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ABSTRACT - 

For calculations involving the deuteron S state wave function it 

is common to use the asymptotic form for a rough approximation 

and the ad hoc Hulthen form for a better estimate. The two param- 

eters of the Hulthen function are determined by the deuteron binding 

energy and the singlet effective range. In like manner we propose 

an ad hoc analytic form for the D state wave function, which contains 

two parameters which are determined by the deuteron quadrupole 

moment and D state percentage. The resultant function coincides 

very closely with the functions obtained from several widely used 

potential models. Since the chief value of such an analytic wave 

function is to calculate matrix elements quickly and easily we 

explicitly calculate a form of integral that allows a large class of 

matrix elements to be evaluated immediately. 
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1. WAVE FUNCTIONS 

The Hulthen wave function1 

u(r) = N (e-yr - e- @) ; p >> Y (1.1) 

is widely used to represent the deuteron S state wave function. Basically the 

justification for this form is that the term e- pr modifies the asymptotic form 

eqF at small distances in such a way that u(O) = 0, and more specifically 

u - r, as is reasonable for S waves. 2 Moreover the parameters y and p 

are not arbitrary; y is given in terms of the deuteron binding energy e and 

nucleon mass M as 3, 4 

y=m = .2316 f 
-1 

(1.2) 

and p may be determined-from the triplet effective range parameter r = 1. 75 f 
0 

as approximately ‘9 5 

p = ( 3-v,) + (r2r2, - lop-, f 9) U2 = 5.98-y U-3) 

2r0 

Similarly the normalization constant N may be expressed in terms of the effec- 

tive range as 

N2 zz 
w 

= . 783 (1.4) 
l-v, 

For many potential models the wave functions coincide very closely with the 

simple Hulthen function, except of course in the region r < .5 f where many 

potentials have a hard core (Fig. 1.)6-g 

Historically the Hulthen function has been so often used in calculating 

deuteron matrix elements that it would be hopeless to give a list of references. 

However, so far as we know, no function of comparable simplicity is in common 

use for calculating D - state effects. We have felt the need of such a function 
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in the past when studying the deuteron magnetic form factor, 10,ll radiative np 

capture, 5y I2 and recently the controversial process of doubly radiative np 

capture, .n+ p 4-d f 2y . 13-18 

As is well known the asymptotic form of the II - state wave function is 3, 4 

WA(r) = nNdyr(l + $ +$2-J (1.5) 

where rl is termed the asymptotic D/S ratio, and is found to be about .026 in 

many potential 6-9 models. Unfortunately the tensor force has a large effective 

range and the wave functions obtained from potentials approach this asymptotic 

form very slowly, i.e. for r 2 4 f (see Fig. 2). Moreover the behavior at 

small r is w - r -2 as opposed to w - r3 as we would exbect for a D-state. 2 

Thus the asymptotic form is an extremely bad approximation. 

To remedy this we multiply the asymptotic form by an interpolating factor 

which behaves like r5 at small r and like 1 at large r. We choose explicitly 

w(r) = qN (l-e-Tr)5 e-7(1 + 3 + 
Yr 

--&) (l-6) 

which clearly displays the desired limits. The parameter y is the same as 

appears in (1.2) while we will treat n and r as arbitrary parameters to be 

determined by experimental properties of the deuteron. 
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11. INTEGRALS AND PARAMETERS 

The form (1,6) is surprisingly easy to handle when doing integrals, despite 

the occurence of a fifth power in the interpolating factor, We will obtain the 

necessary integral formulae to calculate all matrix elements of the for-m 

where f and g are either the u or w wave functions, and p is either a 

positive or negative integer. It is clear from the functional forms of u and w 

in ( 1.1) and (1.6) that we need to evaluate only 
co 

I(h, 7, n, m) = dr (2.2) 

for positive and negative integral values of m. Observe that we must have 

n h m in order that the integrals converge. By differentiating with respect to 

T we find the recursion relation 

8I(h, 7, n, m)/8T =nI(h+ 7, 7, n-1,-m-l) 

Since I (1, 0, n, m) is zero we may integrate to obtain, 

d 

7 
I(h, 7, n, m) = n 1 (h + T’, T’, n-l, m-l) dr’ 

We now consider n = m and obtain the following 

I&7-,0,0) = +- , I&7,1, l)=ln 
i ) 

‘+h’ 

It is now easy to show by induction that for n 2 I 
n 

I(h,T,n,n)= ( -I)n-k(h+k7)n-1 In (hi-k-r) 

(2.3) 

(2.4) 

(2.4a) 

(2.5) 

To obtain the general case of n 1 m we split up the interpolating factor and expand 

part of it: 
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co 

s 

-Ar 
I (h,ma) = (lme-Tr) n-m (l-e-Tr) m :m dr 

(2.6) 
0 

= (-l)n-k (h+jT+kT)m-l ln(h+jT+kT) 

With the substitution of a new dummy index g = j + k and the elementary relation 

y(y) (gj)=(;) 
j=O 

(2.7) 

we then obtain a simple final form 

I(h,T,n,m) = - 
(Ii-l)! m-q(A+qT)m-l ln(A+qT), n8rnz 1 (2-Q 

For m negative or zero we need only expand the interpolating factor and use 

elementary integral formulas to obtain 

I(A,T,K-P) = &(;)S1 9 pZ0, n?O 
q=o + 

(2.9) 

We now have evaluated the function I (A, 7, n, m) for all the necessary values of 

n and m, in (2.8) and (2.9). 

Let us now consider the values of the parameters 17 and 7 in the function w 

of (1.6). These may be fitted to the experimental values of the deuteron mag- 

netic moment pD = D 858 and quadrupole moment Q = O 288 f2. Since the deuteron 
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magnetic moment may be expressed in terms of the nucleon moments pp=2. 79, 

pn= -1.91 and th e D state probability (PD) we can equally well fit the value of 

PD ; explicitly the deuteron moment is given in elementary theory by 3s 4 

/+) = (Pp + l-$-J -(3/2)PD(~p+~n-1/2) 
* 

(2.10) 

which may be solved to give PD = 0 04. 

There are, however, additional contributions to pD which are not included in 

the above, such as meson exchange current, 10,11,19 velocity dependent spin- 

orbit forces, etc, 20,21 These increase pD by several percent, according to es- 

timates , and thereby increase PD to about 0 07. This value of PD is also in 

agreement with that obtained using some of the more popular potential 6-9 
models., 

We will thus consider the two cases of PD = D 07 and PD = 0 04, with the former 

being probably more realis tic ., 

We now fit n and T using the relations 

PD = 
s 

w2dr, PD(exp;) = .04 or .07 (2.11) 
0 

00 -l 
Q= d5+ 

J 
W2 o (uw - r).r2dr, Q (exp.) = .288 f2 

With use of the wave functions (1.1) and (1.6) and the integral formulae (2.8) 

and (2.9) these reduce immediately to simple algebraic expressions. 

For the D-state percentage, 

(-l)n-q (2 y + qT )n-l ln(2y+qT ) 1 (2.12) 

+ n2N2a 
(27-&T) , an= 

6 15 18 
15x7, Y % 
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and for the quadrupole moment 

- 

(ww- F-l ln(++-qT), bn = ;2 , 5 , 1) 3 cn= ($Y , t , l)$ dnf$i, $j 

To solve these we choose a. value of T and calculate n from (2.12). These 

values of 7 and 77 are then substituted into (2.13) and the resultant Q com- 

pared to the experimental value, with the final solution given by numerical inter- 

polation. 

A plot of Q versus T is shown in Fig. 5 and we see that for PD = .07 

7 = 1.09f-I rj = 0025 (2.14) 

and for P 
D = .04, 

7 = .83 7-j = .029 (2.15) 

Not surprisingly these values of q agree quite well with that obtained with 

potential models, due to the fact that Q is determined largely by q and the 

long range behavior of the wave functions. The behavior of Q as a function of 

T and n is displayed in Figs. 4 and 5. 

The function w with the parameters (2.14) is plotted in Figure 2 for com- 

parison with several potential models. It is clear that for r 2 0 5f it is an ex- 

cellent approximation with the PD = 0 07 set of parameters. 
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III. SUMMARY 

We have obtained a model for the deuteron D state wave function (1.6) 

which is independent of dynamical considerations in the sense that no specific 

properties of the nuclear force are utilized. Instead the wave function is 

constrained to fit the percentage of D state, which is related approximately 

to the magnetic moment, and the deuteron quadrupole moment. A large class 

of integrals involving this function are readily done using the relations (2.8) 

and (2.9). From the graph Fig. 2 it is evident that this function is a good 

approximation to several widely used potential model wave functions, and 

because of this it is hoped that it will be a useful tool in calculating deuteron 

properties. In particular it should be useful in situations where a matrix 

element must be integrated over a parameter, e.g. 2nd order perturbation 

theory for the process n + p-d + 2~. 
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Figure Captions 

1. S-state wave functions: Reid hard core . . . . , Hamada-Johnston - . - , 

Hulthen - , asymptotic - - - 

2. D state wave functions, Reid hard core . . . . , Hamada-Johnston - . -, 

Yale - . . - , present - , asymptotic - - - 

3. Solution for the parameter T in terms of Qexp and PD. 7 is given in 

terms of T from (2.12); see (2.14) and (2.15). 

4. Q as a function of T for rj = .025 

5. Q as a function of ?‘j for 7 = 1.09 
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