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ABSTRACT 

A relativistic three-body theory previously used to generate 

the w has been applied to the l+ state of three pions. An A1 reso- 

nance pole is produced with MA = 1160 MeV, I’/2 = 90 MeV but 
1 

there is no associated phase variation of the amplitude. 
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There has been growing concern over the embarassments suffered by the 

quark model in predicting the meson spectroscopy, and in particular the experi- 

mental absence of l+ states such as the Q and Al. Thus, the diffractively 

produced enhancement observed in 7rp - (37r)p at 1.1 GeV has recently been 

subjected to a number of independent and rather sophisticated analyses, and all 

agree on the absence of a resonant Al signal. ’ As developed by Ascoli and 

collaborators, the procedure is a variant of the isobar model in which one writes 

the amplitude for a three-body “decay” in the form T = Zafatcr, where tol is the 

two-body scattering amplitude for the P-r pair (a! Sp#r) and depends explicitly 

on the pair subenergy So. The fa! are treated as complex fitting parameters, 

and one subsequently studies their phase variation with respect to some (non- 

resonant) reference amplitude. This works quite nicely for the A2, which 

exhibits Breit-Wigner behavior with the phase varying through 90’. In contrast, 

the Al phase variation is quite flat, and one is apparently forced to a nonreso- 

nant interpretation such as the Reggeized Deck effect. 2 A recent attempt by 

Ascoli and Wyld to answer previous criticism of the methodology3 has led to the 

same negative conclusion. 4 

In this Letter we show that an absence of distinctive phase variation is not 

only compatible with an A1 resonance pole, but (1) is an automatic consequence 

of a simple dynamical model. Moreover, we argue that (2) such behavior is a 

general feature of a properly unitarized amplitude, providing the effect is 

dynamical, and (3) has a simple physical interpretation. Specifically, we 

observe that a resonant amplitude need not exhibit a large change of phase, as 

assumed in these analyses. In fact, this is a familiar phenomenon associated 

with very inelastic resonances. For example, consider a system in which two 

orthogonal channels are dynamically coupled (e.g. , 7r7r and Kx); in such a 
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system the elastic amplitudes have the form 7 o1 = (n ezi6, - 1)/2i. If the ampli- 

tudes are resonant and n< l/2, the phase shifts 6a are roughly sinusoidal, 

passing through zero (rather than 7r/2) when Re (TV) = 0. Typically, the magni- 

tude of this oscillation is quite small (< 300), in which case one may easily show 

that the phase of the amplitude itself exhibits a similar oscillation about (-)7r/2. 

The net phase variation may thus be quite small, and one would not expect to 

detect it in an Ascoli-type analysis, particularly in view of simplifying approxi- 

mations (e . g. , neglect of the subenergy dependence of the fo parameters). In 

fact, phase variations in the production amplitudes alone could easily mask the 

effect. We then observe that in the language of the isobar model, the Al state 

of three pions is precisely such a system, containing two strong competing 

channels ( p 7r and ET). Therefore, it would not be at all surprising if the relevant 

phase behavior were of the second, weaker type, in which case one must clearly 

employ alternative techniques . 

This conjecture is supported by explicit calculations based on the author’s 

covariant boundary condition formalism (BCF), which has recently been applied 

to a number of relativistic three-particle systems. 596 In the present context, 

we have used it to study the amplitude T3= Z:cr~a! describing 37r scattering in a 

l+ (I=l) state. We thus consider T(Nn - N37r) to be of the form T = Tp*T3+- . . . , 

where Tp is an appropriate production amplitude. Providing that the Al is 

indeed a dynamical effect, we would expect T3 to contain the corresponding 

resonance pole (in alternative mechanisms such as the Deck effect, the enhance- 

ment would originate in TP) . For this purpose the BCF may be employed in two 

complementary ways. In its most general form, it provides a general solution 

of the three-particle unitarity relations, and hence any physical amplitude can 

be constructed given suitable input. Conversely, the class of allowable input 
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exhausts the possible physical amplitudes, and thus one can determine whether 

3 input which produces an Al peak in T3 will also produce a large phase vari- 

ation. The answer turns out to be f’no”, which is a model-independent result. 

Furthermore, the formalism permits an explicit analytic continuation onto the * 

second sheet of the total (3~r) energy; in this way it has been verified that each 

such peak corresponds to an associated pole. 

Secondly, input to the BCF has a straightforward dynamical interpretation, 

and can be estimated for a simple model which has previously been applied to 

calculate the YT and w as dynamical 37~ effects3 (these turn out to be the only 

“particles” generated in the O-, l- states for any isospin). It is therefore inter- 

esting that the same model “predicts” an AI state of approximately the right 

mass and width (and with negligible phase variation). Together, these results 

indicate that the O-, l-, 1’ states can be understood in terms of potential-like 

forces generated by particle exchange. In contrast, a similar calculation in the 

2’ state shows that the A2 can only be produced via explicit coupling to associ- 

ated inelastic channels (m, n n) . This is in fact desirable, since the I=l, 2 2’ 

states are otherwise degenerate in the model. 

As noted by Amado, 7 a minimal scheme for unitarizing three-particle 

amplitudes must take the form of a one-dimensional integral equation. The key 

ingredients of such an equation are well known; in order to produce the primary 

(model-independent) singularity structure, the kernel must contain a pole corre- 

sponding to the free propagation of all three particles, and two-particle propa- 

gators characterized by elastic phase shifts, The minimal form of the BCF 

corresponds to a trivial dynamical model possessing all of these features; addi- 

tional parameters in the general form correct the dynamical details via the 

addition of nonsingular terms. Although the BCF is particularly efficient for 
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this type of analysis, it should be emphasized that our more general results 

((2) and (3) above) will be a feature of any properly unitarized amplitude. 

The BCF builds on a trivial model in which the pairwise interaction of p-y 

is compressed to the surface of an impenetrable boundary at I? -F I = aa. 
P Y 

The 

scattering is described by an energy-dependent logarithmic derivative of the 

wave function at that radius, h (K~). The two-body amplitudes are then CYQ a! $&Q = N,,/Q with 
NaQha) = [a$&,($) -Q] jQ(aaKQI) + anyJQ-&-,&J , D&Q) = iKa aaxaQ K; ir 13 t -1 hQ(amKa) + aaKahQ+&,&) . i (1) 

Here K~ is the c.m. momentum of the p-7 pair; A,, and aoc are fitted to 

scattering data in the physical region ~~ > 0. cl!- Since Aal must be meromorphic 

in K”, in order to produce unitary (elastic) amplitudes, this fit permits analytic 

continuation of N crQ, Da1 for K”, < 0. Below we use the notation N(&, Dia to 

denote N@,, Dal evaluated with A,, re pl aced by the constant value A~(-P~). 

If one considers the three-particle system with p-y separated by sol in their c.m. 

frame, it is obvious that there is a characteristic distance b* of particle o! from 

the P-y c. m. such that 1 Fa-FP I 5 ay and or I FQ-Fy I 2 ap; bQ characterizes the 

interior region in which the cores may overlap. The BCF describes the system 

outside of this region (b,, = 3/2 aQ for identical particles). 

The channel amplitudes T:~.$s, sQ) required to form T3 may then be com- 

puted from the solution of a one-variable integral equation 

(2) 
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written in terms of the variable qa! (3-momentum of particle Q! in the p-4’ c. m. 

frame, equivalent to sa! for fixed s). Here J, h, Q are angular momentum labels 

corresponding to the total system, the motion of a! in the p-r c. m. frame, and 

the spin of the ,8-y subsystem, respectively. Apart from purely kinematic 

factors, the relation of T to X is such that X(&s, Sa)/N$(~a) is to be com- 

pared with the isobar amplitude f@. Similarly, G!&(s, s~)/~&{K~) is essentially 

an angular momentum projection onto an initial plane-wave state (for precise 

definitions see BCR). However, for our present purposes these details do not 

turn out to be relevant. A pole in TV (and hence T3) can arise only via a pole 

in the operator (l-K)-‘; this corresponds to a complex zero of the determinant 

D(s)= Il-KI. One can thus‘ study the resonant properties by constructing D(s); 

the rapidly varying factor of an appropriate cross section is proportional to 

lDl-2. 

Consequently, we need only consider the kernel of Eq. (2). In the present 

application, we take the 1’ state to be composed of two components correspond- 

ing to Q=l, h=O and Q=O, A=l. For convenience we label these by p and E , 

respectively, although YT-T phases were used directly as input and an E pole was 

not assumed explicitly. Taking into account Bose symmetrization and isospin, 

the kernel of the minimal equation can be expressed as 

N;.(q;, 9.) 
K~j(ql,qj) = 4j ’ Dj(K j) 

(3) 
2K. 1 

N~j(q~, qj)=-~ / dz Gij(z,kij.;j,&ij.;j) 
gi~iqj,bQi.) N’cK-.) 

J-L!.L 

* ‘-1 qi2 - Qtj - ie Qij ’ 

where i, j take on the values P,E and hence index the appropriate combinations 

of Q,h and isospin. Here Aij is an isospin recoupling coefficient (A 
PP 

= l/2, 
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A =-A zz 
EP PE 

l/&3, Ace= l/3), and Gij is a geometrical recoupling coefficient 

which would be unity if all particles were in relative s-waves. The three- 

vectors B 
i j ’ $j 

are the values of <,Ti in the i c. m. corresponding to <,Tj in 

the j frame, and z = kj.qj. The function gi arises from excluding the inner 

region; 

hA+lW - xjh+l (4) 
We note that gi(x,x) = 1, and hence the residue of the integrand at the Green’s 

function pole % = Q.. 
13 

is given by the two-body amplitude tj(Kj). 

The general form of the BCF is obtained by replacing Ns. -+ NFj +A. ., where 
11 11 

Aij(qf, qj) is an arbitrary L2 function which must be real-valued to describe 

elastic three-body scattering. As noted in BCR, a rough estimate of A.. can be 
11 

derived if one assumes it to be dominated by off-shell corrections to the pm 

vertex. This leads to the specific model 

Y K2 + 4/J2 
AppWA = pp ’ 

Kp 31J2 
gpw gp(4) 9 

(5) 

gp(9) = (s2+4P23-1 , 

withy = l/2 (similar estimates give Ace, A A which turn out to be 
PP FE’ EP’ 

numerically unimportant). More generally, if potential-like mechanisms 

dominate one expects Aij to have a relatively weak dependence on s, and to be 

a smooth function of q’, q. 8 It can then be expanded in a complete set A= .Xx 

ch I h>< h I, and the cA treated as real fitting parameters. A number of such 

forms were employed to test the model-dependence of our result. 

The required numerical procedures are straightforward: one distorts the 

qj-integration contour to avoid the singularity at ql= Qij, and employs Gaussian 

quadrature to reduce the equation to finite matrix form in order to calculate 
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D(s) - To simplify the numerics a cut-off was employed at qT”= 30 fm -l; the 

calculation was quite insensitive to this choice (a 1% effect for 25 fm -1 <qF < 

35 fm-l). Several choices of s- and p-wave r-r phases were employed corre- 

sponding to the range of models reported by Basdevant et al. , 9 as well as a -- 

simple s-wave which does not exhibit the rapid change of phase at the m thres- 

hold (no S*). In practice, the S* region turns out to be relatively unimportant 

since it requires a very small spectator momentum (qj N 0)) and this is suppressed 

both by the h=l character and the qydqj integration weight. 

Given this input and the simple model of Eq. (5)) a l+ resonance is indeed 

generated in the vicinity of 1100 MeV for y 
PP 

in the estimated range. A typical 

example is illustrated in Fig. 1 (solid curve), corresponding to y =.57. 
PP 

Writing T = N/D(s), this result would imply a width of 220 MeV if the s-dependence 

of N were negligible. It is clear that the phase G(D), which would normally signal 

the presence of simple Breit-Wigner behavior, exhibits no noticeable variation 

associated with the enhancement. One of the unique advantages of this approach 

is that one can unambiguously determine whether or not such an effect corre- 

sponds to a true resonance pole. Since the fitting parameters (y 
PP' 

or more 

generally the ch) carry only weak s-dependence (in the absence of inelastic thres- 

holds), one can hold them fixed and perform an explicit analytic continuation. 

Thus, the dashed and dashed-dot curves illustrate the effect of taking 

,,b = M3r- i (30 MeV), and & = M3,- i (60 MeV), respectively. In this way we 

confirm the existence of a pole 90 MeV below the real axis on the second sheet, 

with a mass of 1160 MeV. Although it was possible to vary A in such a way as 

to produce no peak, it was found that peak, pole and minor phase variation were - 

always correlated. 
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With regard to the proposed “inelastic” mechanism, it is very suggestive 

that as we take & deeper onto the second sheet, q(D) increasingly takes on 

the characteristic appearance of such a resonance. We note that by doing so we 

also approach closer to the p and E poles which occur in the factor Do.‘, and 

hence more closely approach a coupled channel problem involving stable “particles”. 

Numerical studies confirm that the interplay between the p and E channels is 

vital in producing the effect (whereas an S* pole is required). On the other 

hand, the limitations of the isobar model are apparent in the damping of the 

effect for real &. Thus, one cannot escape the fact that we are dealing with 

three particles, with an associated three-particle cut as well as p and E thres- 

holds. The net s-dependence is an integrated product of these factors, and is 

necessarily quite complicated; this shows up both in the nondescript phase 

behavior and the shape of the bump in ID 1 -2 (solid curves). We conclude that 

such an Al cannot be established by an Ascoli-type analysis, and may well be 

present in the data. 
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FIGURE CAPTION 

1. Dependence of 1 D 1 -2 (upper figure) and e(D) (lower figure) on the three- 

pion mass, The curves correspond to complex energies & = MSr-iA 

with A=O, 30, 60 MeV for the solid, dashed, and dashed-dot curves, 

respectively. 
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