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ABSTRACT 

Three-particle scattering theory is reexamined for interactions 

which contain singular cores in a finite number of two-body partial- 

waves. It is shown that the Faddeev equations do not possess a unique 

solution for the corresponding t matrix, and hence cannot be used 

directly to examine ffrealisticf’ singular core models of the N-N inter- 

action. For the special case of a pure boundary condition model, 

alternative one-dimensional equations are derived based on the 

Schr’ddinger and Faddeev representations. These are shown to be 

completely equivalent, and to uniquely specify the three-body observ- 

ables. The Faddeev version is shown to be a special case of the author’s 

boundary condition formalism. Equations suitable for “realistic” models 

which include potential tails are presented. 
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1. INTRODUCTION 

The hard core and its generalization, the boundary-condition model (BCM), 

provide a useful abstraction in describing the short-range behavior of the 

nucleon-nucleon (N-N) interaction. Both have been employed to construct models - 

of the N-N potential which are “realistic” in the sense of providing an excellent 

fit to N-N scattering data and the static properties of the deuteron. ’ In order to 

assess the effectiveness of this description (e.g., in comparison to soft-core 

models) one must probe the off-shell structure by studying systems of three or 

more nucleons . However, special problems arise in performing three- (or more) 

body calculations in the presence of singular cores. This was first noted by the 

present author almost five years ago, 2 and further explored in two subsequent 

articles. 3 

In the first of these papers (SC I), it was shown that if the three-body wave 

function is taken to vanish identically whenever any pair of particles is within 

their core radius, then the Faddeev equations do not possess a unique solution; 

this assumption is equivalent to requiring a singular core to be present in each 

two-particle partial-wave. It was further shown that for a “pure” BCM (no 

external potential), the Faddeev equations could be reduced to a one-dimensional 

form (since the BCM t matrix is not separable, this is a unique feature of the 

model). However, due to the absence of information in the interior (core) region, 

this reduction does not lead to a unique solution, and it was necessary to supple- 

ment the BCM by an auxiliary boundary-condition. The choice of this additional 

constraint is limited by analyticity and three-particle unitarity, and the form 

proposed in SC I is essentially the simplest consistent with these requirements. 

Unfortunately, this procedure introduced an arbitrary parameter (W,) into the 

problem which was aesthetically unsatisfying, although subsequent numerical 

work in SC II demonstrated a complete lack of sensitivity to this parameter. 
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On the other hand, the treatment in SC1 depended on some special operator 

relations and did not apply to the case where a singular core is present in only 

a finite number of partial-waves, and there were indications that this could change 

the character of the problem. Thus V. Efimov had shown that the Schrodinger _ 

equation for three identical bosons interacting only via s-wave hard cores could 

be reduced to a unique one-dimensional form, 4 and Kim and Tubis had solved the 

(two-dimensional) Faddeev equations numerically for an s-wave Herzfeld poten- 

tial (hard core plus square well). ’ However, these results raised some questions 

in that Efimov’s derivation did not address the problem of three-body unitarity, 

and hence might have corresponded to a trivial (and parameterless) auxiliary 

condition rejected in SC I. Similarly, it can be shown that the Faddeev kernel 

is not square-integrable (L 2 ) even for an s-wave core, and thus it was surprising 

that Kim and Tubis could achieve a stable numerical result with their technique. 

In addition, it was not clear how the ambiguity demonstrated in SC I could arise 

in going from a finite to an infinite number of partial-wave cores, whether it 

could be eliminated by following this limiting process, and whether numerical 

results would be stable as cores were added to p, d, . . . waves. 

Recent results by V. N. Efimov (a different Efimov than the author of Ref. 4) 

have added to the confusion surrounding this subject.’ Thus, by extending the 

method of Ref. 5, he was able to derive a unique one-dimensional equation for 

three identical bosons interacting via the s-wave BCM (this differs from the hard 

core in that the logarithmic derivative parameter ho is finite). This distinction 

enables one to include an attraction, and hence the system can bind for suitable 

values of Ao. If one takes the (average) nucleon mass, and requires the two- 

body system to have the deuteron effective-range parameters, the core radius 

rc and ho are determined and the three-body problem is uniquely specified. 
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Numerical results for this model have recently been obtained by V. N. Efimov 

and H. Schulz, who quote a binding energy of 7.7 MeV. 7 This is to be compared 

with results of 18.4 MeV and 12.7 MeV obtained by this author and Kim and 

Tubis, respectively, using the same values of rc and ho. Although the assump- 

tions of SC1 (and the resultant equations) differ from those of Efimov in the sense 

noted above, it is nevertheless surprising that results as different as 18.4 and 

7.7 can be obtained with models which embody essentially the same physics. 

Moreover, the model studied by Kim and Tubis is exactly identical to that of 

Efimov and Schulz, and hence a discrepancy of 5 MeV (compared to errors of a 

few percent) is quite disturbing. Inasmuch as all of these authors have taken 

some pains to verify their numerics, it is clear that our understanding of this 

problem is far from satisfactory. 

The aim of the present article is to clarify this situation by relating the 

various approaches taken to this problem. We begin in Section II by considering 

the method employed by the Efimovs. 438 As noted above, this approach has only 

been carried through in the very special case of identical particles and s-wave 

cores. However, by utilizing the powerful operator techniques developed in 

SC I, we are able to derive a one-dimensional equation for the pure BCM which 

is valid in the most general case (no restrictions except to a finite number of 

two-particle partial-waves). Moreover, we demonstrate that this equation pro- 

vides a unique solution, and that uniqueness of the wave function does not require 

the special symmetry for identical particles relied on by Efimov. The derivation 

is also more general in that it is applied to the scattering state, rather than the 

bound state problem, and one can apply the methods of SC I to explicitly verify 

three-particle unitarity. 
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We next present a completely independent derivation in Section III based on 

the Faddeev equations; this again leads to a unique (but different) one-dimensional 

equation. In the process we prove that a unique solution to the Faddeev equations 

does not exist, even if the singular cores are restricted to a finite number of 

partial-waves. This clearly casts some doubt on the numerical work by Kim and 

Tubis. The precise relationship between the different approaches is then exam- 

ined in Section IV, and the following results are obtained: (1) the three-particle 

scattering amplitudes Ts and Tf defined by the derived integral equations of 

T Sections II and III are related by Tf = Ts , and hence are identical; (2) as the num- 

ber of partial-waves is taken to infinity the latter equation is identical to the 

result of SC1 (and the same ambiguity reappears); (3) as is the case for conven- 

tional potentials, there exists suitable input to the author’s general boundary 

condition formalism (BCF) which exactly reproduces the equation of Section III. 9 

The distinction between the equation derived in SCI and the new equations can 

thus be expressed as a more general type of “auxiliary condition” in the sense of 

SC I. 

The implications of these results are discussed in Section V. In particular, 

one consequence of Section III is that the Faddeev equations are never suitable 

for three-particle calculations if 9 singular cores are present. This presents 

an apparent impediment to the consideration of ffrealisticff singular core models 

( i.e., with external potentials) in the three-nucleon problem. However, we 

demonstrate that a trivial extension of the derivation given in Section III yields 

suitable integral equations for this problem. It should be stressed that the con- 

siderations of this article do not pertain to the applicability of the BCF as a 

general approach to the three-body problem. In fact, it is the 9 formalism 

sufficiently general to incorporate both conventional potentials and singular cores. 
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11. SCHRiiDINGER DERIVATION 

In this section we derive a one-dimensional equation for the pure BCM using 

the method devised by V. Efimov4 (and extended by V. N. Efimov’). This 

requires that we begin with the SchrXinger equation for a model with finite 

repulsion, and subsequently go to the hard core limit. In doing so we shall rely 

heavily on the operator techniques developed in SC I. This permits us to para- 

phrase the Efimov derivation in a more elegant fashion, while at the same time 

extending it to a much more general situation. Although we ignore spin and 

isospin degrees of freedom, these can be included by a simple extension of the 

basis states, and thus our result is quite general. 

We denote the mass of-particle a! by mo and the total c.m. energy by W. 

Three-particle states are described by the usual Jacobi variables sa, ?&, which 

correspond to the relative momentum of particles p and y, and the momentum 

of Q relative to the P-y c. m. , respectively. The conjugate variables in the coor- 

dinate representation are taken to be zo,Fa. Introducing the corresponding 

reduced masses pLa!, Ma, these definitions imply that the quantities 

F2 = p2,/‘@o + qt/2Ma! , 

(1) 

are independent of the index Q!. The condition for a physical scattering state 

(on-shell condition) is that H2 = W. 

In order to rid ourselves of the channel indices, and to consequently simplify 

the required manipulations, we follow the method of SC1 and introduce a Hilbert 

space of states Io~z> with the normalization 



Here the index CY implies that F,$ are the numerical values of Fo,ca, and the 

completeness relation automatically performs the sum over channels in an oper- 
* 

ator product. Although only two of the six vectors FO,TP (or zP,j?P) are linearly 

independent, it is convenient to retain all of them in order to most simply express 

the corresponding two-particle operators. The connections between them can 

be expressed via an operator I which “interconnects” 

Thus 

< a‘F;l-$ II Ipsy> = -&-5;) 6(<-?$) 

< G?y 11 IPFj?> = - qG$,$ S(F- j$ 

the Faddeev channels. 

, 
(3) 

, 

where gP,;iiP (Ti,$J are the appropriate linear combinations of 3 ,$ (2 ,T), 

and the diagonal matrix elements of I vanish. One can easily verify that I is a 

symmetric operator (I=IT) with the following properties 10 : 

1-l = (l-l-I)/2 , 

(1-I)2 = 3(1-I) , 

(1-I) (2-4-I) = 0 . 

(4) 

As an illustration, we note that the three-body state vector is IQ>, with the 

Faddeev channel decomposition I+> = c 1 z+!J~>. With the above definitions 
o! 

= < o!TTj: I (1-I) I ?J> 

= g- JinF& > 

where 

(5) 

(6) 
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In general, any observable quantity A (not artificially decomposed into channels) 

has the structure 

A = (1-I) x(1-1) 

= + (1-I) A * (7) 

=+A(l-I) . 

We may now define the free Green’s function (Go) and the two-particle t 

matrix (t) as operators on this space; thus 

<a?? ltlpF<> = ~@S(~ -3 ta!@‘F;Sa) , 

63) 

where s a! = W-q2/2Mo. Similarly, defining the potential operator V such that 

<G-3;;; lvIp;;*~>=s *psF-? ) V*(;;I’3 , (9) 

t satisfies the Lippmann-Schwinger equation 

t = V-VGot 
(10) 

=V-tGOV , 

written on this Hilbert space. We may now state the Schr’bdinger equation as an 

operator equation on our basis in the form 

1 I*>= 0 , (11) 
with Go = (Ho-W-ic)-l. Substitution of the channel representation leads to the 

relations (using Eq. (10)) 

I$J> = I@> - GOVIxO , (124 

I$> = (l-Got) I$> + Got II+> , (12b) 
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1% = (l-Got) [I$> - II@>] . WC) 

Here I $> is an arbitrary incoming (plane-wave) state in our basis satisfying 

(Ho-W) I$> = 0; Eq. (12b) is the wave function version of the Faddeev equations. 

Furthermore, by writing Eq. (11) in the form 

(Ho+V -W) I*> = IV I*> (13) 

and employing Eq. (lo), we deduce that 

Ii&k> = (l-Got) I@> + Go IVIW 1 , (14) 

and hence that 

V I*k> = t(l-I) I +> + tGo IV I@> . (f5) 

All of the above equations assume that V is a typical potential with “normal” 

convergence properties. We now specialize somewhat to potentials of finite 

range such that Vo(y,‘;T1) vanishes for x > ao (or x1 > acr). We embody this con- 

straint into our formal development by introducing an operator 2; such that 

<czy-, IV Ipzy> = 6 ap S(y-7) S(Z-3) B(ao-x) , (16) 

where 6 is the unit step function (this notation is consistent with SCI). The 

finite range restriction can then be expressed as 

v=vv=vv , (17) 

(clearly Y is a projection operator). A general property of such models is that 

tGo = tGo v + t’Go(l-0) , (18) 

where t? has the operator structure of t in Eq. (8), with 

tp ‘G-&J = F ($$) p,(;- if, tap@‘, Ka;Sa) Go&p, so). (1% 

Here tol(pl,p;sQ) is the partial-wave projection of tcr@ ,F;so), and K~ is the 

on-shell momentum value; K o1 = (2pasJ’2. The function Gold is arbitrary except 
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for the requirements that it be entire as a function of p (for fixed so), and 

satisfy 

C+,,,tK,, SOL) = 1 , 

for x > aQ! (a particular choice is discussed following Eq. (24) of SC I). Physi- 

cally, Eq. (18) is just the statement that the wave function of the two-particle 

system takes its asymptotic form for x > a cl! (note that the two-body state vector 

is given by I$,> = (l-Got) I$>, and use the symmetry of Go and t). In practice, 

the precise form of GaL never matters, since its integrated property (Eq. (20)) 

is all that is required. 

Returning to Eq. (15), it follows that for finite range potentials, 

v Nr> = [t(M) + CB + gY]lqb> ) (21) 

where 

GBl$> = tGov IVNr> , 
(22) 

gY I+> = tlGo(l-v)I V 1’39 , 

and g has the form 

With this definition <o$z IY is independent of the value of p (note that Y and 9J 

are different quantities than those that appear in SCI; the notation here is that 

of V. N. Efimov). Consequently, we deduce that 

T(l-I)%3 I $> = T(l-1)V IQ> - Ql-I)[t(l-I) +gY]I cp> , (24) 
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and that 

I$>= - Got(l-I) - Gov9J -GOgY I$> , 1 (25) 

using Eq. (12a). Equivalently, defining the channel t matrix 7 such that 

I+> = (l-Go7) I$> , * (26) 

we have 

7 = t(l-I) + 2;LzJ + gY . (27) 

Up until this point we have said nothing about singular cores, and there are 

no delicacies involved in the above manipulations. Our motivation has been 

to derive certain operator relations (and in particular Eqs. (24) and (25)) which 

are valid for arbitrary finite range models (which may include finite repulsive 

cores). The basic idea of the Efimov approach is to take these equations to the 

hard core (or BCM) limit. In doing so, it should be noted that the potential 

operator appears only in the combination VI*> in Eq. (24). All reference to V 

can be eliminated by noting that 

lim v(l-I)VI*k> = 0 . 
(BCW 

(28) 

This may be deduced by considering the Schrodinger equation (Eq. (11)). Inside 

the core region, that equation can only be satisfied in the limit of infinite repul- 

sion if IsI> - 0. Except on the boundary, this implies that (HO-W) IP> - 0, and 

the overall operator 7 in Eq. (28) projects onto the interior. In taking this 

limit, it is important to note that possible difficulties are avoided due to the 

separation achieved in Eq. (21). Thus, although operator products involving t 

may (and do) become delicate after the limit is taken, the multiplicative nature 
BC of g implies that no problems arise in taking toa@!, ~o;sJ to toln (p’, K~;s~) in 

Eq. (23). Also, g is taken to be the limit of the product given in Eq. (22), and 
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hence one expects Eq. (24) to remain valid in that limit. We thus obtain 

V(l-I)% = -?(l-I)[t(l-I) + igY] (29) 

in the BCM limit. 

To this condition we must add the basic statement of the boundary+ondition 

in order to obtain an equation for the unknown quantity Y, which via Eqs. (27) 

and (29) is sufficient to determine r (and hence I%>). We first recall from SC1 

thatll 

tBC al tP> Ka;Sa) = N&P)/D~,(K~) 2 

N&P) = (y&Q 4 j&yp) + aorp ja+,@,p) , (30) 

DuQba) = iWaKa! (aah,,- hQtaayJ + aaKahQ+&.pa) 
t 1 * 

Here Aora is the (constant) boundary-condition parameter such that 

lim 2&&a,+e)/+01(a,+e) = Aal . 
E-+0 

(31) 

Furthermore, if Nora is the Fourier transform of NQ1@), one can show that 

(32) 

for an arbitrary function f&x). Therefore, defining an operator b such that 

the boundary condition can be represented formally as 

bl*>=O . 

As a consequence of Eqs. (23) and (33)) it follows that 

bGOgA = A , 

(34) 

(35) 

providing A is an operator such as Y with no p-dependence (see remark following 

Eq. (23)). Also, the nature of NQL involves the implicit limit x - aQ! (i-), and 
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hence 

b?=O , 

i&t = 0 , 

?g=o . 

Finally, we observe that 

+ (l-7) Go’tBc 1 
=bGyBC 

0 

(36) 

(37) 

= b 

using (t’ BC T -BC ) rt (same notation as SCI); the last step requires the explicit 

formulas of Eq. (30), and is implied by the two-particle boundary-condition 

bl$2>=b(l-Got)l@2>= 0 . (33) 

With this background we can complete the derivation by substituting 

I*> = (1-I) I$> into Eq. (34), with I$> given by Eq. (25). We thus obtain 

b(l-I) I- Got&I) 
[1 

- GOi% - GOgY = 0 , 1 (39) 
since I $> is arbitrary; or 

Y = bIGot(l-I) - b(l-I) Go% + bIGOgY , (40) 

using Eqs. (34) - (37). This will clearly become an integral equation for Y (and 

reduce to one-dimension in a partial-wave decomposition) providing one can 

uniquely solve Eq. (29) in order to eliminate 68 in favor of Y. Technically, 

Eq. (29) does not possess a unique solution, but it turns out that the ambiguity 

resides in a subspace which is not required for our purposes. 

In order to investigate this point we must be more precise in defining our 

model. In the above we have implicitly assumed that the partial-wave sums 

are truncated to values 1~ da. We may incorporate this restriction explicitly 
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by defining a diagonal projection operator A such that 

na = 1 for Q 5 QQ! , 

(41) 
= 0 Q>Qa ; 

- 
A commutes with all of our basic operators except I. The precise statement of 

Eq. (29) is then 

AV(l-I) A?% = -A”v(l-I)[t(l-I) +gY] . (42) 

In order to solve for G% it is tempting to define an inverse x such that 

Ag(l-I) Av’x = A”v , (43) 

but one can explicitly show that this equation has no solution. Specifically, if 

we define a diagonal projection operator R in the coordinate representation such 

that 

Ra = 1 if R < Min (a& , 

(44) 
= 0 otherwise , 

it can easily be shown that 

Av(l-I) Av R% = 0 (45) 

for a nontrivial subspace x0 (note that Eq. (1) implies that R commutes with I, 

v and A). However, it is possible to define an operator B such that 

A2;(1-I) ATB = (1-R) Av . (46) 

Thus, although RB is not uniquely determined by Eq. (46), one can show that 

(l-R)B & uniquely specified. Here we observe that after a partial-wave decom- 

position Eq. (46) reduces to a set of coupled integral equations in the variables 

x,y. However, by making the change of variables 

x = B cos ‘#I , 

y = @a/Ma+‘2 
(47) 

Rsin$ , 
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and recalling that I, v, A conserve ft, these can be reduced to a set of one- 

. 

dimensional equations in the variable Cp. Furthermore, these equations can be 

solved analytically in the special case of identical particles and s-wave cores, 

as was first shown by V. Efimov. 4 
- 

We therefore define B by Eq. (46), and write the solution of Eq. (42) as 
12 

g = -B?(l-I)[+I) -I- gY] . (48) 

This is possible because R only has support in the region interior to all the 

cores, and hence 

R=%=Rv . (4% 

Also, Eq. (18) implies 

tl@> = pGov + tr GO(l-0)-j G,%$> 
(50) 

= tv#o , 

for an on-shell state I $ >. Therefore, by Eq. (36) we have 

[t(l-I) +gYJ I@> = (1-G) [t(l-I) -I- gYJ I $J> 
(5 1) 

= (1-R) [t(l-I) +gY] I@> , 

and since our derivation requires that g is ultimately to act on I $>, we find 

that Eq. (48) requires only the unique (1-R) portion of B. It is useful to define 

an operator Q such that 

B = l-AvB(l-I) ; 

we can then write Eq. (40) in the form 

Y=ri-kEY , 

w3 

(53) 

where 

a = bGO[l - (l-1) Q] t(l-I) , 
(54) 

ii = bGo[l - (1-I) Q-j g . 

Due to the nature of b, Eq. (53) reduces to a set of coupled integral equations 

in a single continuous variable (4). 
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We have thus derived a one-variable equation for the operator Y. Using 

Eqs. (27)) (48) and (52) we find that the channel t matrix is given by 

7 =Q[[t(l-I) t-gY] . (55) 

However, the complete three-body t matrix is given by - 

T = (1-I) T , (56) 

and the three-body wave function is 

<cY‘;;~~Q = <a?71 l-GOT I$> . (57) 

We thus conclude that Y is completely sufficient to specify a unique solution to 

the problem. In this context we note that Eq. (51) again implies that the 

ambiguous part of B (or G) is annihilated in constructing 7 from Eq. (55). This 

observation eliminates the need for the symmetry argument relied on by Efimov 

in the identical boson problem. 

HI. FADDEEV DERIVATION 

We consider in this section a completely independent derivation based on 

the Faddeev equations. In the process we demonstrate that the Faddeev equa- 

tions as they stand do not possess a unique solution in the presence of singular 

cores, but that the full three-particle t matrix is nevertheless uniquely deter- 

mined by a reduced equation in one dimension. Again for simplicity we consider 

only the pure BCM (no exterior potentials). 

The Faddeev equations can be stated as an operator relation on our Hilbert 

space by substitution of Eq. (26) into Eq. (12b). We thus obtain 

r = t(l-I) I- t IGo . (58) 

As in SCI, we assume that this equation holds when t and T are replaced by 

their respective BCM limits (due to the presence of Go in the product tIGOr 

there is enough convergence to justify this assumption). However, unlike SC I 

we regard t as being restricted to the truncated angular-momentum space defined 
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by A, and thus Eq. (58) is to hold with t - At = tA. The three-particle state 

vector is then 

I+ > = (l-I)(l-GO~)i $> 

= (l-I)(l-G0A7) I $> . 

Using the explicit form of the BCM t matrix we have 

~Got=tGo~=~ , 

(59) 

(60) 

and thus we obtain 

Az;bP> = 0 (61) 

by applying ATGo to Eq. (58). Physically, Eq. (61) implies that the three- 

particle wave function vanishes if any two particles are within their core, 

providing that a core is present in the corresponding channel wave function. 13 

In this context we observe that the projection (1-A) 1% is nontrivial, since 

scattering can occur in those states due to the two other Faddeev channels 

(recall that A and I do not commute). Defining M= 1-G07, we have 

IX@> = (1-I)MI$> , 

Av(l-1)M = 0 . 
(62) 

As in the previous section, we require the operator (?$ defined in Eq. (52). 

Using Eq. (62), we deduce that 

&M=M (63) 

(Eq. (46) implies that B =Bh%$. Furthermore, Eq. (46) can be used to demon- 

strate that B = BT (this is required for (l-R)B and can be imposed on RB). By 

combining Eqs. (46) and (52)) one can easily prove the following useful proper- 

ties of the a operator: 

Ag(l-I@ = A?+l-1)R , 

ag(l-R) = Q(l-R) , 

[(l-I)Q]T = (l-98 2 

@?A = VAR. 

(64) 
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We also recall the following property of the BCM t matrix from SCI, 14 

Got = v + (1-v) GOT , 

(65) 
E=o . 

This can be established from the above by using Eq. (60) and taking the trans- 

pose of Eq. (18). We thus identify 

“t = (tIBc)T w3) 

in terms of the operator t1 defined in Eq. (19). Noting that 

?R = rvR= 0 , (67) 

we may apply the above properties to show that 

TiQTh = %VAR 

With this result we easily prove our assertion concerning the nonuniqueness 

of the Faddeev equations, which are equivalent to the relation 

M=l-Got+GotIM s (6% 

Let x0 be a nontrivial solution of Eq. (45), then 

(1- GotI)ARxO = AVI - (1-v) GoTI TARx, 1 
= Av(l-I) A%% (70) 

= 0 . 

Therefore, if M is a solution of Eq. (69), M’= M+ARxO is also a solution. We 

note that the corresponding contribution to I*> is 

Al*> = (1-I) ARxO 

= v(l-I) AvRxo , 
(71) 

and hence this produces no change in Al% >. To prove uniqueness for (l-A)lQ > 

is more difficult; however, the on-shell value of T (not just AT) does not require 

the ambiguous part of M. 
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This leads us to suspect that a unique equation does exist from which to 

determine T, and in fact it is quite simple to derive. We define 

x=‘%IM , (72) 

which implies that - 

x = TI$M 

= TIg 
[ 
1 - Got -I- GOtIM 1 (73) 

=yIg 1 -Goy+GOz 
[ 1 , 

using Eqs. (65)) (68) and (69). Due to the separable form of T, this provides a 

one-dimensional equation from which to determine z. Similarly, we have 

M=l-A+AM , 

AM = ATM + A(l-v) 1 (74) 
, 

and hence 

(1-I)M = (1-I) G(l-R) - Got+ GOii -!- (1-I) GRM 1 . (75) 

We thus observe that x is sufficient to determine everything except ATM. Also, 

~(1-1) QRM = AV(l-I)M 
(76) 

= 0 , 

so that s uniquely determines A IQ>. 

In order to relate w to T we adopt the procedure (and notation) of SC I and 

define operators ;, F such that 

(77) 

Thus 

x=0 , 

:=F: , (78) 

^tGgFt^=^t , 
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the last relation being similar to Eq. (35). Given the form of Eq. (73), we 

may then define a new operator X such that 

ii=F(i+X) . (79) 

It follows that X satisfies * 

or 

X = ;(I&l) + ;Ia GOFX , (80) 

;(l-I@ (1 + GOFX) = 0 . (8 1) 

Moreover, from Eq. (74) we deduce that 

(1-v) Go7 = (l-v)A (1-M) 

= -(l-v) GOFX , 
(82) 

and thus 

iGO~ =-X . (83) 

It is therefore clear that if we go on-shell from the left, T --L -FX; i.e., 

<@IT = -<$IFX . (84) 

This can be made more explicit if we introduce a partial-wave decomposition, 

coupling r(F) and r(z) to form a state of total angular momentum L. Our basis 

states then become I c!LMJSpq>, and Eq. (83) is equivalent to the relation 

< aLh%ipqlx = -DaL(~J < CLL?d%fKDq 17 . (85) 

Thus X is essentially the on-shell value of T ; note, however, that Eq. (85) is 

valid for all q, not just in the physical region (K: negative as well as positive). 

We have thus demonstrated that although the Faddeev equations do not 

possess a unique solution for the BCM t matrix, a unique one-variable equation 

for the quantity X can be deduced from them (Eq. (80)). Given X, there is 

sufficient information to construct both the on-shell three-body t matrix (T), 

using Eqs. (56) and (85), and the A projection of the wave function (for comparison 
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with SC I we note that X was denoted by Y in that reference). Actually, we have 

nowhere used the fact that J (p:, is an on-shell state in this section, and hence X 

is sufficient to determine T half-on-shell (from the left), and AT fully off- 

shell. 15 By symmetry we can then construct Ik> uniquely, as in Se&ion II. 

We thus arrive at an alternative formulation of the problem, having obtained 

two rather different looking integral equations (Eqs. (53) and (80)). In the next 

section we demonstrate that these two equations are in fact equivalent. 

IV. COMPARISON OF BCM FORMALISMS 

In the preceding section it was shown that the Faddeev equation is uniquely 

related to the three-particle observables via the solution of a reduced (one- 

dimensional) equation. The latter is quite different in form from the equation 

derived in Section II, and we begin below by first establishing their equivalence. 

We next demonstrate that as A- l, the equations are identical to the result of 

SC I, and the same ambiguity reappears. In order to relate singular core 

models to the general boundary condition formalism (BCF) proposed by this 

author, 9 we explicitly exhibit the input to the BCF which is required to exactly 

duplicate the T operator defined in the preceding sections. Finally, we consider 

an alternative equation which may be derived by the techniques of Section II, 

and show that it is precisely identical to Eq. (53). 

It will be convenient in what follows to employ the angular momentum 

decomposition noted above, and to thus employ the I crLMQhpq> basis states. In 

order to simplify the notation, we will consider the conserved quantities L, M 

held fixed and not state them explicitly, and will also eliminate reference to the 

superfluous p-variable in our one-dimensional equations. We therefore intro- 

duce the basis I o&q> with the normalization 
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We will retain the notation K, a of Eq. (53), but now regard this as an equation 

on the simplified basis. We therefore have 

<o!Q’h’q’ IE I pehq> = N;;, (K;) -CVLMt’A’ K;q’ I t^ Go [I - ( l-I)$]tT l @mKpq> * 

* DpQ K/3 ’ -3 1 (87) 

and take 

izIc/D = molt> , 

038) 

<o!Q’A’q’ I a0 I q> = 
J 

dp’p’2 <aLMQ’h’p’q’ I (1-I) 
0 

In obtaining Eq. (88) we have used the fact that I$> puts p’ on-shell in simpli- 

fying t(l-I) I c$>. Defining 

z = (1-Q-l 

on the reduced basis, we find that 

Y I$> = (Z-l)szo I$> . 

Similarly, we define a T such that 

(89) 

<a!Lh@‘h’p’q’ 1 fi2’ I ,OQhq> = - <crL&‘IQ’h’p’q’ 1 (I-I@ t’ IpLM&iK 
P 

q> . (91) 

Recalling Eqs. (55) and (56)) it follows that 

Tr = ATD-$Y+tio) 

= -fiTD-$Q 
0 ’ 

where the notation “r” means that T’ produces the half-on-shell t matrix when 

acting to the right on an on-shell state; i. e. , T’ I $, = T I@>. Here it is under- 

stood that TK is to be sandwiched between states of the full basis, whereas 

intermediate states in evaluating Eq. (92) are taken in the reduced I orQhq> basis. 

We have also used the notation D to represent the multiplicative factor DrnQ(~J 

as a diagonal operator. 
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We now consider the transpose of T’. Applying Eq. (64), we first obtain 

<aQ’ A’ q’ I riT I PQAq> = D --it (K~)<CYL~‘h’ K’$ it^I$ GotT I/%mhKpq> NE;t’K& , 

where we have used - 

+-C$ = 5(1-8) = 0 (94) 

to simplify the product. Employing Eq. (68)) which also holds for t in view of 

Eq. (78), we note that 

&GoiT = tIB(l-@Go:T . (95) 

However, it is straightforward to show that 

(l-@GoiT I PLMQhKpq> = /-m 
0 

dpp2(l-+2,F I &NLehpq>NpQ(Kp) DpQtK$ 

= (l-7) GoG I /3LMQhKpq> NpQ(~$ ; (96) 

i.e., the intermediate integration in (l-$GogT just puts N PQ 
(p) on-shell. Here 

we have defined “G such that 

<aLMQ’h’p’q’ I “G I ,BLMQhpq> = 6op 6Q,Q 6h,A 6(q’-q) GaQ(p’,sa) . 
q2 

(97) 

We may now define a new kernel K by the relation 

K = DRTD-l - , (98) 

it follows that 

<arQ’h’q’ 1 K IpQhq> = <CYLM.t’A’K’$’ It^I@O~ @L~hKpW DpQ KP -lt ) . (99) 

Defining Z = (l-K)-l, it is straightforward to obtain 

(Tr)T = -&J;fD-‘ZSJ . (100) 
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On the other hand, Eq. (84) implies that 

<@IT = - <$~l(l-1)FX 

=-<$$D-‘X , 
(10 1) 

and Eq. (80) can be stated in the reduced basis as 

x=52+Kx . (102) 

We therefore conclude that the Faddeev derivation produces the operator 

ti= -9TD-1ZsZ , (103) 

where the “Qrf signifies that TQ is identical to T when taken on-shell from the 

left. Comparing Eqs. (100) and (103)) we have established that 

(Tr)T = TQ . (104) 

If we denote the operators produced by the two derivations as Ts and Tf, 

respectively, the content of Eq. (104) is that 

<$IT+b = <AITsl+ (105) 

for an arbitrary state IA>. However, we have derived our singular core for- 

malism as the limit of a theory which is invariant under time-reversal, and 

hence we expect T to be symmetric. One can infer this, for example, from 

Eq. (58). We therefore conclude that both versions of the formalism are entirely 

equivalent in producing the half-on-shell three-particle t matrix. In addition, of 

course, the Faddeev version also produces the A projection of the fully off-shell 

t matrix (AT). 

If we now compare the Faddeev derivation to the development given in SC I, 

we observe that they differ only in the use of B rather than the operator Q. That 

is, in contrast to the properties given in Eq. (64)) it was shown in SC I that (in 
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the limit A - 1) an operator Q exists such that 

q(l-1)Q = (1-I) Qv = 0 , 

QQ=Q , W’6) 

[tWQ]T = (1-I) Q , 

Qv = TQZ; . 

In fact, Q has the same form as Eq. (52) with a suitable choice of B, which in 

this case can be obtained in closed form (see the Appendix of SCI). Since Q is 

a projection operator it is clear that the form obtained is unique, and hence we 

can formally set R=O. 

We therefore again obtain Eqs. (80) - (85), but with one important difference: 

Eq. (80) no longer uniquely determines X. This is due to the fact that as A - 1 

(and consequently g - Q) the kernel is no longer compact, and there are non- 

trivial solutions of the homogeneous equation. Specifically, in the (acZy) repre- 

sentation with x=a ~, there is in general a maximum displacement yoo such that 

at least one of the pairs (a@), (crh) are within their core irrespective of i.jl if 

YCYO,. For identical particles and core radii ac,=a, one finds yi= fi a/2. This 

inner region may be represented by the projection operator 8 which corresponds 

to the unit step function 8(yoo-y) on the reduced I c&q> basis. It can easily be 

shown that 

8 (1-K) = 0 , (107) 

if K is defined as in Eq. (99) but with $ - Q. 

It is thus clear that the limiting case h- 1 considered in SC1 is quite con- 

sistent with the present results in that limit, and that the ambiguity which was 

noted is unavoidable. One thus must pay a price for the simplicity of Q (the B 

operator is quite complex even in the simplest case). In this context we observe 

that if we denote the kernel and driving term of the SC1 result by K1 and al, 
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respectively, then 

(1-B)Kl = (14)K , 
(108) 

(l-e)a, = (14) S-J ; 

i.e., the equations differ only in the overlap region. This may be established 

by noting that if the three core projection operators are denoted by vi, then 

(l-&IQ = ;(l-e)(l-B)IB 

= (1-e); I(l-vi)(l-Pj)Q ) (109) 

where the indices i, j depend on the label (Y of the intermediate state acting on 

Q. Thus Q is projected onto the region where only one pair can be within their 

core; and the only nontrivial case is when vicvjfl. In this region B =v regard- 

less of A, and hence Q and a coincide. 

During the past several years, this author has developed the boundary con- 

dition idea into an alternative general formalism for treating three-particle 
A 

systems. By generalizing the approach (e.g. , taking t 19 ># 0) it is possible to 

eliminate any specific reference to the BCM itself. This procedure modifies the 

one-dimensional equation obtained by the addition of two input functions 6 and C 

which summarize the off-shell structure (if V@ vanishes for x > a Q! then B=O) . 

Recently, an explicit connection was derived relating this formalism to the 

Faddeev approach, and it was shown that suitable functions 6, C may always be 

chosen so as to exactly reproduce the Faddeev amplitudes given any combination 

of two- and three-particle potentials. 16 We now employ the same technique to 

show that this is also true for the restricted BCM (A# 1). 

The BCM and BCF equations may be written in the form 

x = z(I-l)Q + KD-lx , 

x1 = p-e) ZQ-1)Q + klD-lXl , 
(110) 
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respectively, where 

ii=lm , 
c- 

K1 = (1-6)K + 9e . 
(111) 

Here e is related to 6 by the equation 

ED-l = i -I- &l-R) , (112) 

where R is a diagonal operator corresponding to the factor 

R&Q = 1 - Dti(~)/Dapha) , (113) 

and;;;; corresponds to K CY with W replaced by the (negative) energy parameter 

Wo. As noted in the Introduction, the case C=O is essentially the simplest con- 
.-. 

- sistent with unitarity, convergence and analyticity (note that C is required to be 

real-valued). 

For energies below the threshold for breakup (W<O) the distinction between 

A 17 the driving terms is unimportant (both effectively go to -t), and one may 

guarantee equivalence by setting K’K1, thus determining C. However, this is 
A 

inadequate for W > 0 since it would require C to be complex (and the driving terms 

would differ for an incomirg state of three free particles). We therefore define 

a diagonal projection operator 9 on the reduced basis such that 

qq, = e(Qa-q) 3 

(114) 
Qa, = (2MaW)1’2 ; 

thus 9 is unity acting on a physical on-shell state (K:> 0). In order to obtain 

equivalent physical results , it is sufficient to require that X9=X19. Following 

the procedure of Ref. 16, we note that operators y,yl exist such that 

;(I-l)a = -(1-~9) NQO , 
(115) 

(l-&(I-l)Q = -(1-~9) NSJO , 
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when acting on a physical state ,9 I $>. Here we have used N to represent the 

factor NaP(~J as a diagonal operator; N, y, y1 are-taken to act on the reduced 

basis. Explicitly, 

<o!lAq IT lPQ’A’q’> = f <CVLMhK,qli(I-1)(8-1) IPLMPA’K@‘> N$(K~) , 

and 

y1 = (i-e)? + 6 . 

We next define a real operator U such that 

(l-u)-1(l-y9) = 1-y , 

1-u = (1-.y9)(l-r19+ . 

(116) 

(117) 

(118) 

The existence of these inverse operators (and U) is a consequence of the fact 

that 79, y19 are bounded kernels on the finite subspace OLqlQ, (this is the 

reason for introducing 9). Defining V such that 

c=uD+v , 

the first line of Eq. (110) becomes 

(119) 

X9’ = (1-e) ;(l-1) t&P + (l-U)-’ VD-’ X9 . (120) 

A comparison with the X1 equation then implies that X9 and X19’ will be iden- 

tical providing that 

It1 = (1-u)-l v 
(121) 

= D+ (l-U)-’ 6-D) . 

We note that Eqs. (117) and (118) imply that 

p-e)p-u~-l = (i-e) , 
u=eu , 
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A A 
so that the (l-0) projection of Eq. (121) reduces to (1-0)Kl = (l-0)K, as it should. 

Applying 6 we obtain 

ek, = eC 
=8D+8A , (123) 

where 

A= 0(1-U)-’ (K-D) 

= ep-9) (1+9)-l (K-D) (124) 

using Eqs. (111) and (118). Given c we Ean compute C from Eq. (112); one may 

verify that the result is a real-valued operator with the same convergence prop- 
4 

erties as OK. ‘-r 

We have therefore verified that a suitable input function 6 exists such that 

the BCF reproduces the observable consequences of the BCM in three-particle 

scattering. Together with the results of Ref. 16, this implies that the BCF pro- 

vides a suitable framework in which to investigate both soft and singular core 

models of the N-N interaction. In the sense of SC I, Eq. (123) can be regarded 

as an “auxiliary boundary condition” pertaining to the case A # 1, since it implies 

that 
em -lxl= 0 , (125) 

which is of the same form as Eq. (92) of SCI. 

In concluding this section we briefly sketch the derivation of an apparently 

distinct equation and prove its equivalence to Eq. (53). We first note that Eqs. 

(19)) (23) and (97) imply that 

-T t’=gG . (126) 

One may directly verify that 

i3;TGo(l-v) = bGo(l-v) 

rfGO , (127) 
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where f has the same form as ; (see Eq. (77)) except that Nat(p) is replaced by 
m 

j&p) -h&a& aaPje+l (a Q! P;] ; (126) 

this implies that fQp(KQ, KCr) = 1. If we now substitute V/Q> as given in Eq. (21) 

into the expression for gY I Cp> in Eq. (22)) we deduce that 

Y = bGOgY 

= “cTGo(l-v) $(1-I) + ?g + gY] 

= fGo @[t(l-I) f gY] , 

which is an apparent alternative to Eq. (53). However, using 

(129) 

(l-I)Qg = [(I-&l-I)& + Rv(l-I)R] g 

= (LAV) (l-1)Qg 

by Eqs. (64) and (36)) we have that 

i? = bGo( 1-v) [(l-Q) + 1&7g 

= bGO(l-v)IQ g 

(136) 

(131) 

= fGo IQg . 

Similarly, one may show that 

al+> = fGo I$t(l-I) Igi> , (132) 

and hence Eqs. (53) and (129) are identical. Within the context of their partic- 

ular model both forms were derived by Efimov and Schulz, who demonstrated 

their nurneri cal equivalence. 
7 

V. DISCUSSION 

In the preceding sections we have derived a number of results which bear 

on the questions raised in the Introduction. In the first place, we have shown 

that for models in which singular cores are restricted to a finite number of 

partial-waves (A # I), both the Schrbdinger and Faddeev approaches lead to 

unique one-dimensional equations which are in fact equivalent. In the limit A- 1 
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we recover the equations of SC1 and the same ambiguity reappears. Thus, the 

nonuniqueness noted earlier in SC I is an inescapable consequence of requiring 

I*> to be identically zero inside the cores (implying A=l), and is not related to 

the method of derivation. The distinction between the A#1 and A=1 models may - 

be regarded as an “auxiliary boundary condition” in the sense of SC I, which we 

have explicitly exhibited. 

With respect to the various numerical calculations based on the s-wave 

BCM, it is therefore clear that the equations employed by this author and by 

Efimov and Schulz are quite different, and the numerical “discrepancy” in the 

three-particle binding energy (EB) is not surprising. In this context it should 

be noted that the equation solved numerically in SCII is actually an approxima- 

tion to the A=1 problem, in that the Q operator was used but t was truncated to 

Q=O only. We expect the numerical results to converge rapidly as At^- t^ for the 

same reasons which apply in the case of potentials; the behavior of the kernel 

as a function of Q, A (for fixed L) is very similar to that of the Faddeev kernel 

with conventional off-shell t matrices. The part of the BCM t matrix which is 

poorly behaved in this limit corresponds to vGot = v (which becomes local), and 

this acts only on the interior region, producing the already noted ambiguity. 

Having chosen an ad hoc auxiliary condition to compensate for the implied non- -- 

uniqueness, the resulting equation is stable as A - 1. 18 The difference between 

this s-wave approximation and the true s-wave BCM corresponds to a different 

choice of the auxiliary condition, and the corresponding addition to the kernel 

(C) is apparently sufficiently repulsive to account for the difference in EB 

(18.4 MeV vs. 7.7 MeV). 

The situation is quite different with regard to the numerical results of Kim 

and Tubis. 8 We have shown above that the s-wave BCM Faddeev equation does 



- 32 - 

not possess a unique solution, and hence the usual procedure of numerically 

evaluating the determinant I 1-tIGo I in order to search for a zero at W=-EB 

should not produce a stable result. Similarly, methods which detect an eigen- 

value by locating values of W at which the iterated equation fails to converge are * 

inapplicable. In such cases one may define a discrete eigenvalue spectrum only 

on a subspace, and this is effectively accomplished by the reduction to one- 

dimensional form. It is therefore unlikely that a straightforward application 

of standard numerical procedures to the two-dimensional (Faddeev) form could 

lead to a unique result. We have also shown that the proper result should coin- 

tide with that of Efimov and Schulz, 7 who have tested their numerical procedures 

by applying two different techniques to the two versions of the (S&&linger) one- 

dimensional equation (Eqs. (53) and (129)). The 12.7 MeV result of Kim and 

Tubis thus appears rather suspect. On the other hand, it should be noted that 

they previously tested their techniques on the Herzfeld potential (hard core plus 

square-well), and found the result to be compatible with the limit of a finite 
r 

repulsive core . a It is therefore possible that the problem lies with this partic- 

ular model, since the BCM is slightly less convergent than the hard core (a 

special case), and perhaps this can be checked along the lines of Ref. 5. Never- 

theless, on balance our results (and additional arguments presented by Efimov 

and Schulz) indicate that the 7.7 MeV result is to be preferred. 

An important corollary of our result is that one cannot directly solve the 

Faddeev equations for “realistic” singular core models such as the Hamada- 

Johnston hard core, or the BCM of Feshbach and Lomon. 1 One must first 

eliminate the noncompactness of the kernel by reducing to an appropriate sub- 

space. For this purpose we note that the development in Section III remains 

valid if t is taken to include the effect of potentials external to the core. Thus, 
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if V, is such a potential, we showed previously that t satisfies the equation 11 

t=p + (1-tBC Go)Ve (l-Got) , (133) 

which is convergent for reasonable potentials V, (e. g. , bounded by a Yukawa 

potential). Here t BC is the off-shell t matrix for the pure BCM (what we called 

t in Section III). It is easy to verify that if? is defined by 

&pc + l-TBc GO) Ve (l-Got) , 

then Eqs. (58) - (76) remain valid. We may thus calculate the half-on-shell t 

matrix TQ via 

TQ = (I-I)@-~) , (135) 

where 2 satisfies Eq. (73): We note that the latter does not in general reduce 

to one-dimensional form for Ve $0 (the exception being if V, is separable). 

We have thus provided a practical framework in which to probe the off-shell 

consequences of N-N interaction models which employ singular cores. Although 

such information would nicely complement our present knowledge of soft core 

models, the insensitivity of the trinucleon system is such that one cannot be 

overly optimistic regarding our ability to distinguish between such approaches 

experimentally. Furthermore, the applicability of singular core models to 

systems of three or more particles depends to a large extent on one’s physical 

interpretation. Thus, if we regard the BCM as simply a mathematical abstrac- 

tion representing a large finite repulsion plus a strong surface attraction, the 

formalism of Sections II and III is certainly appropriate and has been shown both 

theoretically and numerically (via the calculations of Efimov and Schulz) to be 

consistent with the limit of such a picture. 

On the other hand, it may be argued that the BCM is a phenomenological 

device which simulates the net effect of an interior region in which ordinary 
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potential theory is invalid. Thus, Feshbach and Lomon justified it on the basis 

of quantum field theory, which implies that the N-N interaction becomes highly 
. 

nonlocal at, distances x~ (2mJ-‘, whereas the interaction energy is so huge 

that there is virtually no sensitivity to the asymptotic energy (~:/2po). 
1 

Another point of view has been advanced by this author, who noted that such an 

empirical effect is also to be expected on the basis of Pauli exclusion between 

composite nucleons (for which there is steadily accumulating experimental 

evidence). 19 Either interpretation would imply that the boundary condition must 

be modified if another hadron is present and within core range of either nucleon. 

This viewpoint would thus invalidate the potential theory arguments as applied in 

the interior region where cores overlap, and would consequently reintroduce a 

(physically motivated) ambiguity into the three-body problem. From the stand- 

point of three-nucleon phenomenology this would appear as a nonnegligible three- 

body force. 

Formally, the problem so posed is precisely that considered in SCI, and 

one could in principle relate the “auxiliary condition” to the generalized boundary 

condition required in the overlap region. In the’“absence of such specific infor- 

mation, one might argue that the ad hoc condition proposed in SC1 is physically -- 

as well motivated as the particular form derived for the A# 1 problem above 

(as well as being much simpler). This argument is especially cogent in the 

relativistic problem, in which the overlap region is a complete enigma. Thus, 

as noted recently by this author, a straightforward covariant generalization of 

the SC I formalism provides a natural first approximation for describing rela- 

tivistic three-body systems. 20 This description may then be supplemented by 

introducing phenomenological terms (6, 6) to .correct the off-shell structure, as 

in the nonrelativistic BCF. Recent calculations using correct two-particle 
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shifts (energy-dependent h&) and B=C=O have produced quite interesting results 

for relativistic Ir-d scattering 21 and the basic nuclear force problem. 22 

Finally, we consider the implications of our results with respect to the 

BCF. This author has previously shown that the boundary condition technique 

provides an alternative general description of three-particle systems. 9920 h 

particular, for arbitrary combinations of two- and three-particle potentials, 

real input operators B, C can always be chosen so as to exactly reproduce the 

Faddeev amplitudes. 16 The present workfextends this statement to models with 

singular cores. As an immediate consequence, we observe that eventual calcula- 

tions with “realistic” singular core models cannot alter conclusions previously 

reached concerning the insensitivity of n-d elastic and breakup differential cross 

sections to the off-shell structure. 23 Thus, the off-shell content of these 

models can be expressed in terms of the values obtained for the n-d doublet 

scattering length, the triton binding energy, and the static properties of the triton 

wave function. Values of these parameters for currently known models are sys- 

tematically in conflict with experiment, and hence it would be interesting to see 

if the singular core predictions are significantly different. 24 Once the triton 

computation is complete, effective values for the B, C operators (which are 

weakly dependent on ‘;v) can be computed for input into the BCF. In this way the 

consequences of such models for the scattering states can be readily explored. 
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