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ABSTRACT 

A relativistic invariant extended model of hadrons is constructed. The finite 

region where quarks can move freely is a line in a three dimensional space. 

Physically, the construction resembles that of the MIT bag and the SLAC bubble. 

In the absence of quarks, the model reduces to the relativistic massless string 

model. We then solve explicitly the closed string version where massless quarks 

move only in-the clockwise direction. The resulting quantum system does not 

satisfy Lorentz algebra. However, this negative result indicates that for an open 

(or closed) string, the quantum system is consistent if there are 22 quark fields. 

A quark-confining string is also constructed and discussed. This is obtained as 

an improved version of the quark-binding string. It incoporates many physically 

desirable features. 

( Submitted for publication ) 
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I. Introduction 

Numerous phenomenological successes of the dual resonance amplitudes 

have stimulated the search for the physical picture underlying the model. Nambu 

and others (l) observed that the spectrum of the Veneziano model (2) is identical - 

to that of a vibrating string. Subsequently the free string formalism has been 

studied in detail, starting from an action written in terms of the area swept out 

by the string (3) . More recently, the string picture has also emerged in many 

different investigations (4) , and its relevance to hadron physics is generally 

accepted. Of course, the string picture is, at best, an approximate description 

of hadron physics. Its significance lies at least partly In the fact that it can be 

explicitly solved. This allows one to calculate its dynamical and static properties 

for comparison with experiments,starting from the exact quantum relativistic 

solution of the string; scattering (5) and other interactions can be introduced 

as perturbations around the free string solution, maintaining quantum mechanics 

and relativity at every order of perturbation. This approach towards hadron 

physics is attractive since it is the only approach we have I -+ experience, 

namely, in quantum electrodynamics; there the free photon and electron are 

first solved completely, and the electromagnetic interaction is then introduced 

as a perturbation around the exact solutions. Whether this gives an approximate 

description of hadrons we can tell only after the program has been carried out 

comPletelY, beyond the free string version. 

The present string formalism has a few unsatisfactory features. Among them 

are (1) the quantized string exists only in 26 dimensional Minkowski space ; (2) lack 

of incorporation of quarks ( i. e. Dirac particles) and (maybe) their confinement. 

Numerous attempts have been made to overcome on e or both of these shortcomings. 

This work maybe considered as the first step of yet another attempt to improve 

the present string formalism. The formulation is motivated purely by the physical 



picture. 

We construct the system of a string upon which physical quarks are confined. 

(By “physical” we mean the quarks are spinors in the four dimensional Minkowski 

space but behave as scalars under a conformal transformation of the parameters 

describing the string.) ‘We then proceed to solve the closed string along which 

massless quarks move around it in either the clockwise or the anti-clockwise 

direction. The mathematical formulation of this is summarized in Table I. 

The resulting quantized system does not satisfy Lorentz covariance, for the 

same reason as the Nambu string. However, the results do indicate that the 

complete system ( with quarks moving both clockwise and anticlockwise around a 

closed string, or for an open string) will have Lorentz covariance if the number - 

of quarks is 22. This speculation will be formulated as a conjecture. 

Our string formalism is modeled after that of the M. I. T. bag @) and the 

SLAC bubble (7) , and the quantization procedure is modeled after that of the 

free string (3) and of the SLAC bubble in three dimensional Minkowski space (‘) 

( which is equivalent to a quark-binding closed string). 

From the investigation of the quark-binding string we find it has a few 

undesirable features: its ground state is an empty string state; it also has exotic 

states, i. e., states with any number of quark excitation modes. To remove these 

bad features, a quark-confining string is constructed. Here the quarks come in 

color triplets interacting with color SU(3) gluon fields. Because we demand 

there be no local color electric field pointing out of the string, only color singlet 

states exist. There are no gluon degrees of freedom; only color electric fields 

are left. Also there are no pure string modes, so that the ground state of this 

string is a meson; the quarks and the antiquarksmay have masses, in which case, 
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they sit at the ends of the string, one at each end, linked by the appropriate 

electric flux line,’ which also defines the string. 

Section II contains the formalism. In Section III we solve the closed string 

with only clockwise moving quarks. In Section IV we examine the quantized system, 

and discover that Lorentz covariance is not satisfied. Section V contains dis- 

cussions and speculations. Here we speculate what the spectrum for the quark- 

binding string would look Like. (By fTquark-bindingft we mean the absence of 

massless free point-like quarks. ) However, a string with any number of quark 

and antiquark modes can be present. In this section we also discuss how a quark- 

confining string can be written down in the action formalism. (By It quark- 

confining, If we mean only color singlet states exist. ) Some of the technical 

details and supplementary discussions are relegated to the four appendices. 



II. Formalism 

The geometry of a relativstic string is tha.t of a two dimensional subspace 

(V,) imbedded in a four dimensional flat Minkowski space (S4). To describe a 

quark-binding string we must develop a convenient set of variables in the language - 

of differential geometry (9) . 

Let XP and 11” be the coordinates in the Minkowski space S4 

(with signature (1, -1, -1, -1 ) ) and the curved space V2 ( with signature ( 1, -1) ) 

respectively. The shape and position of the string is described by ( see figure 1. ) 

where the choice of the parameters &” is arbitrary. We assume that Xp is 

differentiable. ( 0 ur notation will be such that the indices d,f, s , g refer 

to the V2 space and p i + , h 7 f refer to the S4 space) . The quantity 

(2.2) 

is tangential to the string and is a vector in both V2 and S4. The induced metric 

for the V2 space is given by 

(2.3) 

which is a covariant symmetric tensor with signature ( 1, -1). 

At each point on the string, a plane perpendicular to the tangent vectors 

can be defined: 

(2.4) 



where %?.Pv Q h is totally ant isymmetric, with 5 J 11 3 = 1, and - 

g = det ( 9&p ) = p. ?I, - “(A 

An alternative way to define this plane is by introducing two space-like outward 

normals ‘It’.{ tF1 and \r\p( LI”‘) . 

irfl.& = n--c-, = ci 

(2.5) 

They are normalized to unity, 

(2.6) 

and, for convenience, taken to be perpendicular to each other, 

Now ct,v can be defined including its orientation in terms of ?qP , ~PL 

G-8) 

The Minkowski metric at each point on the string can now be expressed in terms 

of the curvilinear co-ordinates provided by the set of linearly independent vectors: 

(2.9) 

where .?; is the inverse of ‘3 c<;? , and is 

a contravariant symmetric tens or. The tengential components of any vector 

y.l\ can be projected out, 

Let us introduce some more quantities that are needed later. The derivatives 

of the normals 

(2.10a) 



I 

(2. lob) 

introduce the torsion 1,/ ,A = \+I$\‘~ ) = - ~VhAJ 

and the symmetric curvature tensors 

(2.llb) 

where the covariant derivative of T;,$ is given by 

(2.12) 

The’Christoffel symbol of the second kind”is a function of the metric 

(2.13) 

Let us now introduce the quark fields. Since they are confined on the 

string, we can write 

(2.14) 

j=l, 2,. . . N , where N is the number of quark species. (Throughout, 

repeated indices are summed unless specified otherwise; for individual quark 

field, the index is suppressed. ) The Dirac matrices, which obey 

are chosen to be 
g---’ 

‘6 i 
z 

&.I ) 

where F; are the Pauli matrices, ‘, = d for any vector I qh . 

Now we can write down the action of free quarks confined on a string (10) ( h “C .=I) 
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(2.16) 

is the only dimensional parameter of the 

system and acts as a tension to prevent the system from expanding without check. 

JLP UT% is the invariant ‘~volume” element where 2 
<G . The tan- 

gential derivative $ Ii ‘= -7$5-J& describes the quark motion along the string. 

However, each quark field has four components. This means the quark dynamics 

is not completely specified by the action (2.16) which gives only the tangential 

motion. To determine completely the system, we resort to the physical picture. 

Since the string system must be closed, i. e., the conservation of charge and 

Poincaref generators must be guaranteed, it is required that the normal components 

of the charge current densities 3 I p and the energy momentum “current” 

density /f ‘, ’ “r. must vanish: 
(2.13 > 

+ 
It is clear that the string part of 5 is already tangential. Because the quarks 

are all distinguishable from each other ( different quantum numbers) we demand 
rs,ri 

that the normal components of k. F of each quark must vanish: 
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or 

dered as the normal components of the quark equation of motion. 

Although the quarks are confined along the string, they are physical 
$1 

spinors in the S4 space; hence continuity’bf each quark field across the string 

must also be satisfied: 

(2.19) 

Eqn (2.17) , (2.18) and (2.19) can be considered as constraints on the spinor fields. 

Together with the action (2.16) , the system is completely determined except for 

boundary conditions, The latter depends on whether the string is open or closed. 

For an open string, the _ momentum “current” density and the charge current 

densities must vanish at the ends of the string. For a closed string, all variables 

must be periodic (anti-periodic for fermions) in the parameter that measures 

along the length of the string. 

The physical picture of the model is clear. The string moves and vibrates 

while the quarks are moving left and/ or right along the string, -The .distribution 

and the motion of the quarks affect the shape of the string, which in turn defines 

the path of the quark motion. Since there is no direct interaction among the 

quarks, the left moving and the right moving quarks pass each other freely. 

However, the complete solution of the quark fields is not a superposition of the 

solutions of the left and right moving quark fields, because of their non-linear 

influence on each other via the geometry of the string. 
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In this work we shall study the string when there is only left moving or cd.J- 

right moving quarks. We discover that this system can be solved completely. 

The complete solution o$ the subsystem allows one to speculate (a rather natural 

guess, we believe) at the complete solution of the quark-binding string we have 
- 

just formulated. 

When there are only left moving quarks on the string, the boundary condition 

of the open string at the ends cannot be satisfied, since quarks will flow in and out 

there. Hence we can only study a closed string; the left moving quarks become 

quarks moving clockwise around the string. The first thing we have to do is to 

project out the clockwise moving quarks. 

We note that from eqn (2.7), 

which provides a signature for the plane qJw . This can be used to specify 

the direction. The projection operators L.2 .t must satisfy 

Let us define 

and study only the case when one projection of the spinor field is present, say 

(2.20b) 

That this projects out the left moving quarks will become clear later. From 
3 If 

now on we shall drop the + index whenever it is obvious. The quark species 

index is implied in eqn (2.20b) also. 
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The inclusion of id, in the choice of ti+ in eqn (2.20) automatically 

implies eqn (2.19) and (2.17) 

and similarly for 
3 

. yjq z ct 

It is useful to note that the.normal components of the axial vector current is also 

(2.21b) 

Hence, using eqn (2. g) 

That is, both the vector and axial-vector currents are tangential. 

Next we demand the energy momentum “current” density of the string 

be tangential also. 

.P 
P r-Z 
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This follows from eqn (2.18) afta . a 

which can be retwritten as, using eqn (2.10) , (2.11) and (2.21) 

qgj; q = -.i J,: [ q.wt-3’5 $1 - ;~q&(J$4) qJ 

Hence we have a closed system when the axial vector current is identically zero. 

It is now striaghtforward to derive the equa”tions of motion of the system. 

The Euler-Lagrange equation for the string co-ordinates is 

(2.24) 

The Euler-Lagrange equation of the quark field 

and 

R.bLS = - 

Introducing the mean curvatures 

the Dirac equation becomes, using eqn (2.12), 

i yyJ$ Ij. I- .I h ( c;, ) w --\ I.:2 1 -N ) ct- 
(2.25) 



Projecting out the normal and tangential components of eqn (2.24) and using 

eqn (2.12) , we get 

and 

(2.26) 

(2. 27) 

which is just eqn (ii) and (iii) in Table I. 

Note that these equations of motion can also be derived using the constraints 

(2.17) - (2.19) . Hence they are also the equations of motion for the complete 

(i. e. with both left and right moving quarks) system. 

It is straightforward to show that eqn (2.26) is redundant: one can de?ive 

using eqn. (2.21) , (2.23) and (2.25). This means that not all the dynamical 

variables, namely the quark fields and the string co-ordinates, are independent. 

This is a reflection of “gauge invariance” under reparametrization. 

To summarize, the system of a closed string, along which massless 

quarks obeying the projection (2.20) move freely, is completely specified by 
Lid.,/ 

eqn (2.25)./(2.27) together with the periodicity condition on all dynamical 

variables and the vanishing of the axial vector current 

(2.28) 

Classically, any system involving fermions is plagued with negative 

energies. In particular the fermion energy density is not positive definite. We 

shall ignore this difficulty by assuming that the fermion energy density is positive 
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definite, which is the case after proper fermion-antifermion identification and 

fermi statistics are taken into account. This is discussed in Section IV. 

In the absence of quark fields, the quark-binding string action reduces to the 

Nambu, or the empty string action. This is clear from the original action (2.16) 
* 

and also from the final spectrum, as we shall see Later. 
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111. Solution 

The scheme of solving the set of coupled non-linear equations of motion (2.25) 

and (2.2 7) is as follows: first we derive some properties of the system, which are 

essential for the solution. We then solve the geometry of the closed string in terms 

of the fermion distribution by adopting a particular coordinate choice. 

Finally we go back to solve the Dirac equations in terms of the geometry. Supple- 

mentary discussions and details are relegated to the three appendices A p B and C. 

A. Properties of the System 

Here we derive some of the properties of the system. In particular, we show 

that there exists a parameter choice such that the string coordinates obey the free 

string equation of motion. For convenience we write 

(3.1) 

so that g =AB-9 :<O ,since the signature of the metric is (1, - 1). Let us also 

introduce, for any function W(u*), the following notation 

Using Eq. (2.4) and (2.8), the projection (2.2) can be expressed in terms of T 
Q/J 

(3.2) 
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Next we observe that the current is a null vector; in fact (see Appendix A) 

for both i = k and i # k. Multiplying ‘qk on the left, we get 

3 
. i+ 

:i+@ = 

Also 

(3.4) 

AD 
where 0 ) is the fermion part of the energy momentum tensor (2.22)) or 

(3.5) 

Using the Dirac equation (2.25), we also obtain 

(3.6) 

To study the string geometry, we can, for the moment, concentrate only on 

Eq. (2.26), (2.27), (3.4), (3.5) and (3.6). The quarks appear only in the form of 

the current and their energy momentum density 0 
:A ,p 

. 
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The original action is independent of the choice of the parameters Us. Since 
a F T i is symmetric and has signature (1 , - 1) (see Appendix B), we choose T a!p 

to be off-diagonal: 

That this is possible should be clear: given T a.! (~0, u1 ), a local coordinate 

system can be found: (u 0 1 , u ) - (T, r ) such that T 02 p (7, 7’) is off-diagonal. 
CiP Using Eq. (3.1) and (3.6), T ‘ becomes 

As we shall see, V = 2.2~’ must be nonzero. Using Eq. (3.5) 

We find that either Jo or J1 must be zero. We choose (this defines our sign 

convention) 

J1 = 0 

Then from Eq. (3.4) 

(3.7) 
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we obtain g 00 = 0, which means 

and 

so that -g = V2 ) 0. This gives 

It should be clear that we cannot choose Jil = 0 for some quarks while 

JkO = 0 for some other quarks. 

The relation between the coordinates and the quark fields is manifest 

The Christoffel symbols of the second kind now simpiy to 

(3.8) 
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Using these and Eq. (2.26) 

we obtain A’ = O,SO that the Christoffel symbols are further simplified: 

g\ = (kh Lfj 

( ]i, 5 = i;LVY 

(3.9) 

Eq. (2.27) immediately gives 

&; z lb1 = c 

Eq. (2.12) becomes, when written explicitly 

I 
x, = 

I 

(3.10) 

The last of which allows us to write 

(3.11) 

(3.12) 
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B. The Geometry 

The imbedding of the string in Minkowski space requires the introduction cf 

the metric and the curvature tensors. The consistency of the geometry is guaranteed 

(9) by the integrability conditions, namely, the Gauss-Codazzi equations _ 

where the Riemann curvature tensor is given by 

When the curvature tensors are all constructed from the metric tensor, the Gauss- 

Codazzi equations are automatically satisifed. However, since we are going to 

solve the string by making a coordinate choice which apparently breaks Lorentz 

covariance, it is reassuring to check that the integrability constraints are satisfied. 

From its symmetry properties, it is clear that the Riemann tensor has only 

one independent component. Using Eq. (3.9) the Gauss-Codazzi equations become 
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(3.14b) - 

(3.15a) 

(3.15b) 

We observe that the theory has confcrmal invariance; that is, Eq. (3.10), (3.11), 

(3.12), (3.14) and (3.15) are form invariant under the conformal transformation 

*- .- c d-4 

:rT ---? f-:(r) 

Hence we can choose, -~YC;YR ,L~~VL i 3. \ 3) 

(3.16) 

where p is a constant. Then the constraint among the string coordinates 

a 
12 $p’)( .--c 

can be written as 

and Eq. (3.8) becomes 

(3.17) 

(3.18) 
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Hence x1, x2 and A can be taken to be the independent dynamical variables, i-‘{Tb\ I 

Similarly h and L can be expressed in terms of x1, x2 and A. The Gauss- 
“P cr,n - 

Codazzi equations can then be explicitly verified (see Appendix C). 

C. The Dirac Equation 

Equation (3.2) becomes 

or 

Therefore, with A = qc‘pc 

Differentiating with respect to 7, we obtain, using Eq. (3.13) 

Differentiating with respect to ‘Y , we obtain, using Eq. (3.12) 

(3.19) 

Note that 
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Substituting the above four equations into the Dirac equation (3.25), we obtain 

Multiplying this on the left by f , and using Eq. (3.12), the Dirac equation becomes 

Equation (3.19) puts a constraint among the components of q . Using this to 

eliminate the dependent components, we can write + in terms of the two unknown 

functions u,v, 

cc 
? -- 

where 

The Dirac equation can now be written in terms of u, v 
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Solving this, we obtain 

(3.20a) 

where a- 

(3.20b) 

(i+rrC F(T) and G(T) are arbitrary functions of T. This is an implicit solution of 

‘$ since L is a function of A (via V) which in turn is a function of the quark fields 

(see Eq. (3.8) and (3.18)). 

Since the axial vector current is tangential, the only nontrivial component of 

j5/J in Eq. (2.28) is, using Eq. (3.19) 

This means F and G differ by a phase only; we choose F = G. It is clear that if 

q is a solution of the system, so is 

where C do is the charge conjugation matrix. Explicitly, we have 
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Here 

This means 9 should have both quark and antiquark solutions. Using its anti- 

periodic property (with the period 70 taken to be 1) F(T) can be expanded into 

Fourier components. Hence 

(3.21) 

where the prime indicates the sum over half-integers with coefficients b,n, 

rr is the normalization to be determined. A Dirac field has fermion and anti- 

fermion solutions each with two spin polarizations. The projection (2.20) is a 

geometric one, leaving one solution each for the fermion and the antifermion. 

The confinement on a two dimensional manifold has deprived the Dirac particles 

of their conventional spin structures. The reader probably would have guessed 

this from the fact that the energy-momentum tensor T CYp is symmetric without 
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the introduction of any ‘1 superpotential” terms. We should also expect the absence 

of the spin part of the angular momentum tensor density MOlruV, which is given by 

It is straightforward to verify this is indeed ture, that is, 

using Eq. (3.20) and (3.21). 
bj 0-t e -twit 

/J+ d- ‘$j 

i 2.t 
Using this, we see that GA is quite simple despite/the complicated form of q / 

Poincare) covariance should be satisfied, since the original formulation is Lorentz 

covariant. 
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IV. The Quantized System 

A. Non-covariant Quantization 

We choose our units such that C = 1. We shalt restore it only at the end. 

The energy momentum is given by 

(4.1) 

where the integral is to be taken at any fixed time t 

This means the integration is over any space-like submanifotd; where the 

space-like parameter 

(4.3) 

actually measures along the string. To see this, we observe that P is the 

generator of infinitesimal translations in the x+ direction (see Eq. (3.16)); therefore 

the Hamiltonian should be given by 

(4.4) 

To evaluate H, Let us expand x! as follows, which is permitted by Eq. (3.13) 
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where the periodof O- is also taken to be one. For fixed t, the periodicity 

condition of xP is 

This implies r- a, r c! . Reality of xP implies 

Equation (3.16) then gives 

Therefore, from Eq. (3.17) and ( 4.5) we obtain 

(4.6) 
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To calculate the dependent modes a;, we have to fix the normalization of the fermion 

fields. Consider the conserved charge Q 
r 

G = \ 
Li c <A 

. 

This suggests the normalization If 
a,‘ 

= p/4 to be L convenient 

(4.8) 

one . Now, we can put 

Eq. (3.18), (3.23), (4.5), (4.6) and (4.8) together to obtain 

and 

where periodicity requires CO-- = ct*;‘ , 6% 

(4.10) 
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The Hamiltonian is now given by 

where all the independent modes appear in bilinear forms. Furthermore, H is 

already diagonalized. This suggests that, if we introduce canonical quantization 

to these modes, any function which can be expressed in these modes auto- 

matically satisfies the Hamiltonian equation of motion. We shall not burden the 

reader with details. The quantized system is specified as follows: 

17: 2 c 
(4.12) 

are respectively the annihilation and creation operators for antiquark modes while 

bt 
. fb, 

b m’ m 
(m 7 0) are those for uark modes, The2 T c:bej 

l..hQYrZ. i ahi j 

We also have 

(4.13) 

(4.14a) 

(4.14b) 
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(4.14c) - 

(4.14d) 

$$,jhsLlj; ;4&& “i”;p”” &“.jj.&& A,4 = i ) 2 &‘-a ,& &pc,~.L& ih.J.hL, . 
All other commutators (or antL>ommutators) among bm, dm, cnV an, qi, q- , 

aJ and a + 
0 0 are zero. Ambiguities arising from the ordering of operators are 

resolved by normal ordering with respect to the ground state 1 * 2 

Hence the charge operator becomes 

(4.15) 

(4.16) 

cue, so and Q, are constants arising from normal ordering. Since the charge of 

the empty string is zero, we shall assume Q. = 0. 
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Condition (4.10) can be imposed weakly, i. e. all physical states I.-?- 7 must 

(4.18) 

Since a: is the momentum of the string, the mass ( W])[2) spectrum follows 

immediately from the Hamiltonian: 

(4.19) 

where we restore the dimensional parameter c . The Regge trajectories are 

linear with slope Q’ = l/s~c~ and intercept (a0 + Go). 

Some useful commutators are given in Appendix D. 

B. No Lorentz Covariance 

Since the quantization is non-covariant, Lorentz covariance has to be 

examined. To construct the angular momentum operators, the ordering problem 

arises again. This can be resolved by symmetrizing the classical expression 

in xu and @ov to ensure that MPV is a Hermitian operator 
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since we have shown earlier that the spin part of MQPV is zero. The angular 

momentum operators are 

The presence of an 

of angular momentum since we have G .L 1. > IZ C\ I and E commutes with 

all tiV and the Hamiltonian. It is straightforward to verify that all 
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commutation relations of gV are satisfied except [Ml -, M2- 1 , which must 

be zero for the Lorentz algebra to close. (Appendix 3 contains some useful 

commutators. ) Define 

The troublesome part of Ml- can be subdivided into the left moving part 

and the right moving part 

It is straightforward (though tedious) to verify the following 

(4.20) 

(4.21) 
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. 

where N and N’ are the number of quarks moving left and right respectively. 
hi”” 

For the subsystem we have been considering so far, N’ = 0. Hence the/term in 

Eq. (4.23) does not vanish in the commutator [Ml -, M2- 1 and the Lorentz 

algebra is not closed. However, it is still interesting to note that the commutator 

of the left moving part of [Ml -, M2- 3 vanishes if N = 22 and a0 = 1 (where 

Eq. (4.22) is used). If, at the beginning, we choose 

instead of the projection (2.2), then the left moving part of CM1 -, M2- ‘1 will not 

,vanish while the right moving part vanishes if N’ = 22 and z. = 1. The inclusion 

of Ns number of massless scalar fields moving in the same direction as the 

fermion fields (say, left moving) changes the condition on the number of fermions 

t6 11) 

That this non-linear representation of the Lorentz algebra does not close is due to 

the normal ordering of the operators. This is purely a quantum mechanical effect. 
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V. Discussions and Speculations 

A. The quark-Binding String 

We have shown that the well defined, covariant subsystem of quarks moving 

clockwise around a closed string do not have a relativistic quantum mechanical * 

solution. Mathematically it is due to the non-linear dependence among the 

dynamical variables. We are very much aware that there may exist singular 

modes in the solution which we have discarded by f i&t ; their presence may 

restore the much wanted Lorentz covariance. Also it is likely that our quantization 

procedure is incorrect; to resolve the difficulty, we just have to find the proper 

quantization. In either case, it may require slight modifications in the original 

formulation of the string. Barring these possibilities, we believe 

that quantum mechanics and relativity are putting very strong constraints on the 

non-linear system. To interpret boldly the negative results we are facing, we shall 

go into a wide spree of speculations. No apology is offered to the cautious readers, 

since the unsupported statements to be made are so precise that we are confident 

they can be proven or disproven in the very near future. 

We shall formulate our speculations in the form of a conjecture. First we 

make a few observations, keeping in mind also the Nambu string in 3 and in 26 

dimensions and the quark binding string in three dimensions. 

(1) If we include some massless scalar particles moving clockwise around 

the closed string, then the clockwise part of the Lorentz algebra will close if the 

total number of Dirac and scalar quarks is 22. The anti-clockwise part of the 

Lorentz algebra remains not satisfied. 



-36- 

(2) If we consider the other projection of the quark field, i” &. .&. * q, z - + I I 

the quarks will be moving anti-clockwise, i. e. q iL ? i Tj . 

(3) The spectrum of the subsystem contains the spectrum of the empty string 

(i. e. Nambu string). We expect the spectrum of the complete system to contain 

the spectrum of the closed string with quarks moving clockwise only or with 

quarks mo,ving anti-clockwise only. 

(4) The string has only one dimensional parameter c ; it is not surprising 

that the Regge trajectories are straight lines. 

(5) For the open string tobxist, we need a linear combination of the left and 

right moving quark waves such that the string is a closed system: that is, the 

energy-momentum and current densities vanish at the ends of the string. 

(6) Despite the complicated looking form of the implicit solution of the quark 

fields, Eq. (3.21), the quark part of the Hamiltonian (4.10) is very simple. 

Now we state the speculation: 

where a n, sn obey the commutator (4.14a); bm and dm obey Eq. (4.13) . Its 

Lorentz algebra can be defined consistently to be identical to that given 

in Section IV with the following modifications 

,’ t7, =s : y. -2 -22 4l ,f 
I 
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Normal ordering is with respect to the ground state \ O’P defined by Eq. (4.15) 

and 

where 

We interpret bm and dm to be quark and antiquark oscillators; sn to be massless 

scalar field oscillators. (12) Closure of the Lorentz algebra requires acO = 1. 

Hence the lowest “mesonic*’ state hi2 d-4 107 has zero mass. a0 = 1 also 

prevents condensation: the mass of a state with M pairs of quark-antiquark is 

heavier than M Y1mesonic ‘I states each with one of the M pairs of quark-antiquark. 

We speculate that this mass spectrum (and its Lorentz algebra) belongs to the 

(open) quark-binding string with the addition of (22-N) scalar fields 

The Regge slope is CY’ = l/+T e for the open string. We also speculate that 

the closed quark-binding string has no fermionic states in its spectrum. 
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B. The Quark-Confining String 

The quark-binding string model formulated in Section II has an arbitrary 

constant c introduced as a tension to prevent the quark fields from. expanding 

without bound. It is the analogue of the MIT bag constant (as a pressure) and 
the SLAC yb!e constant (as a surface tension). It may be the effective binding 

force of some quark-gluon interact ions, so that the quark-binding string can be 

considered as a phenomenological description of some quark-gluon interacting 

field theory. However, the presnnt formalism is at best preliminary: there is 

no quark confinement; that is, there are exotic states in the spectrum. Also the 

presence of pure vibrational modes imply the existence of hadronic states which 

have no quark modes. Experimentally there is no evidence of such states. 

To improve the string model, we present our second conjecture. 

Conjecture 2 : Consider the following action (without the constant 6 ) 

and F” 
WJ 

= 0 at the ends of the string . 

Az! 
=rpAa 

Q! P 
are non-abelian gauge fields in the color SU(3) adjoint representation. 

Quarks come in color triplets. They must obey the same constraints in Table I 

as before to ensure the string is a closed system. Fermion masses ( Pp+q 

U3) abc 
can of course be added if needed. f is the group structure constant : 

where T” is an SU(3) matrix, a = 1,2,. . . ,8. This model we refer to as 
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the quark-confining string, since only color singlet states exist. If necessary, 

we can also introduce any number of color singlet scalar fields into the 

This may be necessary to saturate the Lorentz algebra. Notice that the string 

constant & is not included. Intuitively we see that there is no color vector gluons, 

since F a 
ap has only one component, namely FaG ,\ =E:i 

6 
/!+I can be removed by 

an appropriate gauge choice. This leaves only the “‘Coulomb potential: which 

provides an attractive force along the string, very much like a tension in the 

presence of quarks. Hence the spectrum contains color singlet states with quark 

and ,vibrational excitations. In the absence of quarks, the tension (i. e. Coulomb 

force) also disappears, so that the scalar fields are not bound. Hence one 
th-s 

can hope that ,&he relativistic invariant quark-confining string model has only 

mesons and baryons among its low lying states; there are no states which have only 

vibrational, color and/or scalar modes. At high energies, there also exist color 

singlet states with 3N’quarks plus M quark-antiquark pairs. If the Regge intercept 

is positive,which is probable, these states would have very large widths(to decay to 

normal baryons and mesons) and therefore very difficult to observe. 

We believe this quark-confining string, where exact color symmetry and 

quark-binding (along a line element) are put in by hand, offers enough computational 

simplifications to make it a worthwhile approach for studying quark confinement. 

We may also consider the Han-Nambu color. The color gauge field involved 

is abelian. One may hope to solve this model exactly. In practice, it is like putting 

the Schwinger model in a dynamical curved space, which is imbedded in 

Minkowski space. 



It is straightforward to write down the action : 

where, for the moment, we include the constant G. The equations of motion 
are ( see fig. 2a ) 

(r5) 
and ‘y obeys the usual constraints. Neglecting the quark term in T 

(Ai 2 
‘?, we 

see that, in the coordinate 

Since the electric field ( E*) term is positive, we can take c: --=Y 0 , 

The boundary conditions at the ends of the string must be imposed to ensure 

the system is closed: 

This means each end of the string must end with a quark ( or an antiquark ) as 
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in fig. 2b. The baryon string has a configuration shown in fig. 2c. For the 

non-abelian case, fig. 2( d, e) may also have to be considered. The coupling 

constant e is the only dimensional parameter in the model in the absence 
of the constant e and masses M; ( ej CYL CL ). In the presence of 

quark masses, the Regge trajectories will not be linear for the low mass 
states. - 

For the case where Lp+g j’ <i i , the system should be solved 

in the absence of masses and treat the mass terms perturbatively. For 

the case ( f”\/e. )“n\ , it is straightforward to show, (and is left as an ex- 
ercise for the reader ) that, to the lowest order approximation, the potential 

between a quark and an antiquark rises linearly VW! cc Y. 
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Appendix A 

The best way to show xi q, = 0 is probably the straightforward way. Let 
it 
1- 

‘I 
,._. L 

--I 1 

cs: 

3 _ Equation (2.20) puts constraints among the four components. Using the Dirac 

representation (2.15) the constraints become 

where 

and similarly for n, and n 
e, Y * Using Eq. (2.6) and (2.7), we obtain 

Now 
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Hence 

where 

where y (in jP) and q k can either be the same spinor or different spinors. 
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Appendix B 

TCYr can be chosen to be off-diagonal and symmetric if it is symmetric and 

has signature (1 , - 1) to begin with. The proof is almost identical to that given 

for Ref. (8). Since gal’ is already symmetric, we need to show t^?“[’ is 

is a tensor; hence it is sufficient to show that it is symmetric 

at any given point in some coordinate system. At any given point, we can choose 

locally geodesic coordinates 

pi, =. ( :, ()I ) 

Equation (3.2) becomes 
f$“= _ &-+j-+y = -Tcy 

It is then straightforward to show that 6 01 = 61° in this coordirate system using 

the Dirac Equation (2.25) and Eq. (2.21). To show that T a:,3 has signature (1, - 1) 

all we need is to show that det (Tap ) ( 0, where 

Dirac equation (2.25) implies 



-46- 

and the light-like currents (Appendix A) implies the vanishing of the last term. 
a!?-! Since g : also has signature (1 , - 1) then 

That T@.3 
- 

can be chosen to be off-diagonal is, of course, due to the arbitrariness 

in the choice of the parametrization. This is also related to the fact that our phase 
SL. 

space is constrained. To see this, let us consider the canonical momentum j’; = ‘- $jcP 

and the shifted coordinate 
j;, 

L! 
..--*- 

,~ ‘/A = ‘.I $A - ,--T 
q- 

J ..’ i !e 

Naively one may expect them to be independent. However, they are constrained by 

the following relations: 
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Appendix C 

The Gauss-Codazzi equations involve the torsion ~o which depends on the 

choice of the normals nP and m . 
P 

To ,verify the Gauss-Codazzi equations in the 

coordinates chosen, we first make an explicit choice of nP and m ; we then 
P 

calculate all the curvature tensors and the torsion and sbustitute them directly 

into the equations. 

The normal plane 

Let us choose nP such that n+ = n0 + n3 = 0. (This is a valid choice 

space-like. ) To do so, it is convenient to introduce some notations. 

Eq. (2.4) gives 

since n is 
P 

Expl ic itly 
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where 

Note that bf = &A. -\- ” 

Using Eq. (3.11), we now obtain 
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It is clear that the sec’lond Gauss-Codazzi Equation (3.15) is satisfied. 

The first Gauss-Codazzi equation (3.14) can also be verified easily once we 

obtain the other components of the curvature tensors. They are, using Eq. (3.10), 

where 

For the record, we note that the “mean curvature” is given by 
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Appendix D 

Given the commutators among the independent operators an, cn, b d 
m’ m’ 

4i’ cl_) ai and a l, all commutators can be calculated. We give some of the 

useful ones. - 

where N is the number of quark fields. The constant terms in the last two 

commutators play the same role as c-number Schwinger terms. 
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TABLE 1 

The Quark-Binding String 

0) 

T-he Sub system 
I_- ___.. -_-_-------.- ____ ---_._-_--- 

l_~_-ll̂  

Equations (i), (ii), and (iii), and,for each quark 

jJg.jytiq ‘-- q 

Proper boundary conditions have to be included for an open or a closed string. 
-j-h wrlJ&LCi&L 1-L VLY’t -t& &ALp.&&“&Z. 
The subsystem describes massless quarks moving clockwise around the closed 

string. 
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The geometric coordinates of the string. 
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Quark-confining strings. In (C), 'Z/3 and l/3 are 
the Abelian color hypercharges. 
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