baryon spectra favor the 56 and 70 represen- 

tations of StJ(S). Such representations have a natural interpretation (23) in terms 

Of diquark correlations inside the baryons. The string model discussed here 

then seems to give the dynamics required for these correlations to occur. 
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IV. @arks on the Ends of Strings 

We are now ready to apply the methods of section II to attach quark - 

quantum numbers to worl&-lines joiaed by the relativistic string potential. These 
systems constitute our proposed model for hadrons. 

Mesons will be represented by a quark and an antiquark attached to 

opposite ends of the string, as shown in Fig, 4 .l, CLE model Lagrangian for 

mesons gives a u - and 7 - reparametrization invariant action with the form 

where LO is one of the point quark Eagrangians examined in section II and 

- Y&g is the string Lagrangian density treated in section III. 

Cur baryon model consists of three quarks connected by strings, of 

three possible confimrations shown in Fig. 4.2 a, b, c, the ‘simplest is probably 

that of Fig. 4,2a, with all quarks lying on the string. The motions exhibited 

in Fig. 3.2 apply to this case and show that each quark spends some time at 

the edges as well as the middle. The configuration of Fig. 4.2b is intuitively 

an excited state with respect to the one in Fig, 4.2a, thus its low energy 

spectrum is probably included in this latter case, The action corresponding to 

Fig. 4,2a takes the form 

s.= I 
(2 

*1 
ddI+,(u=O) t LO(u=ul) t LO(u=v) -y(10 + 1’ ) du&) (4.2) 

. . ul 

where LO is again any point quark Lagrangfan, The three point Lagrangians 

are functions of the cmrdinates #( 7, O- = 0), #( 7 , w = r1 ) and 

& 7 8 d = 7c), respectively. We will not study the other po&ble models 

for baryons in this paper, 

We will impose good trialiiy upon our systems from the outset as 8. 

pkam@ua.l prinoiple; only one quark wi.U be assigned ta each world-line, 
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and we will allow only strings attached to three qtiarks, or to one quark and one 

antiquark, This principle is ordinarily dictated by color symmetry azgcments (2) _ 

which play an implicit rather than an explicit role in our treatment, as 

described in the introduction, 

Clearly the most desirable course at this point is to analyze the qtlafi*Xm 

spectrum of each of our models for mesons and baryons using the spivII l/2 potit - 
quark Lagrangians in four spacetime dimensions. As one might expect, this 

analysis becomes exceedingly complex. since our main goal here is to introduce 

the basic ideas of our method, we will be content to develop a feeling for the 

implications tin analyzing the simpler but less realistic models. I;1 the rest of 

this section, we will treat mainly the spinless quark model for mesons with 

motion restricted to a tw+dimensional scbspace of spasetime, The model for 

baryons will be outlined at the end. 

A. A Model.for Nesons 

We begin our investigation of meson models by examining the action 

(4.1) with LO taken as 

L&do)) (4.3) 

a;?d similarly for LO(x(7r)) with u = z quantities substituted for u = 0 quantities. 

Cur action principle is defined by requiring the variations 

w()w , Bqc)’ 6x%,0), 6x%,& 

6x%,u), O<a<lT ) 

to be arbitrary except at 7 = 71 , ~~ , where they va;iish. We thus obtain the 

equations of motion 

0 = aTK%,o) + a,N'1(T,o) ; o<u<lT 
(4.4) 
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x!p) 
arC J/_,2) (I+, t @; m* $I,)] + y N%,u=O) = 0 

'I 
_ 

(II; II,, t @; m2c$,) ] - y N’( T,U=T) = 0 , 
(4.5) 

where E? and N@ are defined by eq. (3.2~). Introducing the s-parameter of 

eq. (2 ‘31, the # equations of motion, essentially the same as eq. (2.12), may 
be written 

d2cbo 

ds2 
t m*(10 = 0 ; cl = 0 

d24= 

ds’ 
t m*$ln = 0 ; u = IT . 

(4.61 

Thus we se6 that C#I~ boss&sses the soktion 

(4.7) 

with 4, having a similar expression 

Equations (4. Gp also imply that 

are constaiz’s of motion, so that eqs. (4.5) may be reexpressed in exactly the 

same form as eqs. (3,Zb), (3.2d). The other constar&s of motioa are the 
30incare group generators # and tiV and the U(n) symmetry group generators 

(4.9) 

which commute with the mass term in the Lagrangian LO. 
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B. Longitzdinal Motions and Their Spectrum 

Restricting ourselves to motion in two spacetime dimensions and I 

choosing the timelike gauge analogous to eqs. (3.3), we find the Hamiltonian 

H = b2(o) + u; + m t y)x(n> - x(o)1 
(4.10) 

Eere p(O), p(n) are identical in form to eq. (3.2d), except that_ p. and @, 

are the nontrivial canonical variables (4,8). 

While the quantum theory of the variables p and x is nontrivial, as we 

saw i;a section III, we may quantize the fields +. and @ IT in a straightforward 

mainner. From eq. (4.7), we deduce that for u = 0 

Cao, (0)) a;(O)] = Bs = cbcy (01, b;(O)] 

are acceptable commutation relations implying 

(4.11) 

(4.12) 

where l’l Ocr is the canonical momentum, e.g., (2.10). Similar equations hold 

atu = 7~. Thus eq, (4* 8 ) may be written 

cIO = a:(O) m aBag t b:(O) ma0 bs(0) t consto (4.13) 

and similarly for hT . It is possible to cancel all or part of the normal- 

ordering constant in eq, (4.13) by adding an extra term to the Eagrangian 

proportional to J_z(O) ( and J-x: (7f) ). We will set the normal ordering 

constant equal to zero in the analysis which fo~ows. 

We see that QU meson system has been reduced effectively to that of 

section UI, except that the mass variables p. , 1-1, are now operators whic;l 

take on different values depending on the different masses of the quarks in the 

mrrltipllet . uC$mmetzy breaking thus appears in a natural way, and ‘t&e masses 

at the ends of the string are now ide;?tified directly with the masses of the 

quarks making up a given meson, 
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For example, ‘the nf meson will be a string witt p and 7; qt:ark 

masses on the ends, while for a K’ meson, the ,p and ‘i; masses appear. - 

The internal syrzmetsy co&e& of mesons is described by the states 

a:(O) bi (??) 1 0 > where a: (0) creates a qtlark of type a at x (0) 

while b$ (7r) creates zfi a.Aiqcark of type @ at x (?T). The particles n”, 

K+ etc. and their excitations are described by the states, e.g., _ 

b$fl)IO> 
(4.14) 

The spectrum, e. g’., of the Kf family, is then given by 

HK+ = <K+ 1 H 1 K+> 

= JP2(0) + rn: t Jp2(a> t rn: t ylx(7r) - x(O)1 , 
4 

(4.15) 

We see from the form 01 eq. (4.15) that 

(a) The system become s heavier for larger quark sepaz-ations. 

(b) The lowest mass osct!rs for a shrtsk string (x(O) q x(g)) 

and corresponds to the ground state of the standud qua?k 

model where the quarks are approximately at the same 

spacetime point. The quark masses deterLine the 

intercept of the trajectories, which are therefore in 

general no&egenerate , 

We can talc-:-late agproximately the quantized radiaJ excitation spectrum 
+ of the 7~ , K’ etc. families fiQrn OSIT longituI;izaal mode Eamiltonian (4.10). This 

SpeCkWm would sorrespond to the rAaSS states with fixed spin in a Chew- 

Frav;tchi plot. To obtain the angular excitation s oze wol:ld have to in&de the 

transverse modes of the strii~g as well, which we have iK& yet done. We i?ow 

apply the semi- classical Bohr -ZQmmerfeld q:IantizatiQi? prOCe&Lre as in SeCtiQil 

III and ref. (13 ) , Broceedticlg as for eq. (4,15), we find for a meson with 

quark masses mg and 12~ the effective Eamiltocian 
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H = m t &*(s) t m* 17 ty IX(T) - x(O)1 . i4 lG) . 

The reselting spectr;iz:z has the following properties 

(a) if mO = rnf = 0 (e.g. pion, with massless quarks) 

27ik y n = Mi , n = 0,1,2,.... 

(b) if mO = 0, mT = m # 0 (e.g. kaon) 

2& y n = Mz - m* ln(Mz/m*) - m2 

(c) If m. = mT = m 

M 
-2&yn =- Mn.iMi - 4m2 - 4m2 lncg t J 

(cl) B m. Z rn* + 0 

2fh y n = A 1'2 (M,, mo, mr) 

M2 t rng - m* 
-2mE 1nC n =t 

A1'2(Mn,m0,mR) 
1 

2mOMn 2mOMn 

M? t rnc - rng 
-2mt IhE n t 

A1/2(Mn,mG,m,) 
1 9 

2m7rMn 2m*Mn 

(4.17a) 

(4.W 

(4mq 

(4 2761) 

where C is deftied in eq, (3.7). This shows that with massive @larks the 

spectrum is not linear. Eowever, for mesons co&xi&g small spark Easses, 
22- 

“0’ mn 4 0.3 GeV2, the deviation from linearity is very small and the 

spectrum quickly becomes essentially linear, On the &he? hand, if the quark 

mass is large, such as the oonjectured charmed wark with mc M 2 GeV, theiz 

the curvature is r;xbstantiaI. This may be a welcomed feature ti the new 

resonances (24) are Werpreted as charmonium states (25) , 
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We remark that since we have included neither spin nor spin-spin 

interactions at this stage, our presermt results are not necessarily realistic, 

If we assume, however, that the above formulas are applicable to 

the octet of observed psa:doscslar mesons, thea taking, e.g., 

- 

I Ii+> = ~$0) ?&Cd 10' 

K+> = a;(O) b:(n) IO> 
- 

1 (4.18) 

II-l> = 1; [+) b+(n) t a;(O) b;(r) - @:: 

- 2a;(O) b$d I}O' 

and putt@ n = 0 inr eq, (4,17), we obtain the following -68s for the grouti 

states : 

mn+ =mY+mfi 

mK+ j-J =m +mA 
.; 

% “rl=3”P n tm +4mA) 
(4.19) 

For m 
%“1 = “;*c eq. (4.19) leads to the linear mass formula 

(4.20) m ~ + 3m 1? = 4m, 

which is in reasonable agreement with experiment, Given our crude model, 

we consider this resrilt encouraging, The coefficients in eq, (420) are the 

same as those in Gel&PLann and o@bo’s grradratac mass formiula. 

We will not attempt to treat baryons in detail here. The basic 

procedure would be to construct baqonic states analogous to eq. (4.18) and 

take xatrix elements of the lftamiltonian following from an action like eq. 

(. 4.8). In this case the Iiamiltonian would take the form of eq. (3.20). The 

Bohr- Somme~rfeld spectrum foe, F massless quarks wotld tien be given by eq. 

(3.22), while for massive quarks the trajectories wotid in general be nonlinear, 
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v. Weak and Electromagnetic Jnteractions 

The close connection between the present modal and field theory 

su.ggests a compelling approach for dealing with weak and electromagnetic 

interactions. We propose to extend the procedure of section II to ijaclude 

quark fields coupled minimally to a set of vector mesons, where the gauge 

group may in general be non-Abelian. The string itself will not be coupled 

to these vector mesons because, as discussed in 4518 introduction, the string 

is assumed to have the same properties as color glue, Provided the meson- 

quark coupling is small, as in the *died theories of weak and electromagnetic 

interactions(z6)# we may treat the titeraction perturbatively. Thus the successes 

Of gauge theories in thei ‘r application to weak and electromagnetic interactions 

w@~ld be expected to persist in our model. The picture that emerges is one 

iii which the strong interactions mediated by the string are solved in the 

absence of weak forces, which are then considered as small perturbations an 

the system. 

For the purposes oi ilhstration, let us consider the model of section IV 

with spinless quarks. Tl=e point quark Lagrangians Lo(x(0)) and LO@(~)) 

will be modified &I the presence of Meractions. The new form of Lo at 

each point follows fro-m examining the gaugeinvariant spacetime Lagrangiu 

density 

b> = -(D’ 0(x))+ (DF1$(x)) - $‘(x) m2 4(x) 

where # is the covariaat derivative defined by 

Following the same procedure as in section UA, we find the modified point 

particle Lagrangian 

(5.1) 

(5.2) 
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where A’ (x( 7 )) may be considered as an external field. The Iagrangian 

(5.3) is &ariant under the infinitesimal gauge transformation restricted to the 

world-line : 

MA’(x) = iCAd( XiAu(x)] t a’(A*A(x)) 

Qe) = ix4(x) $(?I 

where 

n:(r) aPA = 0 . (5.5) 

This latter -condition is necessary to keep + ( 7 ) on the s&me world-line 

fQllowing the gauge transiormation, The normal components of A: , namely 

df A; @)a cannot be gauge-transformed away in general. 

We observe that the above procedure for coupling gauge fields to the 

ends of the string is quite different from that of Ademollo et al. @I, who did 

not use field theory as a starting point. 

The current that couples to the gauge fields is located only on the 

worcld-lines of each quark, where I? = #( 7 , 6= 0) or xv = P( T , u = 71’). 

The local current at x? = Y?(O) is then given by 

1 aLob( 
J;(xW = E 

aA;( 

$ho Ai(x(0))a.rxy(O)] 
xy (.P I,. 

t C [” @‘{Aa ,XBj$.o Ai(x(0)) niy(x(0))] nl;f(x(O)) 
i T O 

(5.Q 
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and a similar expression gives the current at I? = ~?{lr). The coupling 

scheme described here allows us in principle to calculate hadron form factors, 

We have not yet carried out t’his program. 

Vf. Conclusion 

t 

Motivated by the many parallels between the dual-string picture of 

hadrons and the quark-gluon field theories of hadron dynamics, we have sought 

a method 01 attaching wark quantum numbers to world-lines joined by 

relativistic strings. We began by developing techniques for restricting classical 

quark fields, with any desired measurable quantum numbers, to a world-line. 

Very simple @&particle theories resulted when we considered spinless quarks 

and spin l/Z quarks without Zitterbewegung. The latter spin-l/2 model contains 

an algebra reminiscent of supersymmetry, A much more complex and interesting 

theory possessing Zitterbewegung arose when we restricted a classical Dirac 

field to a world-line. 

By attaching structureless masses to the &Zing as in ref. ti3)., we 

developed an intuitive picture for the dynamics cf the simple longitudinal string 

oscillations, The string with two masses on each end gave a roughly lii3ear 

mass-squared spectrum as expected of a mesoelike system. DI a lightlike 

ga;lge, this system is deseribd by an integral equation found also by ‘t Hooft 

iii a totally different context, A ba:ryon-like system resu3ted from placing a 

third mass in the middle of the string; for small masses, the normal modes 

of this system simulate diquarks oscillating against a third single quark. 

Next, we analyzed the longitudinal spectrum of a model for mesons 

consisting of spinless Z%(3) qzrarks on the ends of the string, Systematic 

deviations from a liilear spectrum were fotrxl in the Bohr-fiommerfeld 

approximation to the quantum theory, while symmetry breaking appeared iii a 

Qatural way. The BU(3) pser.dvscalar meson masses were found to obey a 

fO:or’mula Similar to that of Cell-Mann and Okubo, but wiLth masses replacing 

square& masses. Cur technique for in&Ming internal symmetries tierefore 

has nontrivial implications. 

Finally, we observed that we could couple external fields to quarks on 

tie ends of the string in a straightforward way. The essence of the technique 

consisted of examining the spacetime fielhtheoretic Lagrangian for a quark 



coapled to a vector gauge field and restricting the quark fields to a world-line. 

The gauge fields were then interpretable as external field putentids and the -- 

system was invariant under a restricted class of gauge transformations, 

Furthermore, the point quark Iagrangian permitted us to clearly identify the 

physical currents. 

Only the simplest aspects of our proposed models have been worked - 
OLIN in detail here. There are clearly many other facets which would be 

interesting to explore, The baqyon spectrum needs to be investigated more 

thoroughly, as do the problems of using Dirac quarks for both mesons ani 

baryons. Under&Ming the quantum mechanics of these models will surely 

be challenging. ISany additional effects will occur when one allows arbitra-ry 

rmtions of the string, instead of considering only longitudinal motions as we 

did here. Calculating form factors for models wit& IX+ac-like point quarks 

Will E&e stringent conditions an the phenomenological validity of our prOpOSdS. 

It iS also possMe to replace or supplement the relativistic string 

potential by more complicated interactions. For example, an Iwasaki-Kikkawa 

spimniiig string G3 , corresponding to the Never?-Schwartz model, would be 

erected to generate spin-spin interactions between the quarks, One could 

alSO conceive of stringlike potentials that would generate more complicated 

spin7 spin interactions, or even isospin- isospin interactions ; such “strings’ I 

would then have a close phenomenological correspondence to the effects of 

field- theoretic quark binding, 
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Appendix -- Fields op1 a World-Like, a World Sheet, etc. 

Following a suggestion of Giles aad Tye aa we treat a field on a space 

smaller tian physical spacetime by using the i.&uced metric on the s:QKllez 

subspace to generate Poizcaretivariai1t Lagrangiaz. L p Q-*ametriziia9? tb 0 w 
a srMpace by the variables 7 , we write the spac&ime position of any poii2t 

~II the subspace as d-f Til), The tidVi6ed metric is defined in terms Of the 
a20 - 

tangents - as 
d’e a2 a2 

gab = 2 ‘VU a,b - f Xa*xb ) (A 4 

where the p-space metri6 qPV is taken to be flat, but could depend on 8 

e.g., til polar coordinates. Iii Cartesian coordinates, qW = diag. (-1, P,1,1). 

Writing 

g = det (gab) ) 
(A.2) 

a 
we find the irvarimt volEme element in T -space to be 

(do) = (d7) Jq , 
@.3) 

If we now defiine gab as the i-aveme of gab , we c&l exaidi~e 

“he metric rl W written in ten‘ms of a complete set of vectors 

flpv p ab v = xag Xb + c r&l” iii l (A l 4) 

rl becomes the iuerse of # provided the n’ aire an independed set 
PV 

of normals to the szbspace, 

The metric gab has one timelike direction, while XI: is always spacelike. 

(A.51 
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We confirm that 

Now let us consider a field r@(x) and restrict it to live only 8iz the 7’ 

subspace, so that its ~1ozmal derivatives out of the szbspa6e vanish, 

ny all $(x(~~)) = 0 . 67) 

Then we take Q to depend on 7’ through the variables xY( 7’). This 

gives effectively 0 = Q ( T a), where each point 7’ corresponds to a partierflar 

point on the SUbSpa6e embedded in x? space. 

The result is that derivatives of $ with respect to J are replaced by 

= .Ugab’ aQ(Ta) 
a b 

aT 

In a one-diz2ensiona.l timelike T - space corresponding to a point 

particle’s world-line, we fin6 

g lJ V = fi? = x7 qpv x7 E x 2 
ab 7 

ET ab 
= .!3 

-1 = 1/x; 

The invaria& line element is simply 

dS = d-c d-g = d+ 4-x; . (A l lQ) 

(A.6) 
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Figure CaptiOiS 

Fig. 1,l Dualibj -diagram for the s-t contri’btion to tieson-meson scattering. 

The dotted area represents the surface swept out by the string. 

Fig. 3.1 Phase-space diagram following from eq. (3.5). 

Fig, 3.2 A typical motion aeerdting from the Eamiltonian (3.21) in the zero 

mass limit. 

Fig. 3.3 (a) Fure Jl mode, (b) pure J2 mode, indicatbg dipark 

corTelatione inside Iow mass baryons . 

Fig. 4.1 Node1 for meson coissisting at a given time ui a point qTGsEL*k and 

a point a&i-park connected by a strizng. 

Fig, 4.2 Three possible configurations for the quarks on the string, giving 

model baryons . 
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