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ABSTRACT 

This is a review of the salient features of high energy diffraction 

scattering of hadrons. It begins with a summary of the experimental 

situation for those processes which persist at very high energies-the 

diffractive processes-and define the underlying exchange mechanism 

called the Pomeron. A review is made of the key features of the 

multiperipheral model, since it lies at the beginning of all studies of 

diffraction. Its virtues and blemishes are exposed. Then we turn to 

various models which attempt to add unitarity to the multiperipheral 

model. From the point of view of the direct channel we consider 

absorptive models, eikonal models and the multiperipheral bootstrap. 

The t-channel is taken next, and an exposition of the formulation and 

major results of Reggeon field theory is given. 

(Submitted to Rev. Mod. Phys. ) 
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“Et fut une digne parole de Julius Brusus aux ouvriers 

qui lui offraient pour trois mille &us mettre sa maison en 

tel point que ses voisins n’y auraient plus la vue qu’ils y 

avaient: ‘Je vous en donnerai, 1 dit-il, ‘six mille, et faites 

que chacun y voie de toutes parts. t I1 

de Montaigne, M. (1585-88), 
“Du repentir” 
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I. INTRODUCTION 

A very striking phenomenon in the collision of strongly interacting particles 

(hadrons) is the existence of cross sections which are almost independent of the 

incident energy. Several examples are shown in Fig. 1 (Kycia; 1974) and 
* 

included is the proton-proton total cross section which has been measured from 

threshold up to equivalent laboratory momentum ~1. 5x103GeV/c at the Intersecting 

Storage Ring (ISR) at CERN. Cross sections which remain constant or perhaps 

grow slowly with the square of the center-of-mass energy, s, are called diffrac- 

tive. This alludes to the coherence necessary among the multitude of final states 

allowed in a large s collision in order to produce a cross section which does not 

decrease rapidly with s. An excellent example of nondiffractive collisions is 

pion-nucleon charge exchange (Barnes et al., 1974): r p -) Ton, which has been -- 

measured up to laboratory momentum -150 GeV/c. The cross section for this 

process behaves as s -1 and becomes very small very quickly (Fig. 2). At 

100 GeV/c, for example, it is 3.3 pb compared to 20-40 mb for typical diffractive 

cross sections. 

This review is concerned primarily with the theoretical work on the problem 

of diffraction processes. We will begin with a theorist’s eye view of the experi- 

mental situation and attempt to identify those aspects of diffractive reactions 

which are amenable to theoretical discussion now and which, equally interesting 

to be sure, require further and deeper developments. From this discussion we 

will extract the following signals of diffraction (Leith, 1974): 

1. Cross sections (total, elastic, inclusive) are independent of energy up 

to powers of log s . 

2. The amplitude for diffraction scattering is mainly imaginary. 
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3. Diffraction amplitudes factorize. This means the ratio of amplitudes 

for AB - A’B’ and for CB - C’B’ is independent of B and B’. Formally one 

writes for the AB + A’B’ amplitude T 

T(AB - A’B’) = (gAA, )(g,,,) x factors independent of A, A*, B, or B’ 
- 

(1) 

4. In the differential cross section dcr/dt as a function of four momentum 

transfer, t, there is a sharp forward peak. The evidence is that this peak be- 

comes sharper as the energy s increases. 

5. If diffraction is viewed as mediated by an exchange between hadrons, 

the exchanged object carries the quantum numbers of the vacuum (I=O, P=C==+, . . . ), 

but an effective spin of one. 

6. At the vertices AA’-exchanged object or BB’-exchanged object the rule 

‘A= pA,(-1) 
JA- JA’ 

where PA is parity and JA is spin, seems to hold. 

7. The cross section for particle + target is equal to the cross section for 

antiparticle + target. 

With these phenomena in mind we will proceed to the theoretical side of our 

discussion. Theories divide more or less neatly into two viewpoints: I. The 

s-channel view and II. the t-channel view (Fig. 3). These views are represented 

in Fig. 3 where the collision AB - A’B’ is portrayed. The total collision energy 

(squared) in the center-of-mass frame is s = @A+pB)2. The four momentum 

transferred is t= (PA -P~,)~. For proton-proton scattering the physical range of 

s and t are s > 4m’ 
P’ 

-s 5 t 5 0. In diffractive processes s becomes large, while 

t remains finite and small. 

Viewpoint I looks in the direction of s and concentrates on the detailed pro- 

duction mechanisms occurring as intermediate states in the transition from 

initial to final states. In Fig. ‘4a, for example, we show the initial AB becoming 
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the final state A*B* via an intermediate state of N=8 particles. The s-channel 

viewpoint must treat these intermediate states for each N. 

Viewpoint II looks in the direction of t and concentrates on the possible set 

of exchange mechanisms which may mediate the diffractive scattering. In Fig. 4b 

a wiggly line is shown as representing this exchange. If the wiggly line carries 

angular momentum J, then the amplitude T is approximately 

TAB --, A?B’(~~ t, - SJ’gfi’(t) gBB’@) ’ (2) 
S-00 

t fixed 

Since the total cross section for AB -. anything is given by the optical theorem 

as 

Im TAB +AB(s’o) Y (3) 

we see that energy independence (up to log s) requires J=l. The t-channel view- 

point is thus concerned with the spectrum of possible exchanges with angular 

momentum in the neighborhood of J=l. 

In each of these points of view unitarity plays a key role. We can see this 

directly in the s-channel by looking at the unitarity relation for TAB --L AIBl(~, t). 

This gives the imaginary part of T in terms of a sum over all possible inter- 

mediate states compatible with conservation laws: 

Irn TAB - A’B’h t, = c T N AB-NT&B’--N (4) 

as portrayed in Fig. 5. The imaginary part of TAB - N is itself linked via 

unitarity to TAB - AIBl and a large number of other states since (symbolically 

to be sure) 

ImTAB-N = g TAB -MT;-M ’ (5) 
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So via unitarity all states which can communicate with each other are linked 

together. Since the s-channel viewpoint focuses on the TAB N as building 

blocks and these are connected via the nonlinear unitarity relations to the ampli- 

tudes of interest, the complexity of the scattering problem from the s-channel 

point of view is impressive. Fortunately the number of important intermediate 

states appears to grow only as log s (Giacomelli, 1974) rather than as &s which 

is permitted by energy conservation alone. Nevertheless; log s is 8 at the 

highest available energies so multiparticle states and the resulting kinematical 

complexity is an issue. We will discuss the techniques used to study these 

questions. 

In the t-channel point of view unitarity rises to importance because of the 

possibility of multiple exchanges. In Fig. 6 we show the wiggly line of Fig. 4b 

being exchanged twice. Just as multiple particle states in the s-channel give 

rise to an imaginary part of T and link many amplitudes, so do multiple wiggly 

exchanges give rise to imaginary parts of T, and these are linked by unitarity. 

The appropriate form for the unitarity relation when viewed through the t-channel 

is in terms of t-channel partial wave amplitudes. The question of multiple 

exchanges becomes crucial in diffraction phenomena because the effective angu- 

lar momentum of the wiggly exchange is one. When we exchange this twice we 

have a factor s”’ from the product of the exchanges and a factor s -1 from the 

loop integral implied in Fig. 6. The net amplitude is s’ which is the same order 

as the initial process in Fig. 4b. 

Unitarity, being nonlinear, is a difficult constraint to impose on a theory. 

One sure way to achieve it is to write a quantum field theory for whatever 

processes are deemed important and then solve it. Well, that’s a fairly tall 

order . In the case of the s-channel viewpoint, approximation techniques of one 
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sort or another have been developed. For the t-channel outlook an effective field 

theory has been developed which does enforce unitarity (Abarbanel and Bronzan, 

1974a, b; Gribov, .1968; Migdal et al. , 1974). The other attractive enforcer of 

unitarity (Chew, 1961) studies the analytic structure of amplitudes and writes 

dispersion relations which connect amplitudes and imaginary parts. This has 

proven to be an inappropriate tool for investigating diffraction scattering. Dis- 

persion relations are powerful indeed when the number of intermediate states is 

small. In diffraction, viewed either from the s-channel or the t-channel, the 

number of relevant amplitudes to be connected by unitarity is always large. 

Other tools are required. 

This review article is not without bias. My preference for the t-channel 

view will be reflected both in my emphasis during the discussion of theories and 

in the much larger and more detailed presentation I shall give it. The major 

portion of this review will be devoted to an explanation of the developments in the 

t-channel viewpoint which go under the names of Reggeon field theory (Abarbanel 

and Bronzan, 1974a,b; Abarbanel et al. , 1975c; Migdal et al. , 1974) or Reggeon -- -- 

calculus (Gribov, 1968). The Reggeon of paramount interest in diffractive 

processes is that which carries vacuum quantum numbers and is pleasantly 

named the Pomeron after the Soviet physicist I. Ya. Pomeranchuk who first dis- 

cussed many of its properties (Pomeranchuk, 1958). From either point of view 

(s or t) it is the Pomeron whose properties we seek. As promised we begin with 

the theorist’s summary of the experimental facts. 
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11. REVIEW OF THE EXPERIMENTAL SITUATION 

In the introduction we made a list of the features which signal diffractive 

processes. Now the proposal is to go down this list and discuss each item. 

After presenting each experimental aspect, I will say a few words about the ease 

or difficulty in interpreting that observation theoretically. We emphasize that 

the Pomeron which appears in total cross sections, elastic cross sections, dif- 

fractive dissociation, inclusive processes-what have you, where vacuum quantum 

numbers can be exchanged-is always the same Pomeron. So we are allowed to 

draw on all these data to illuminate the properties of the Pomeron. 

1. Energy Independence 

The easiest measurement here is of total cross sections q(s) (Kycia, 1974). 

In Fig. 1 are shown the o Ap(s) f or collisions of A on protons with A=p,i, r* and 

Kf. Over a wide range of beam momentum each of these cross sections varies 

rather slowly. Each is compatible with only logarithmic dependence on 

se2m p -l/2 
p lab after a correction term proportional to s is removed. Compare 

this to the very dramatic decrease of the charge exchange cross section (Barnes 

et al. , -- 1974) shown in Fig. 2. 

How do we interpret this? The total cross section is related to the invariant 

amplitude TAB(s) t) f or elastic AB scattering via the optical theorem (Abarbanel 

et al., 1971a) 

AB 
OT (s) =Im TA~(S,0)/A1'2(s,m~,m~) 

where - 

A(x,y,z) = (x+Y-z)~ - 4xy 

is the usual flux factor. If we make the ansatz 

(6) 

(7) 

TAB @ , t) = s (log 8 fAB(t) , (8) 
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with p small,we have a representation of the amplitude which gives c P(s) = 

(log s)? The Froissart bound (Froissart, 1961a; Martin, 1963; Martin and 

Cheung, 1970) on the growth of o,(s) limits p < 2. In terms of a t-channel point 

of view the amplitude (8) represents the exchange of a spin one object with a 
w 

little bit of logarithmic dependence. 

As another example of cross sections becoming energy independent we look 

at the: elastic cross sections (Fermilab Single Arm Spectrometer Group, 1975; 

Leith, 1974) in Fig. 7. Again after the disappearance of a term behaving more 

or less as s -I/2 in the elastic amplitude, 

dt iTAR(s,t) I2 (9) 

is almost constant in s. 

Finally we look at the cross sections for pp - A + anything with A = p, 6, 7r*, 

K* as shown in Fig. 8 (Giacomelli, 1974). Plotted here is the differential cross 

section 

for fixed momentum pT of A transverse to the beam direction as a function of 

the rapidity of A (De Tar, 1971) when yA is near its maximum value. Rapidity 

is defined as 

y = + log E +PII 

E -pII 
(11) 

where p is the momentum along the beam direction and E = 2 I/2 
II > 

is the particle energy. The cross sections are given for & from ~6.8 GeV 

II ‘lab = 24 GeV/c to & M 53 plab M 1400 GeV/c . In each of these processes 1 [ 1 
vacuum quantum numbers can be exchanged in generalized t-channels. The 

resulting constancy of the cross sections is impressive. 
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The theoretical status of this energy independence of cross sections or s1 

behavior of amplitudes is that there is no fundamental explanation for approxi- 

mate spin one exchange. There are many conjectures and many suggestive 

formulae. We will see some of these. It is true that if T AB(s, 0) - sa! then the 

Froissart bound requires o!~l, and experiment saturates the bound. It is hard - 

to know what precisely to make of that. Recent work in diffraction physics has 

retreated from “explaining1 why ol=l and focused attention on the consequences 

thereof; for example, if TAB(s, 0) - sa! (log s)@, perhaps 0 is predictable given 

o!=l. Caveats aside there are suggestions, and we will come to them. 

2. Diffraction Amplitudes are Almost Imaginary 

Figure 9 shows the best evidence for this statement (Leith, 1974). The 

ratio p(s) = Re T(s, O)/Im T(s, 0) is shown for proton-proton scattering from 

laboratory energies of 1 GeV to 1000 GeV. Note that in the neighborhood of 

120 GeV this ratio becomes positive, while remaining small. If the cross sec- 

tion grows as (log s)P, then analyticity arguments (Leith, 1974) tell us that 

p(s)-% l 2 log s 

for large s. So eventually p(s) must be small and positive for large s. 

The imaginary nature of the diffraction amplitude represents absorption out 

of the elastic channel. Indeed, if the amplitude is pure imaginary,then in some 

loose sense the competing inelastic channels have become as strong as possible 

in soaking up probability. The imaginary nature of the diffraction amplitude can 

be connected with a! w 1 and sufficient analyticity (Eden, 1967). In several of the 

models to be discussed, notably the multiperipheral model, it is also rather 

natural. We may now update our ansatz (8) to exhibit the imaginary amplitude 

TAB(S,~) = is (log S)’ fAB(t) (13) 

near t=O. fAB(t) is real. 
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3. Diffraction Amplitudes Factorize 

As explained above this means that the amplitude for the process AB - A’B’ 

can be written as 

TAG ---* A7B!tS’ t, = &&‘,p) gBB, (t) x function of s independent of A,A’,B,B’ , 

If this is the case, then 

TAB - A’B’@ t, g&#) 
TCB 

- C,B,(S, t) = gcc,(t) = independent of B,B’ . (15) 

Furthermore this independence must hold for all s as a function of t. Clearly 

this is a stringent requirement. 

Before revealing the evidence for factorization, a few theoretical words are 

in order. If the wiggly exchange diagram of Fig. 4b were correct, factorization 

would be elementary. It would represent the locality of the acts A - A1 + wiggly 

andB -t-wiggly -B’. Indeed, if the wiggly is an elementary particle or a simple 

pole in angular momentum, one can demonstrate using unitarity (Arbab and 

Jackson, 1968) that the amplitude must factorize. 

Alas for the simplest picture, multiple exchange graphs as in Fig. 6 in 

general have no factorization but are superficially as important as the factorized 

contribution. Factorization is an important challenge to theories of diffraction. 

We give two examples to show the quality of factorization in experimental 

results. Others are discussed by Leith (Leith, 1974). First, in the set of 

reactions Ap - Ap and Ap - AN*(1688) with A= X-, K-, or c the ratio of these 

amplitudes should be independent of A, if factorization holds true. The process 

AP - AN*(1688) is called diffractive dissociation and involves an energy inde- 

pendent cross section and the other attributes of diffraction. In Fig. 10 (Leith, 

1974) is shown the ratio of the differential cross sections for these diffractive 
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processes as a function of t. The independence of beam required for factoriza- 

tion holds remarkably well. 

f 

Second we turn to the results of an inclusive experiment at Serpukhov. The 

CERN-IHEP collaboration measured 
- 

T-P --, x+p and K-p -+X-t-p (16) 

at beam momenta 25 GeV/c and 40 GeV/c. These reactions are shown in Fig. 11. 

If the Pomeron factorizes,then the ratio of these cross sections should be inde- 

pendent of beam momentum, momentum transfer t between the protons, and x, 

the fraction of beam momentum carried off by the recoil proton. The experi- 

mental results are shown in Fig. 12 (Leith, 1974). Indeed we must have 

& (T-P - X+P) = ~total(~-P) 

& (K-P - X + P) ototal(K-p) 
(17) 

Integrating over t, the left-hand side here is 1.20 i 0.09 and the right is 

1.18&0.04. / 

There are, as mentioned, several other (better) examples of factorization. 

I choose these two rather diverse examples to stress the point that Pomeron 

amplitudes must factorize everywhere, not just sometimes, since the same 

wiggly t-channel or s-channel object is involved. 

We may now further update our model amplitude for diffraction to read 

TAB - AfBftS’ t, = is (log S)Pg&$kBBrtt) ’ (18) 

4. The Diffraction Differential Cross Section Has a Sharp Forward Peak 

Which Gets Sharper as s Increases 

The most comprehensive measurements of elastic cross sections are for 

proton-proton scattering, From Fermilab and the CERN-ISR we have good data 
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t 

for s - 100 (GeV)2 up to s - 3000 (GeV)2 that show for It I < 0.15 (GeV/c)2 that - 

g(s,t) =g(s,O) exp -b(s)ltl , (19) 

with 

b(s) = bo+201f log [ s/l (GeV)2 1 c (20) 

and 

b. = 8.3 (GeV)-2 , (21) 

and 

a’ = 0.28 (GeV)-2 . (22) 

There is other evidence for a shrinking of the sharp forward peak in elastic 

diffractive scattering, but none of it covers so large an energy range as the p-p 

data. The most recent data comes from Fermilab (Fermilab, 1975) and is 

shown in Fig. 13 where the parameter b(s) is given. 

We must modify our model amplitude again to take account of the shrinking 

peak 

(23) 

where a!(t) = l+ a!? and gij (t) falls rapidly with increasing It I. 0 here may depend 

on t; experiments are not yet sensitive to it. 

5. Vacuum Quantum Numbers Exchanged 

The evidence here is simple to state. Any process which carries non- 

vacuum quantum numbers in the t-channel has a cross section which falls rapidly 

(as a power of s) in energy. A beautiful example is pion-nucleon charge exchange 

which has I=l, Q=l, C=-1 quantum numbers flowing in the t-channel. The 

dominant nN amplitude is the spin nonflip I=0 t-channel amplitude. It has an 

energy independent cross section and is diffractive. 
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We may also examine the cross sections for the processes K-p -L E+ (NT@ 

shown in Fig. 14 (Leith, 1974). In the (NT@+ configuration there are enhance- 

ments in the Nnn mass due to diffractive excitation of a nucleon excited state. 

There are none in the (NT@’ spectrum. As Leith notes, this experiment is 

evidence for the Q=O and C=+l nature of the Pomeron. 

There is no known theoretical “explanation” of vacuum quantum numbers 

for the Pomeron. However, from the t-channel exchange viewpoint it has been 

shown (Pomeranchuk and Okun, 1956) and generalized (Amati et al., 1964) that -- 

if amplitudes are dominately imaginary, then exchange of vacuum quantum 

numbers gives larger cross sections than exchange of nonvacuum quantum num- 

bers. Of course, they could both have the same s-dependence but the vacuum 

exchange the larger numerical amplitude. It seems profitable to set aside this 

issue and accept for the moment that vacuum quantum number exchange ampli- 

tudes is where we look for energy independent cross sections. 

There is a little analogy which is useful, if not rigorous, in helping to under- 

stand how vacuum quantum number exchanges might remain larger than non- 

vacuum quantum number exchange. In the wiggly exchange graph of Fig. 15 we 

can imagine a flow of some current (isospin current, charge current, . . .) along 

each line. If the current must carry charge or isospin or whatever, then the 

quantity carried must accelerate very rapidly to go from the direction of travel 

of particles A and A’ to the direction of travel of particles B and B’. In this 

acceleration, stuff is radiated as in electrodynamics when charge is accelerated. 

The faster A and B pass by each other, the higher s is, the more rapid the 

acceleration of the quantity must be, and the more radiation of the quanta of the 

stuff must occur. Radiation of quanta opens up more channels for the scattering 

to go into and decreases the amplitude in the AB - A’B’ channel. Only if the 
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quantum numbers of the vacuum are carried across is nothing accelerated, and 

there is no accompanying amplitude decreasing radiation. 

6. At the Vertices A + A’ + Pomeron, the Rule Parity of A = Parity of A’ x 

-I (spin of A)-(spin of A’) Holds 

This is at best a rule (Leith, 1974) which has no substantial theoretical 

footing but seems to be empirically true. To study this rule one must examine 

the overlap of the wave function of A with the wave function of A’ with the oper- 

ator which represents the emission or absorption of the Pomeron: 

gAA’ cc / 
$2, (Pomeron operator) ?jA . (24) 

The theoretical lack of knowledge about the hadronic wave functions qA is leg- 

endary; the same holds for- the Pomeron operator. It is my opinion that keen 

insight into the structure of hadrons will be necessary before one can address 

the spin-parity rules for the A-A’-Pomeron vertex. It is an important problem 

which will not be touched on further in this review. 

7. The Cross Section for AB Equals the Cross Section for AB 

In Fig. 15 (Leith, 1974) is shown data for the total cross sections Ap with 

A= 7r*, K*, p* and the K*n total cross sections plotted versus @lab) 
-l/2 

for ‘lab 

up to 25 GeV/c. Each of the pairs AI3 and AB become equal at very large plab. 

Since the difference between the AB -+ AB amplitude and the AB * AB amplitude 

is some nonvacuum quantum number exchange, these data are consistent with 

the remarks above. 

This ends our review of the experimental situation in diffraction scattering 

of hadrons. For more detail the lectures of Leith (Leith, 1974) from which we 

have generously drawn should be consulted. We turn now to the theoretical 

structure which has grown up around and with these experimental results. First 
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we look at the s-channel viewpoint and then examine at some length the t-channel 

point of view. 

III. BASIC THEORETICAL IDEAS 

Almost all thinking about high energy scattering at small momenium transfer 

is an extension in some form of the multiperipheral model (Abarbanel et al., 

1971a; Amati et al., 1962; Bertocchi et al., 1962; Fubini, 1963). Diffraction -- 

scattering is no exception. We will review here very briefly the fundamentals 

of multiperipheralism, its key content, and its major implications. 

Multiperipheral scattering amplitudes are generalizations of the exchange 

processes familiar from quantum field theory (Drell and Hearn, 1966). Suppose 

we have two-to-two scattering of spinless equal mass (m) particles. At low 

energies the amplitude for this will be dominated by resonances when they can 

occur. These are poles in s (Chew, 1961; Eden, 1967; Frautschi, 1963) (Fig. 17) 

‘J ices ss, 

T(s,t) =c R 2 

R M;-s gR (25) 

where the resonance is at the (complex) value 

ing angle $s is related to t by 

The center-of -mass scatter- 

t = -2 (s/4-m2)(1-cos @s) , (26) 

and the spin JR of the resonance enters via the Legendre polynomial P J . 
R 

When the energy s is increased, one leaves the resonance region and cross 

sections become very smooth. The number of partial waves is about ($s) x 

(impact parameter M 1 fermi) and becomes quite large. Now a finite set of reso- 

nances give an amplitude which falls as s -I . Diffractive amplitudes rise 
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approximately as s1 and charge exchange amplitudes as s 3-h , so a finite set of 

s-channel resonances cannot be enough. 

In field theory (Bjorken and Drell, 1964) one may also exchange resonances 

in the t channel as in Fig. 18 giving rise to the amplitude 
* 

T(s,t) =cg” 
R R 

(27) 

with 

s = -2 i-m2 (1 
( 1 

- cos q . 

Now for fixed t and s -. rx which is the limit we are concerned with each term 
T 

in (27) behaves as s JR . A finite sum of t-channel resonances will give ampli- 

tudes growing faster than s’, if any of those resonances has JR > 1. Such a 

growth violates the Froissart bound, not to mention experiment. Does this mean 

we cannot allow resonances with spin> l? No, it means that a finite set of reso- 

nances won’t do, and the sum in (27) must diverge. More of this later. 

The peripheral model (Drell and Hearn, 1966) in its crudest form approxi- 

mates the t-channel resonance sum by the term with the lowest mass or longest 

range in impact parameter (thus the name peripheral). This term is usually the 

pion or another (fictitious) spin 0 meson giving the peripheral amplitude (Fig. 19) 

Tp(s, t) = g2(m2 -t) -1 . (29) 

In itself this amplitude won’t do. It is pure real and behaves as so. 

The multiperipheral model (Fubini, 1963) attempts to approximate the 

imaginary part of the AB e AfBf amplitude by making a peripheral amplitude 

ansatz for each possible t-channel like exchange. The unitarity relation (4) 
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(Zachariasen, 1971) gives Im T(s,t) as 

x T);‘B’ --) &?A’+PB’ --* PI’ * -p,) * (30) 

Now one makes a peripheral approximation to TAB - N (Fig. 20) 

(31) 

where 

Qj=pA-PI-... -pj (32) 

and is the momentum transfer between links along the particle emission chain. 

In the peripheral approximation TAB- N is related to TAB - N I by multi- 

plication with g/(m2-Qi-$, so one may write a recursion relation for 

h-~ TAB--,A’B’ tFi& 21) 

with 

x Im T (Q,+P,-QQ;+P~,) , (33) 

K(PA+P~~P~,+P~‘) = G2 G(@A+PB)2 - mi > . (34) 
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If we call A = Im T (pA+pB - pA,+pB,) and the propagators (m2 -Q,) 2 -lx 

(m2- Q!12)-l=Go ,we may cast (33) into the symbolic form 

A=K+KGOA (35) 

which reveals it to be just the Schr’ddinger equation (well, really the Bethe- 

Salpeter equation), for two particle scattering in the t-channel. This equation 

can be partly diagonalized by the Mellin transform (Abarbanel et al. , 1971a) -- 

A(Q, t) = /m ds s-Q-l A(s, t) 

sO 
(36) 

whose inverse 

c+im dQ Q 
A(sJ.=~-iw ss A(Q,t) (37) 

represents A(s, t) as a ‘rsum’f over powers of s. What we have done in this trans- 

form is trade off the variable log s for its conjugate variable Q. (Conjugate be- 

I cause s is e Qlog s l ) 

The resulting equation is two dimensional, and if we assign two vectors to 

each momentum (Fig. 22), we are able to write 

A(Q, t) = A(Q,c,y,r) = K(Q,F,T,c) +/ d2p’ K(Q,F,<,z) Go@‘,3 A(Q,l;,<,g) 

(33) 
-2 where t=-lql . The equation is two dimensional because in integrating over s 

we had to specify two components of each four vector: the energy and the mo- 

mentum in the beam direction. The two remaining momenta are the conjugate 

variables to the impact parameter vectors r. All the dynamics resides in the 

two degrees of freedom perpendicular to the beam direction. This two dimen- 

sional dynamic space is not particular to the multiperipheral approximation. It 

is pervasive in very high energy processes. 
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The solution to (38) is given in terms of the eigenfunctions of the homogeneous 

equation 

1 ,tQ. t) +,tQ,z<) = /d2p’ KtQ,$,‘;i$‘> Go@,3 $JQ,&~ (39) 

in the usual fashion 

knQ 2 t) 
AtQ,~~~) = c ii~,tQ>E$ l-h (Q t) G;tQ>&?) , 

n n ’ 

where 

K(Q,i?,';?,Tf) = c k,tQ, t) ~JQ~if% Ili;tQ,lr,y) - 
t n 

(41) 

For doing the Mellin inversion of (37) to reconstruct the absorptive part of 

T AB -r A,B,,.we need to know the analytic structure of A(Q, t) in Q. ,For our par- 

ticular K,and for most smooth enough potentials K, K(Q) is analytic in Q to the 

right of 1=-l. Also the $(Q,‘i;*,<) are smooth in 8. The interesting structure 

comes when A,=l, this occurs at Q=orn(t): 

~ntqt),t) = 1 * (42) 

Furthermore when K is “smooth enough,,, that is to say usually, hn is analytic 

near Q=@n(t) so the singularity in A(Q, t) is a set of poles __ 

AtQ, t) = c Q-y$t) , 
n 

and for A(s, t), we find 

A(s,t) = c s 
yp 

P,(3) P,(m) * 
n 

(43) 

(44) 

This is the key result of the multiperipheral model: there are poles in the 

variable Q conjugate to log s, the position of these poles varies with t;Q= oln&. 

The large s, fixed t behavior of A(s, t) is given by the o,(t) with the largest 
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Re on(t), call it a(t) so 

AMp(S,t) sx, S’y(t)pAAfW &BY@) 9 

t fixed 

(45) 

whose similarity to Eq. (23) is notable. 

If a(t)5 1 for tr0, then this result of the multiperipheral model answers 

most of the questions we ask about high energy scattering. Furthermore, if we 

find an o!(t) such that 01(0)=1, then we have a total cross section which is constant 

since by the optical theorem 

c&) - iA(s,O) = s ato)-1 PM(O) &B(O) * (46) 

A nice interpretation can be given to this power of s, a(t), by. thinking again 

of the multiperipheral integral equation as a SchrSdinger equation. When looking 

for the eigenstates we are essentially looking for the two particle bound states 

(or resonances) whose position a,(t) depends on the parameter t. Just as we had 

a peripheral amplitude in (27) which behaved as s JR for a spin JR resonance in the 

t-channel, so we may interpret the multiperipheral s 
y.p) 

as coming from a 

resonance with “spin” on(t). This “spin” depends on t and may even be complex. 

The behavior soL@) represents the sum 

c 
R 

sJR 2 
gR N 

2 -t mR 
(47) 

outside its region of convergence. 

Unfortunately the multiperipheral result has its fatal flaws. These are a 

signal of the inadequate representation of the unitarity relation,, and all attempts 

to go beyond multiperipheralism have basically had the goal of the restoration 

of unitarity or the addition of more unitarity. The first flaw is that nothing 
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prevents a(O) from becoming larger than 1 (the unitarity bound), if the strength 

of the potential K is made large enough. Take our particular ‘lpotentialY! (34) 

with mo=O. Then explicitly one has (Wick and Cutkosky, 1954) 

(43) 

and we may easily arrange that a!(O)> 1. Somewhere we didn’t get enough unitarity. 

The second flaw is experimental. If we only have poles in Q at a,(t), then 

even if o!(O)=1 we can at most have constant total cross sections. We have seen 

in our experimental review that total cross sections appear not to be constants, 

but rise as a small power of log s. 

The third flaw is subtler. We have evaluated only Im T. If we imagine that 

T(s, t) near t=O is pure imaginary, then the ~~JIJ of the contribution to T(s, t) of 

the double scattering correction depicted in Fig. 6 is positive in multiperipheral 

models (Abarbanel, 197213). This occurs because such corrections are deter- 

mined from unitarity which is more or less Im T cc T*T > 0. Now if pure 

imaginarity represents absorption from the initial channel, as it must, then 

double exchange represents absorption of amplitude from the simple exchange 

and should subtract from it not add to it. It can hardly be a secret any longer 

that this flaw is fixed up by unitarity as well. What’s missing is even more 

absorption, multiple scattering if you like, that results in the appropriate sign 

of the correction term. 

The fourth flaw, if one more is even needed, is a consistency problem with 

the multiperipheral model pole with a!(O)=l. For good kernels K this pole will 

be isolated and a(t) will be regular at .t=O. In such a case one may prove, 

beginning with properties of inclusive reactions (Abarbanel et al. , 1971b) like -- 
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PP e p + anything, and on through some weighty analysis (Brower and Weis, 

1972; Jones et al. , -- 1972) that the Pomeron so defined does not contribute to total 

cross sections at all? In particular quantities like pAA as in Eq. (46) must 

be zero. Again this is a price one pays for ignoring unitarity. This time the 
- 

avoidance of unitarity comes from not considering complicated potentials or 

kernels K which contain the poles at an(t) themselves. When this is done, the 

resulting K’s are not “smooth enough”,and poles alone do not emerge. 

It would be unfortunate indeed to end our comments about the multi- 

peripheral model on this sour note, for it actually provides a very excellent 

description of an enormous amount of data and is certainly a very rational 

starting point for refined theories of diffraction (Bdggild and Ferbel, 1974; 

DeTar , 1971). After all, it does possess power behaved amplitudes whose power 

varies with t. These amplitudes factorize. Just these results with the ansatz 

that cr(O)=l gives constant cross sections, and cross sections are almost constant. 

It gives inclusive cross sections that are essentially independent of produced 

particle rapidity for produced particles slow in the center-of-mass of the colli- 

sion (pionization region). The view, then, of the multiperipheral model I feel one 

ought to take is that it yields a very attractive beginning point for theoretical fine 

tuning in the study of diffraction. It identifies most of the important degrees of 

freedom one needs to focus on and provides the “unperturbed problem” from 

which deviations are to be treated as perturbations. 

There is a fruitful analogy in many body theory to this use of the multiperiph- 

era1 model. In the theory of second order phase transitions (Fisher, 1974; 

Stanley, 1971; Wilson and Kogut, 1974) one begins the study of the correlation 

functions of spins or whatever with a mean field theory which has only poles in 

Green’s functions. These poles are just like those in the multiperipheral model. 
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They represent effective resonances or mean fields. The mean field theory with 

only poles is an accurate description of systems with a phase transition far 

enough away from the transition. Close to the transition the Green’s functions 

deviate in small but striking ways from the poles only behavior. Poles only, 

however, remain an excellent starting point. From that point the fine_ tuning 

begins. 

IV. ABSORPTION MODELS 

The s-channel approach to correcting the multiperipheral model concentrates 

on the modification of the production amplitudes TAB - N in their contribution to 

TAB - A’B’ via the unitarity relation. The requirements of unitarity are imposed 

through rescattering of the produced particles after the basic production mecha- 

nism has operated. Typically this rescattering is taken to occur only between 

pairs of particles so only the elastic S-matrix, S, B,need be considered rL 
(Blankenbecler and Sachrajda, 1975; Ciafaloni and Marchesini, 1975; Schwimmer, 

1974). Some more ambitious models use two very fast particles as a c-number 

source for secondaries and are able to take into account many more rescatterings 

(Auerbach et al., 1972; Aviv et al. , 1972). -- -- 

The statement of rescattering is best made in rapidity y=log s and impact 

parameter r space. To see why this is so consider the two-to-two process 

AB - A’B’ as shown in Fig. 23 taking place by the “exchange” of a potential VI 

and then V2. To leading order in s the product scattering is diagonal in s (or 

log s), r space 

TAB --LA,&‘) = v,(s,K) v,(s,F) , (49) 

because at very high energy there is a two dimensional subgroup of the full 

Lorentz group which remains as a symmetry. This resides in the two dimensional 

impact parameter space. Products of amplitudes are just group multiplication. 

Another way to view this is to remember that the angular momentum 1 is related 
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to impact parameter IFI by Q M & !??;‘I and going over to impact parameter 

space by 

(50) 

is just a slick partial wave projection. 

Now imagine an amplitude for TAB -N+l as a function of the rapidities yk 

and impact parameters Fk of the produced particles and let the amplitude be 

represented as in the multiperipheral like configuration of Fig. 24: 

(51) 

where the exchanges are themselves elastic T matrices depending on the rapidity 

differences Yj = y. - y. and impact parameter differences zj =E 
3+1 J 

-E along the 
I+1 J 

production chain. A pure pole exchange with s l-I-o!% gives 

T(Y,s) = e -lm2/4a’Y,4a’y , 
(52) 

and insertion of this in (51) gives back the multiperipheral model. 

Now rescattering is introduced by allowing the initial particles and pairs of 

outgoing particles to interact as if they were elastic and thus each pair picks up 

the phase (Finkelstein and Zachariasen, 1971; Go&fried and Jackson, 1964; 

Schwimmer, 1974) exp iS(Yj,gj) = 2/S(Yj,Bj) corresponding to its y and F gap. 

One modifies (51) then 

as shown in Fig. 25. 

Before we go any further it is clear that the full content of s-channel uni- 

tarity has not been employed. Possible many particle interactions as shown in 
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Fig. 26 are clearly absent. This means we may well have not put in enough 

unitarity by this elastic rescattering approximation. 

If we take just the multiperipheral amplitude of (52) with no rescattering, 

then the resulting total cross section violates the Froissart bound. Even if we 

take (52) and the rescattering in (53), the total cross section grows faster than 
2 any power of log s (Schwimmer, 1974). Unitarity requires gtotal(s) < (log s) . 

So clearly another tack is needed. 

One is a self-consistency approach (Caneschi and Schwimmer, 1972; 

Finkelstein and Zachariasen, 1971; Schwimmer, 1974): let the T(y,r) in (53) 

determine itself via the unitarity relation 

2Im T(y,F) = IT(y,c) 12+ 2 lTN+,(yk,$)12 . 
N=2 

(54) 

This yields a T(y ,c) which is a black disc 

T(y,q = is B(Riy2 -g2) + lower order terms . (55) 

In the very high energy limit there is no scattering outside an impact parameter 

ITI =Ro log s and total absorption within. Since impact space is two dimensional 

the total cross section coming from this amplitude 

ctotal(s) = 5 /d2b Im T(s,??) (56) 

- (log s)2 (57) 

and in the elastic amplitude T(s, t) structure in t varies as (log s)~ in contrast 

to log s characteristic of the multiperipheral model (and experiment). This 

behavior is also found in various eikonal models which we’ll discuss soon. An 

amusing result in such self-consistent models comes when one allows the 

Pomeron here called ,/?S to act in other channels; that is, allows diffraction 
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dissociation. Then one demonstrates (Schwimmer , 19 74) 

1 
cr elastic + %iff . dissoc. = Z ctota1 

A second interesting approach is iterative (Ciafaloni and Marchesini, 1975). 

It chooses a zeroeth step Pomeron and then creates a first step Pome’ron by 

adding zeroeth step Pomeron rescattering corrections as in Fig. 27 using the 

rescattering prescription in Eq. (53), elastic scattering only. An amplitude of 

the scaling form 

T(y 2) = y’-” f(c2/yV) , (59) 

emerges from this, where 

T M l/2 

v M 3/2 

in first approximation. The total cross section grows as 

(60) 

(6 1) 

Qo&S) - 0% ST (62) 

and the structure in t is correlated with (log s)’ . This is certainly better than 

the self-consistency program from an experimental point of view. Where mul- 

tiple iterations lead is not established. 

We have seen in two approximate approaches to adding unitarity to the multi- 

peripheral amplitude, s Q! (t) , two characteristic features: 

1. The amplitude is multiplied by powers of log s. This is the fine tuning 

alluded to in the introductory remarks. The power behavior is taken as more 

or less givenand the structure in log s is determined. 

2. The cl!(t) functional dependence is modified from o(t) = l+ a’t to 1+ a% l/V . 

In our discussions from the t-channel point of view, much the same fine tuning 

will occur when a much vaster set of absorptive corrections are accounted for. 
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V. EIKONAL MODELS 

There is another class of models which enforce unitarity in the s-channel 

by iterating the basic Pomeron exchange. The underlying idea is the eikonal 

approximation (Abarbanel and Itzykson, 1969; Blankenbecler and Sugar, 1969; 
- 

Chang and Ma, 1969; Cheng and Wu, 1969; Glauber, 1959; Levy and Sucher, 

1969) which is taken over, with appropriate window dressing, from potential 

scattering theory. Recall that a particle of mass m scattering in a potential 

V(F) has the eikonal scattering matrix from initial momentum ci to final mo- 

t mentum -i; f 

e+i x@, k) _ 1 ,-i&k (63) 

inthelimit l~iI=l~fl=k--m and momentum transferred t= @i-rf)2 = I 91 2 + 0 2 
0 

is fixed. The vector b is a two dimensional vector transverse to some appro- 

priate linear combination of unit vectors ci=rii/lri I and “kf . The eikonal phase 

is 

-x&k) = -T/- 
+oO 

dz V@,z) 9 (64) 
-co 

and z represents the line perpendicular to b-. This phase is just that phase picked 

up by the particle as it traverses the scattering potential. If we replace $ by 

3 and V@, z) by an integral over the exchanged object or the born approxima- 

tion, then the eikonal formula may be taken over to quantum field theory (more 

or less). So 

-x(p) =+y m2 /-A ei%kTBorn(s,t=-lq12) 
(W2 

(65) 
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and 

T(s,t) = is / ds eeikk 
m2 

, t=-1LJ2. (66) 

Formally this representation of T is unitary as the S matrix in b,, s space is 
- 

precisely 

S(b,s) =expiX@,s) . (67) 

Next is needed a rationale for selecting a X (b_, s) . Several approaches have 

been tried. If T Born(s, t) is taken to be the exchange of an elementary spin J 

par title , then 

T Born(s,t=-IR12) = g2 sJ/(m2+ Ial”) W) 

and 
2 J-l 

x@, s) = L / d2q eiT$(m2+ 1~1~) . 
m2 - 

If J=O, scalar meson exchange, then for large s, fixed t, the behavior of the 

eikonal T matrix is just TBorn; clearly an uninteresting case. If J=l, X(s,b~) is 

independent of s, and T (s, t) is 

T(s, t) = is f(t) . (70) 

Now this is much better. It comes very close to our ansatz a long time ago, but 

lacks a power of s which changes with t. 

Now suppose J>l. In our earliest discussions above we noted that multiple 

exchanges of this would violate unitarity more and more. Here, however, the 

eikonal phase grows with s and the integrand oscillates. The phase is stationary 

when b CC log s, and since transverse space is two dimensional 

T(s, t) -i s(log s)~ , (71) 
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cT (‘1 - (log ‘I2 , (72) 

saturating the Froissart unitarity bound. 

and 

The eikonal formula is then an attractive framework into which one may put 

her: or his dynamics and rest assured that significant aspects of s-channel uni- 

tarity will be respected. If one has a more complex TBorn than (68), for 

example i s l+oV or additional logarithms, then very much the same qualitative 

features as far as s dependence goes emerges (Chou and Yang, 1968; Durand 

and Lipes, 1968; Frautschi and Margolis, 1968). In pictoral language one is 

summing via (66) the exchange graphs of Fig. 28 in which the particle-particle- 

N Pomeron couplings gN are 

gN = (-gl)N/N! , (73) 

which is quite special to the eikonal approximation. One of the obvious missing 

ingredients in the eikonal model is a process such as appears in Fig. 29. Here 

the Pomerons emitted by the particles are allowed to interact and, since 

Pomeron exchange is absorptive, further shield the original exchange. One may 

organize the complicated exchange on the left of Fig. 29 to look like an eikonal 

like exchange, but barring miracles the eikonal condition (73) on the modified 

couplings HN will not transpire. 

One could go on at some length about eikonal formulations of very high 

energy scattering (Abarbanel, 1972a; Blankenbecler et al., 1974; Sugar, 1972). 

Indeed one may eikonalize not only the elastic amplitude but also the N -cM 

amplitudes (Baker and Blankenbecler , 1962; Dash and Pignotti, 1970; Dash et al., 

1970) and construct explicitly s-channel unitary models of production. When 

we have introduced and explained Reggeon Field Theories in the t-channel 
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sections, it will be fairly clear that eikonal formulae do not respect t-channel 

unitarity, at least for s --, M, t =O, so the peculiarities of the production models 

are perhaps just that. 

VI. MULTIPERIPHERAL BOOTSTRAP MODELS - 

If the basic multiperipheral model amplitudes are not good enough, it seems 

natural enough to modify the original multiperipheral equation to alter its 

failures (Ball and Zachariasen, 1974; Zachariasen, 1974). In the spirit of 

multiperipheralism the only place where one has freedom to enlarge the game 

is in the potential or kernel of Eq. (33). We took K to be just single particle 

production as in Fig. 21, but suppose we imagine that instead two particle pro- 

duction is significant and single particle states arise as resonances of the pro- 

duced two particle states. Since K is just the phase space integral over the two 

particle scattering amplitudes, we have (Fig. 30) 

K(1, t) = i” ds s-‘-l/ 

sO 

3 3 4 
d P1 d P2 6 $A+PB-P&,) x 

m2 

x TAB,12 (P +P A B --P,+p,) Ti,B’-t 12@~,+~B’4p1+p2) - 

(74) 

In the case that T is primarily imaginary, one arrives at a nonlinear integral 

equation for A(Q, t) by combining the ansatz for K with the integral equation (38). 

Now any progress in solving this is certainly impressive. Putting aside 

one’s justified astonishment at the boldness of the approximations, one expands 

the integral equation into pieces singular at Q=l and t=O and pieces regular there. 
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When we finish, there emerges a solution 

Q! m 
rr~ Tts,t) = P,(t) log s 

sO 
log s + RI),/% /(IA0 logs + RI)& 1 

+ B,(t) ($@’ Jo[@ologs + RI)&t]+ :(‘(&) S- (75) 

where Jv(z) is the usual Bessel function, o(t) = l+a!‘t, p,(t) is an arbitrary func- 

tion of t, and so, Ro, and RI are some constants. The total cross section here 

rises as log s, while the structure in t is a mixture of log s and (log s)~ behavior 

coming from the combination of Bessel functions and s l+ac’t . The appearance 

of log s as the expansion parameter rather than, say, (log s)~, p noninteger, 

comes from the assumptisn of a Taylor series in the conjugate variable Q around 

Q=l. In solving the bootstrap equation a series like (Q-1)’ 2 CN(Q-l)N, would 
N=l 

significantly alter the details. 

We may understand the leading term emerging from the multiperipheral 

bootstrap by going over to the ever popular impact parameter space, where 

T(s,_b) cc is f3(R, log s - lb_!) log s (76) 

which is close to the absorption models we studied above. This satisfied elastic 

unitarity (more or less) 

which, strictly speaking, is the only feature which has been built in by the choice 

of kernel (74). 
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VII. BRIEF SUMMARY OF s-CHANNEL MODELS 

We have quickly reviewed the chief features and underlying ideas of attempts 

to impose unitarity on a multiperipheral model. The almost insurmountable 

problem with the s-channel approach is the large number of variables involved 

in the determination of a T AB --L N amplitude, namely 3N-4. Indeed one must 

make, as N grows, evidently stronger and stronger statements about production 

amplitudes which are the ingredients in the unitarity recipe for Im TAB,A,B,. 

As we saw from the initial discussion of the multiperipheral model a remarkably 

simple ansatz led to s a 0) behavior and most of the major features of the experi- 

mental data. How one corrects this elementary behavior to restrict o(O)< 1, for 

example, is where the many body final state complications enter without relief. 

In the study of full s-channel unitarity for TNMM as well as T2- 2 and T2,N, 

the variable problem only magnifies. 

The simplifying assumption that only two body interactions (initial and final 

state) are important can hardly be said to be grounded very strongly, but without 

it it is almost impossible to proceed. Even accepting this bold step, it was 

necessary to guess at self-consistent Pomeron formulae to highly nonlinear 

equations (as in absorption models and multiperipheral bootstrap models) or to 

ignore Pomeron-Pomeron interactions as in the eikonal models. 

A feature of these self-consistent models which recurs persistently is that 

the differential cross section depends on the combination +,/? log s or equivalently 

has impact parameters growing as log s. This would mean the differential cross 

section do/dt would shrink as (log s)~ which is not what the evidence from the 

CERN-ISR or from Fermilab (Fig. 13) tells us. The multiperipheral model in 

contrast gives do/dt shrinking as logs and impact parameters N log s, in accord 

with the present day experimental observations, but no very dramatic conclusions 

ought to be drawn from that. 

At the risk of turning this review into an expose/ of my opinions, I feel it is 

fair to state that the s-channel approach to unitarizing the multiperipheral or 
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other “underlying’* production mechanism has been artfully carried out but less 

than successful in producing a convincing and coherent account of very high 

energy diffraction scattering. I believe the basic physics of absorption coupled 

with the multiperipheral amplitude, s o! 6) , is the correct approach. Unfortunately, 
- 

despite very clever efforts, posing the problem in the language where many body 

effects are unavoidable and intractable has proven a serious barrier. 

VIII. t-CHANNEL VIEWPOINTS AND REGGEON FIELD THEORY 

We now begin the parts of this article which constitute the heart of recent 

developments in the theory of diffraction scattering (Abarbanel et al., 1975c). -- 

The discussion is couched in terms of the two dimensional impact parameter F 

and its conjugate variable y (four momentum transfer in elastic processes = - ly12) 

and of the rapidity y = log s and its conjugate variable J (called Q above). This 

variable J will turn out to be none other than the complex angular momentum, so 

we’ll start with a pedestrian review of facts about complex angular momentum 

(Brower et al. , 1974; Chiu, 1972; Collins, 1971; Eden, 1967; Frautschi, 1963). -- 

The angular momentum referred to is that in the t-channel. It is defined by 

the partial wave expansion (Goldberger and Watson, 1964) of the elastic amplitude 

(for equal mass, m, spinless particles) 

T(s, t) = 2 P J(cos gt) (ZJ+l) F,(t) , 
J=O 

FJ(t) = ; / 
-l-l 

d(cos St) P J(cos “3 T(s, t) , 
-1 

(73) 

(79) 

s = -2(i-m2) (l-cos$t) . tW 

These definitions hold for integer J in the physical region of the t-channel: 

t:,4m2, s<O. We wish to continue the expansion to t<O, sz4m2, the physical - 
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region of the s-channel, and any J. Books are available on how one does this in 

detail (Eden, 1967; Omn\es and Froissart, 1963). We imagine a dispersion rela- 

tion in s, for fixed t, may be written for T(s, t): 

T(s, t) = 4 L-2 dS;;$?;s” t, -I- $ lrn2 co du’ Im T(u’ , t) , s+t+u=4m2 
u’-u-ie 3 631) 

and using this in the definition of F,(t) we have 

F,(t) = $ l”,, dz’ Q ,(z’) [Im T(zl, t) - (-l)J Im T(-zl, t)] , (82) 

0 

where 
2 

z,(t) = i + ;” 2 

( > 

, z=cos4 
2 -4-m t 

and Q,(z) is the Legendre function of the second kind. This formula due to 

Froissart and Gribov (Froissart, 196lb; Gribov, 1962) allows one to define 

signatured partial wave amplitudes 

F’(J,t) = /m 
z,(t) 

T Q,(z’) [Im T(z’, t) 7 Tlin T(-z’, t;l 

with ~=+l. This is the appropriate formula for continuing to 

full amplitude T(s, t) is recovered by the Sommerfeld-Watson 

1971; Frautschi, 1963) 

T(s,t) = -/$ c 
('Jt-'t) + TpJ(zt)) 

sin nJ F?J,t) , 
-I- 

(33) 

, (34) 

complex J. The 

transform (Collins, 

(65) 

where the contour in the J plane runs to the right of singularities in FT (J, t). 
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We are interested in very high energies which formally means zt large. 

For this regime we may use 

P,(z) - zJ 

and 

Q,(z) - z-~-’ (37) 

to rewrite our expressions for F’IJ, t) and T(s, t) 

F’(J, t) = /-m 
4m2 

ds’ s,J-1 [$n T(s’, t) T Tb T(-sl, t)] 

f 
and 

c+im dJ J 
T(s, t) = lwi, z s )= t; F’(J,t) 3 

7 

with 

[i = (T+eainJ)/sin TJ . 

Now one may verify by elementary integration that when Im T(s, t) 

the multiperipheral model 

F’(J, t) = (J-o(t))-’ for T=+l or 7=-l . 

636) 

(88) 

(89) 

(90) 

” $4 as in 

(91) 

If T = 1t1, then the partial wave amplitude has physical poles in even (odd) angular 

momentum. We wish to examine the F” (J, t) which is relevant for J=l, t& and 

do not wish any poles or other singularities to represent actual singularities or 

equivalently particles, since there are no zero mass particles of spin one in pure 

hadron physics . So we are interested in the 7=-i-l amplitude, and unless further 

warning is made, we will discuss it alone. Call it simply F (J, t) 

F(J, t) = [mZ4m2 ds smJql Im T(s,t) , 
0 

(92) 
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and 
c+im dJ 

T(s,t) = dim x tJsJ F(s,t) > (93) 

tJ = (1 + eBirJ)/sin TJ . 
* 

Notice.that the representation (92) is just the Mellin transform needed to partially 

diagonalize the multiperipheral integral equation. This is not a coincidence. The 

poles of the multiperipheral model are known as Regge poles (Blankenbecler 

and Goldberger , 1962; Chew and Frautschi, 1961). Regge first discussed J- 

plane poles in potential scattering (Regge, 1960). 

Now we are ready to consider the question of unitarity coupled with the 

multiperipheral model. In our present language, we wish to ask: What happens 

to the pole in J when it rescatters? Our approach will be to take a Feynman 

graph from a conventional G3 like field theory and analyze it at large s, fixed t. 

We want this graph to have double Reggeon CY w or (J-a(t)) -1 s exchange. The 

simplest such graph one would consider writing is shown in Fig. 30. However, 

one can give a physical argument why it will be dominated for large s by the 

more complicated graph in Fig. 31. It goes like this: the scattering is caused 

during the very’ rapid passage of particles A and B by each other via the exchange 

of two objects (Reggeons here) in the two dimensional plane perpendicular to 

their relative motion. As s is increased, the time which A and B spend in each 

other’s vicinity during which they must make the exchange decreases rapidly. 

In Fig. 30 particle A emits a Reggeon (wiggly line) and later emits a second 

Reggeon. B absorbs one at a time; this also involves a time delay. In Fig. 31 

particle A breaks up into two other particles and each of these emits a Reggeon 

at the same time. B does the same in order to receive the Reggeons at the same 
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time. Particle A reconstitutes itself from the particles it emitted, but it does 

this at its leisure in its own rest frame no longer caring about the brief en- 

counter with B. 

There is a fancy defense for this little argument. Figure 31 was first 

studied by Mandelstam (Mandelstam, 1963) who showed it dominated Fig. 30 as 

a Feynman graph for s - ~0. Figure 30 was first considered by Amati et al. -- 

(Amati et al. , -- 1962) as a contribution to Im T(s, t) through elastic unitarity 

(Fig. 32). When one understands that there are additional contributions to 

T Im T(s, t) from two Reggeon exchange, the two seemingly disparate calculations 

are easily reconciled. 

After some straightforward algebra the contribution of Fig. 31 

to the partial wave amplitude F(J, t) arising from the double exchange of sa! is 

(Fig. 33) 

F(J,t) = / d2qld2q2 62bi-+“;2, N2(J,~l,~2)2/J-~(~l~ - a(z2)+ 1 , (95) 

with t= - ly12, as usual, cz(~)=or(t=-I~12), and N2(J,Tl,c2) is a complicated 

integral over the crossed box graph shown in Fig. 34. N2 is a smooth function 

in Jfor ?&- - 0, so the only singularity in. J from (95) is a branch point due to the 

denominator. This branch point occurs at 

J branch point 
= &q = 2k($) - 1]+ 1 . (96) 

Note that this branch point occurs at J=l when t=O, if ar(O)=l. 

From the exchange of K Reggeons one finds a contribution to F(J, t) 

F(J,t) = j-/i 

-1 

NK(J,Tl,. . . yK)2 . 
j=l (97) 
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This gives rise to a branch point in J at 

J-l = or”)(t) - 1 = K[o (t/K2) - l] . (98) 

Note that this branch point occurs at J=l when t=O, if cr(O)=l. 

Return to (95) now and take the discontinuity in J across the branch line. 

Since N2(J) is regular, this amounts to replacing the denominator by a delta 

function 

disc JF(J,z) = 27i-i /d2qId2q2 62(G<l-z2) 6 (I-J-(1-a(+) - (l-~!(<~))) 

-2 
x N2(J,?& q2) (99) 

or writing E=l-J (the Reggeon energy) 

discEF(E,q) = -274 .d2qld2q2 62(G+c2) +‘-4~l)-e(~2)) N2(E,$,q2)2 , 

with 

E(Z) = 143 , (10 1) 

which is shown in Fig . 35. 

We read this formula as follows: two particles create two Reggeons, o(ql) 

and cz(c2), with an amplitude N2(E,?&,q2). These two Reggeons are “on shell”: 

e(c) = 1 - a!(q) and their momentum coordinates $ are integrated over, d2qld2q 2’ 

subject to the constraints of momentum conservation, 62(<-cl-z2), and “energy” 

conservation, 6(E-e(T.)-e(z2)). Finally the two Reggeons become two particles 

with an amplitude N2. It is instructive to compare this to the N=2 contribution to 

the unitarity relation for TAB+AB(~, t) (Eq. 30): 

disc T 
d3pl d3p2 3 - 
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Except for uninteresting factors of 27r and i, this formula is to be read 

almost identically to the Reggeon discontinuity formula (100). Some differences 

are elementary: phase space has three momentum coordinates and one energy 

coordinate. EG) = (m2+ IF12)1/2. The appearance of T T*, however, is 

important. It announces the presence of an imaginary part in TAB, l2 itself. 

If we generalize the set of graphs entering N2 to include diagrams like Fig. 36, 

then (100) reads 

discEF(E,<) = 2i J d2sld2q2 62&i-?il-<2, N3-~(~l)-~(~2)) 

L I ,5 Ld I Y 

and the correspondence with usual unitarity is complete. The &iC refers to the 

two Reggeon branch point in:N2. 

From the Reggeon unitarity relation we abstract the following view of a 

Reggeon: it is a quasi-particle living in one time and two space dimensions, 

T and y, which are the conjugate variables to the Reggeon energy E and Reggeon 

momentum ;i. In the unitarity relation when the Reggeons are on shell, the 

energy-momentum relation is E(c) = l-a(<), where a(<) = cr(t=- ICI 2, is the 

familiar function describing the s dependence of the multiperipheral model. If 

a(O)=l, then E(O)=O, which is the energy-zero momentum relation for a massless 

particle. The Pomeron is a massless particle in E,< space. 

Away from T= 0, the exchange of various numbers of Reggeons gives rise in 

F(E,z) to, first a pole at E=e(T), then various branch points associated with 

many Reggeon states in the unitarity relation. Figure 37 shows this. At c= 0, 

the pole is at e(0) ; the N Reggeon branch point is at N e(0). When e(O)=O, all the 

cuts and the pole coalesce, just as one expects from experience with massless 

particles, such as photons. 
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One may write discontinuity or unitarity relations for NK(E,Ti) as well 

(Abarbanel, 1972b; Gribov et al --- 3 1965; White, 1972). These are shown in 

Fig. 38 for the 2 Reggeon discontinuity of N2. This involves the four Reggeon 

amplitude M4. Of course, a discontinuity relation for M4 may be written. It . 

involves M4 itself and is depicted in Fig. 39. 

The status of these unitarity relations is quite general. They have been 

derived from the structure of hybrid Feynman graphs (Gribov, 1968), from the 

dual resonance model (Lovelace, 1971)) in a very wide class of multiperipheral 

models (Abarbanel, 1972b), and directly from analytically continued multi- 

particle t-channel unitarity (Gribov et al. , 1965; White, 1972). Any theory that a- 

satisfies them for n Reggeons -. m Reggeons will satisfy t-channel unitarity in 

the same regime. 

If o(O) < 1, so e(0) > 0, for the Reggeons, then the pole and its associated 

branch points are separated in the E plane. The study of F(E) or NK(E) or 

l!$$E) would then be adequately carried out by a dispersion relation in E which 

utilized the nearby singularities (Abarbanel, 1972b). For e(O)=O, this is clearly 

inadequate in the neighborhood of E=O. The technique which has been more 

fruitful has been to write a Reggeon field theory treating the Reggeon as a quasi- 

particle in the ~,y space described before (Abarbanel et al., 1975c; Gribov, 

1968). This guarantees the phase space structure of the Reggeon unitarity rela- 

tions and provides a constructive method for determining the MK or NK functions. 

A solution of the field theory in any consistent scheme yields the MK or NK 

within the limitations of that scheme and satisfies t-channel unitarity. 

So we introduce a field $(1;‘, 7) and take the multiperipheral model for our 

J’barefl Reggeon 

o!(t)=ao+cz~t ) (104) 
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E(;) = ah c2 + A0 , 

n,=l-~~, . 

The Lagrange density for this energy-momentum relation is 

(105) - 

(106) 

(107) 

Reggeons will interact and this we must account for. The study of more 

complicated graphs which are the generalization of Fig. 31 shows that for the 

Pomeron, which has vacuum quantum numbers, graphs with n Pomerons - 

m Pomerons exist. Figure 40 shows examples of 1-2, 2-2, and 143. Each 

of these transitions is described by a function M (n’m)(Ei,<i) depending on the 

energies and momenta of all the Reggeons. Reggeons carrying quantum numbers 

may have restrictions as to which n may go to which m, but all that are so 

allowed can be found in the graphical analysis. 

If we had to face this terrible infinity of nonlocal couplings, there would be 

little hope of achieving anything. We are interested in a restricted set of ques- 

tions, however, having to do with diffraction scattering as S-LW, t fixed. First 

we will argue that we need only consider the Pomeron, then that we need only 

consider the regime EzO, t small, and finally that only the triple Pomeron 

coupling will be important (Abarbanel and Bronzan, 1974a,b; Migdal et al., 1974). 

Let us take the Green’s function for the Lagrangian (107). In E,< space it 

is -1 
G(E,q) = i Ao+ie > (108) 
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and in Q- = -i log s = -iy, z space it is 

G<Y,~) =/ 
ei (c y- ET) d2qdE 

tw3 
GtE>~l 

= NY) e 
-yAo 1 - 13#/4a!by 

-Gqe , 

(109) 

(110) 

which represents the probability amplitude for a source (particles) to emit a 

Reggeon (n(t) = a0 + obt) at zero rapidity, zero impact parameter and for another 

source to absorb it at y,z. This is shown in Fig. 41. This amplitude repre- 

sents the diffusion of the Reggeon over the time interval y and space interval 

Iy;‘r. If two Reggeons depart the initial source and arrive at the sink, Fig. 42 

represents that possibility. Each line carries a factor like (110). Along the 

way from (0,O) to (y,z) the Reggeons may choose to interact. Figure 43 shows 

this. 

This space-“time” picture is borne out experimentally to a very reasonable 

approximation. The latest results on elastic scattering (Fermilab, 1975) show 

that, indeed, the average “size I* of a hadron as probed by Pomerons is cc d- 

and that the rrstufff’ interacting via Pomerons is distributed more or less as a 

gaussian in impact parameter space. This is all a support for the multiperiph- 

era1 amplitude being a sensible starting point for a theory of diffraction. 

Now for very long times, y -.co ; that is log s --L 03. Only those Reggeons with 

the smallest A0 will survive. All others will be damped by e 
-A()Y 

in the Green’s 

function. Well, the smallest A0 is for the Pomeron, A0 = 1 - o. = 0. In the limit 

then where log s is large, only the Pomeron and its interactions need be con- 

sidered. If one is discussing a process like charge exchange, then clearly at 

least one Reggeon carrying the appropriate quantum numbers need be exchanged, 

and accompanying it will be as many Pomerons as one likes. Actually the 



- 42 - 

argument just given shows that 9 one quantum number carrying Reggeon will 

survive in the limit (Abarbanel and Sugar, 1974; Gribov et al., 1971). For -- 

diffraction scattering, Pomerons alone are sufficient. 

If we deal with only the Pomeron, then the neighborhood of E=O is where we 
- 

need concentrate our attention. Furthermore, since we wish to study t=O, we 

will also be interested in TWO. From the point of view of the Reggeon field 

theory, then, we are concerned with the study of an infrared problem to learn 

about s - m , t small,diffraction scattering. 

Since we are focusing our attention only on Ei, ciz 0, we want to include 

in our field theory only the contributions which require the least phase space 

dEi d2qi when they operate.. Those interactions are the ones with’the fewest 

number of fields and no derivative couplings. All this points our concentration 

on 

More rigorous arguments (Calucci and Jengo, 1975) can be made for the pre- 

dominance of this interaction, and its importance can be defended by detailed 

calculation (Abarbanel and Bronzan, 1974c; Bardeen et al., 1975). The results -- 

of these calculations show that terms involving 2 - 2 or l-3 couplings as in 

Fig. 40 are the next most important. When all graphs are summed, this inter- 

action modifies or(t) by factors of t/(log t)“, which is very mild,and makes contri- 

butions to the total cross section down by powers of log s relative to the G3 

coupling of (111). 

Before we can write down the final field theory one more important point 

must be noted. In the graph of Fig. 44 we have a relative minus sign compared 

to the single P,omeron exchange graph of Fig. 41. The pedestrian origin of this 
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sign is that each Pomeron carries a factor 

t,= 

1 + ,-i~cw 

sin na(t) = -’ 

near t=O and each loop integration has a factor -i. So the pole term has a phase 

-i while the Pomeron loop has a phase (-i)2 (-i) = i. Physically the change in 

sign means that the amplitude of Fig. 44 subtracts from the pole exchange, 

which an absorptive Pomeron ought to do. In the field theory formulation we 

may arrange this automatically by letting the triple Pomeron coupling, ho, be 

pure imaginary (Gribov, 1968): ho=iro (Fig. 44). 

The full Lagrange density we now must study in the infrared limit is 

Furthermore we want to study this to all orders in r0, since a priori near -- 

E, z= 0 all graphs are of equal importance. The appropriate tool must be non- 

perturbative to be reliable. The renormalization group is the answer 

(Abarbanel, 1974a; Coleman, 1973; Wilson and Kogut, 1974). 

When we have finished solving the field theory defined by (112), we will find 

it to depend on four numbers: 

1. The scale of the renormalized Pomeron field which we can arrange to 

be equal to one. This is done by resealing the unrenormalized field @,(z, T) by 

a factor !Zi12 

$(z, 7) = z;l” eo(y,T) . (113) 

Z3 is yet to be determined. 

2. A new “slope” parameter a1 which is a function of the arbitrary point 

EN, kN in energy momentum space where we choose to define the field theory 
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o? is related by a scale change to a1 : 0 

02’ = z -la1 

2 0’ (114) 

3. A new gap or mass parameter A which is also a function of EN and kN. 

It is given by 

A=ZilAo . (115) 

4. A new coupling constant r . Again it is a function of the arbitrary nor- 

malization point of the theory. It is related to the bare value r. by 

r = Zz’22;1ro . (116) 

Each of these scalings defines a new set of parameters. We will express 

the renormalized Green’s functions of the theory in terms of these parameters 

and the Ei, < of the Pomerons. These parameters depend on the normalization 

point of the theory. This normalization point is precisely like a subtraction in 

dispersion theory and is familiar from the study of quantum electrodynamics. 

Suppose we change the normalization point from EN to EN+6EN. Clearly the 

physics of our problem doesn’t change; that’s all in the Lagrangian (112). The 

parametrization of Green’s functions will change slightly. The parameters 

1, a’, A, and r must change so as to preserve the physics: 

i.+i$ &&- ( 1% z3 ) 6EN 

N 
E , 

N 
(117) 

6EN = 1+y- 
EN 

(118) 

(11% 

(120) 
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6EN - 
EN ’ 

6EN =Al+?-/--- [ 1 EN ’ 

6 6EN 
=rl+p- . [ 1 EN 

(121) 

(122) 
_ 

(123) 

(124) 

In order to preserve the physics under this change of parametrization the 

parameters must enter the Green’s functions in a prescribed fashion. Basically 

they must represent the same quantity as EN is varied. Thus they are a non- 

linear, nontrivial representation of motions along the real line. This is the 

renormalization group. 

To best express the content of the renormalization group constraints we 

consider the n Pomeron -, m Pomeron proper vertex function P @’ m)(Ei,$) 

(Abarbanel and Bronzan, 1974a,b; Migdal et al., 1974), which is the n - m Green’s 

function with external legs removed. I’(‘, ‘)(E,c2) is the inverse propagator 

and contains the spectrum of the theory. We are now dealing with Pomerons 

alone (the MK functions from above) and will reintroduce particles shortly. The 

renormalized I’(nm) is a function of 01’ , A and the dimensionless coupling 

constant 

D/4-1 
g=-+EN ’ 

where D is the number of dimensions of impact parameter space. 

(125) 
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The generalization to D transverse dimensions is solely a technical aid. 

It allows one to nicely regularize and then renormalize the Feynman integrals 

of the field theory. In establishing the dimension of quantities in our field 

theory, separate dimensions must be attributed to space, 2, and “time”, T . 

In (125) we see that D=4 is selected out as that dimension where g, the dimen- 

sionless coupling, does not depend on the normalization point EN used in 

defining the field theory. At D=4 the theory possesses a scale invariance under 

scalings. ~=2 in our real four space-time dimensional world. 

.@, m) h m) is related to the unrenormalized FI, computed in terms of 

Ao, and r. from the Lagrangian by 

n+m 

r@, m, (Ei,$ a’, g, A, EN) = 7, 2 I’(n,m)(Ei,~i, (Y’ 3 u O,ro,Ao) . (126) 

Since $5 m, doesn’t know about EN, the point where we choose to normalize 

r@,m) , we have 

0-b m) =o, (127) 

a 
P=ENqg ’ (128) 

and the other functions have been defined a moment ago. 

Now the normalization conditions on the theory must define 1, CY,, A, and r. 

We want A, the renormalized energy gap or mass to be zero, since 

A=l-a(O)=0 (129) 

for the Pomeron. This leads us to require 

I+ l)(E,<2) IEZO = 0 . (130) 
-2 q =o 
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The other parameters are defined by 

a ir tl) ‘) 
dE u I E=-EN 

= z;’ ) (131) 

--L2 q =o 

a t&l) 
--2=u = -fJ’ z -1 -1 

aq E=-EN 02’3 ’ 

-2 q =o 

and 

-1 (27i)@)+l)‘2 (1,2) z1 = rU 
. 

‘0 E I=2E2=2E3=-EN;ci=0 

(132) 

(133) 

This allows us-to determine the Zi and thus our renormalized parameters. Any 

other definitions entail a finite renormalization. 

The crucial information is in the function p(g) which is determined in lowest 

order perturbation theory to be 

P(g)=-vg+ x-g3 , 

witi Ji>O (Fig. 45). This has a zero at &gl a! (4-D)l 2 and 

p/g I ?O . 
g1 

(134) 

(135) 

This information is important because the solution (Abarbanel, 1974a; Coleman, 

1973) to the renormalization group equation tells us 

I-@’ m)([Ei,yi, a!‘, g, EN) = I’(n, m)(Ei,zi, z,(-t), 2(-t), EN) 

x exp (136) 
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where 

and 

t = log 5 ) 

5!i@= -P(%)) 9 

- T&t)) - 

(137) 

(138) 

(139) 

The study of I’ (n’m) for 5 -L 0; that is, Ei --0, is reduced to the study of 

i(-t= -log 5) as its argument + -l-co . With the p(g) ,for our theory 

gtt, = eWW/4 te(4-D)t/2 _ 1) -1’2 

3 
,’ (140) 

c 
with the boundary condition g(O)=g. Now as t --+co g(t) --gI. 

1 
If /3, were negative, 

-l 
i(t) would recede from such a zero. 

J 
So we learn that in the infrared limit, the 

Pomeron Green’s functions we seek are determined by a zero of the functionp(g). 

If D were four, then gl=O and on the right hand side of (136) we would be -1. 

instructed to determine I? @, m) by an effective free theory. If D#4, as in physics, 

g1 may still be small enough. 

Anyway for Ei small enough g - g I. Using ordinary dimensional analysis 

we find this restricts Ptnyrn) to be of the form (Abarbanel and Bronzan, 1974a, b ; 

Migdal et al. , 1974) 
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where E = 5 Ei , Gn m ’ IS a dimensionless function of its scaled variables, 
i=l , 

and 

ztg,) = l--q - (142) 

+ n, m 
is not determined by what we have said so far. Clearly the limit in which 

(141) makes sense must be 

Ei - 0 

Ei/E fixed 

ci - Tj/(-E)’ fixed 

We can draw two immediate consequences from 

problem: 

1. If there is a renormalized Pomeron, which 

Id’ 1) , it must have the energy momentum relation 

or 

o!‘t l/z k,) 
(y(t) = Ii+ EN EN ( ) , 

(143) . 

this solution to our infrared 

would arise as a zero of 

(144) 

(145) 

which is not substantially different from the original multiperipheral Pomeron 

as long as z(gl)=l. 

2. The contribution to the total cross section coming from one renormal- 

ized Pomeron exchange (Fig. 46) factorizes, and behaves as 

uy @) - g,g,t”g ‘) 
-Y@1) 

* (146) 

Various attempts have been made to estimate the size of y and z. The first 

was in an expansion around D=4 dimensions where the theory is scale invariant. 
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Since the zero of p(g) gl is proportional to (4-D) l/2 , this expansion is sure to 

be accurate near D-4. Its accuracy at D=2 cannot be determined a priori. The -- 

other method of determining these exponents is to use the analogue of solid 

state physics’ high temperature expansion. The best efforts place the values * 
in the range (Abarbanel and Bronzan, 1974a,b; Baker, 1974; Bronzan and Dash, 

1974; Dash and Harrington, 1975; Ellis and Savit, 1975; Migdal et al., 1974) -- 

(147) 

and 

%Z 
5 M- 8- 4’ (148) 

It is important to note that higher order Pomeron exchanges’involving I’ (132) 

and so on, give rise to lower and lower contributions to o total * The hierarchy 

of contributions is shown in Fig. 47. This means that the asymptotic total cross 

section will factorize and rise as (log s)-~ according to Reggeon field theory. 
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IX. DEVELOPMENTS IN REGGEON FIELD THEORY 

A. Early Work 

The discussion so far has emphasized the summation of all graphs of the 

Reggeon Field Theory by use of the renormalization group. Earlier techniques - 

emphasized instead the Schwinger-Dyson equations of the field theory which con- 

tain the full nonlinear information via coupled integral equations. For example, 

I’(‘> I), the inverse propagator satisfies (Fig. 48) 

fJ+l, ‘)(E,y2) zz E - “$4 -’ -a0 

x j+ 2)(E’, E-E?,? ,T-3) (149) 

The early Soviet work (Gribov and Migdal, 1969a, b, c) emphasized two possible 

solutions to this and related nonlinear equations: 

1. A weak coupling solution where the integral in (149) remains negligible 

and the Pomeron remains a simple pole, As we have emphasized before, there 

is such theoretical disaster associated with a pure Pomeron pole that we need 

not further discuss it. 

2. A strong coupling solution. Here the inverse propagator becomes 

iI’(” ‘) = (-E) 1-‘$1, ,(T2/(-E)‘) , (156) 

just as in the renormalization group solution. This solution was arrived at in a 

manner quite different from the latter day renormalization group method. It was 

argued then that it led to a negative total cross section. Needless to say, it was 

rejected. In retrospect one can see that the scaling forms do formally satisfy 

the nonlinear integral equations of the theory yielding integral equations among 
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the scaling functions en m. The argument that led to negative cross sections, 
, 

however, went outside the field theory and was incorrect. 

B. Secondary Trajectories 

It is natural to ask how the theory of the Pomeron developed above affects 

Reggeons with quantum number exchange (p, W, A2, . . . ) or cr(1) < 1 (f, . . . ) 

(Abarbanel and Sugar, 1974; Gribov et al. , 1971). Since it is the exchange of -- 

the p Reggeon with 

ap U) M ; + t,(q2 (15 1) 

that is so accurately measured in the pion-nucleon charge exchange experiments 

mentioned above .’ the matter has direct experimental importance. 

The theoretical issue involves the summation of the graphs in Fig. 49. Again 

this may be done using the renormalization group. In the theory of secondary 

trajectories one has two p functions. One for the triple Pomeron coupling and one 

for the Reggeon-Pomeron-Pomeron coupling shown in Fig. 49. One searches the 

effective coupling constant space for stable points in the infrared limit. The 

result is that the amplitude for charge exchange is modified from 

TCEX(S> t, = gAgB ’ 
Qp (t) 

( 7 +e -iTaP p (152) 
-Y 

which it was for a pure pole (~~=-l) by multiplication with (log s) p. The function 

Q! (t) remains linear for small t. 
P 

Estimates of yp using an expansion about D=4 

indicate it is very small: -y =l/lO. So the t-channel Reggeon field theory for 
P 

boson trajectories is in very attractive shape. 

Fermion trajectories are quite a bit more complicated (Bartels and Savit, 

1975; Gribov et al., 1970). The results of summing the same set of graphs as in 

Fig. 49 yields a Fermion a,(u), measured in backward scattering, which is 
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almost linear in u, as indicated experimentally, Also for u < 0, one has 

both positive and negative parity poles in the J-plane. For u > 0 where fermion 

states would be observed, only positive parity states or only negative parity 

states are produced. This also is borne out by the observed Fermion states; no 

parity doublet of states has yet been found. 

C. The Issue of s-Channel Unitarity 

Reggeon field theories are constructed to satisfy t-channel unitarity as 

expressed via the Reggeon unitarity relations. It is not in the least obvious that 

the theory respects unitarity in the s-channel as well. Actually it is very difficult 

to formulate completely the consequences of s-channel unitarity since there are 

detailed relations that must hold for TN -LM that are hard to investigate. Never- 

theless, some features can be studied. 

An important aspect of unitarity in the s-channel is the Froissart bound 

which requires 

~(0)~ 1 7 (I5 3) 

and 

-rc2 . (154) 

Also fairly straightforward is the requirement that gelastic 5 atotal which 

requires 

-YLZI2 . (155) 

Now this second restriction is true in all numerical calculations of the indices 

randz. Furthermore by studying the lattice formulation of Reggeon field theory 

(Brower et .al. , 1975; Cardy andsugar, 1975) it has been possible to show that the 

existence of a zero of p(g) like gl where p, > 0 implies (155). 

The question of whether o!(O) < 1 is more subtle, but is also tractable. The 

key observation is that the term Ao$+$ in the Reggeon Lagrangian (112) acts like 



- 54 - 

a mass term in more conventional field theory (Abarbanel, 1974b). When 

A= ~-CL(O) = 0, there must be a very special value of Ao, call it AoC (for critical), 

which is a complicated function of ab and r o. This value is obtained by formally 

integrating Eq. (131) for iI’ (l’ ‘) (Sugar and White, 1974a, b) 

iI’(l’l)(E,O) = - L 1 U dy y2 Z,(Y) ’ 

where 

(156) 

(157) 

Comparing this with perturbation theory tells us that 

Aoc=~-~oc=-[$7z-~-Dp$ [1-&J ’ (153) 

which is negative. The value of the bare Pomeron intercept which produces 

a(O)=1 is greater than one 

cYoc> 1 . (15% 

In the theory which we have studied above we assumed c~~=o!~~, so A=O. 

What happens when ‘Y~#cv~~? When 01~ < aoc, one has a>0 or a(O)<l, and the 

familiar pattern of separated poles and branch cuts in E emerges. When a!o>~oc, 

the theory becomes unstable in expansion about $=$‘=O, and one must find new 

values to expand around. The fields develop expectation values in the ground 

state and in the end a>0 again (Abarbanel et al. , 1975d, e) . ,i -- 

The question of a0 > ozoc is examined by looking at the effective action 

(Coleman, 1973) of the Reggeon field theory. The extrema of this quantity deter- 

mine the points around which one expands the quantum field. For a0 < aoC, these 
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are at f$=$+= 0. When a0 passes through aoc, one moves to a different branch 

of the solutions and the fields develop expectation values. In conventional field 

theory this has the name spontaneous symmetry breaking. In statistical physics 

(Fischer, 1974; Wilson and Kogut, 1974) this corresponds to a phase transition 

where the expectation value, in the theory of magnets say, is the spontaneous 

magnetization. For all values of the input Pomeron intercept, CV~, the output 

intercept a! (0) L 1. It is absolutely crucial in this that there be Pomeron interac- 

tions. Without them the Pomeron intercept would blithely go on up through one 

and never stop. This is precisely the situation which prevails in the multi- 

peripheral model. Reggeon Field Theory has been arranged to reduce to this 

when there are no Reggeon. interactions. 

There are several other requirements of s-channel unitarity which come in 

the form of inequalities like (155). They are met in the strong coupling solution 

of Reggeon field theories we have presented above (Cardy, 1975). 

An heuristic argument can be made why Reggeon field theories satisfy the 

simple inequality constraints of s-channel unitarity. It is known by construction 

that eikonal models as discussed above do satisfy these requirements. Among 

the additions of Reggeon field theory to the eikonal models is more absorption 

through Pomeron interactions. This is going to decrease the eikonal amplitudes 

and presumably satisfy the same inequalities. Whether the detailed s-channel 

unitarity requirements are satisfied is not known. As a bold conjecture let me 

state that Reggeon field theories, built to meet t-channel unitarity, also satisfy 

s-channel unitaritv. 

There have been developed methods to study the s-channel content of Reggeon 

field theories. The two prime techniques are as follows: 

1. Processes in the s-channel, as in the multiperipheral model, build up 
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the basic or bare Reggeons which go into the Reggeon graphs of Reggeon field 

theory. We have seen many examples of this. If we have a rule (Abramovskg 

et al. , 1974; Caneschi and Jengo, 1975; Cardy and Suranyi, 1975; Koplik and -- 

Mueller, 1975; McLerran and Weis, 1975; Suranyi, 1975) for opening up a _ 

Reggeon and exposing its s-channel particle content, then we can take Reggeon 

graphs and enumerate their contribution to any given physical process in the 

s-channel. 

The simplest graph is just one Reggeon exchange (Fig. 50) which we open 

up by taking the absorptive part. Taking this to reproduce the results of the 

multiperipheral model (flat spectrum in rapidity for inclusive processes, etc. ) 

we may take more complicated graphs, such as Fig, 51, to study corrections to 

the multiperipheral model. 

This procedure commits one to a specific mechanism for the building up of 

a Reggeon. Using the multiperipheral model as that choice makes excellent 

sense. However, the utility of the technique of cutting open Reggeons must break 

down as one arrives at energies where the scaling solutions discussed above 

become important. The reason is just that the number of graphs becomes infinite, 

and resuming cut graphs requires a new field theory of cut and uncut Reggeons. 

Such field theories have been developed and explored (Caneschi and Jengo, 1975; 

Cardy and Suranyi, 1975;. Suranyi, 1975). For simple aspects of multiparticle 

production such as the average multiplicity one finds 

<n> (s) - (log s) ‘-’ , (16 0) 

which rises faster than the 1og.s of the multiperipheral model. Also the higher 

moments behave as 

<nk> (s) - (log s)~(‘-~) k=l, 2,. . . . (16 1) 
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2. The other approach has been to study specific s-channel processes and 

develop a calculus of Reggeons appropriate to it. Then one uses a field theory 

and, of course, the renormalization group to sum up all contributions to these 

processes in the Ei,< -0 limit, This has been used in the study of production 

amplitudes T2- N (Bartels, 1975a,b) and inclusive cross sections in the triple 

Regge region (Fig. 52)(Abarbanel et al., 1975a; Cardy et al., 1975). 

The formulation of a field theory for either TZUN amplitudes or the triple 

Regge amplitudes, involves amusing complications coming from the presence of 

many partial wave amplitudes or the possibility of nonconservation of Reggeon 

energy. 

In the case of T2,N one must sum the Reggeon graphs in Fig. 53 to evaluate 

the partial cross section for N particles a,(s). Each of the solid dots repre- 

sents a particle being produced. Here one must evaluate the renormalization of 

the additional vertex for Pomeron-Pomeron-particle which is not encountered 

in the elastic scattering problem. One finds (Anselm and Dyatlov, 1968; Bartels 

and Rabinovici, 1975) that each a,(s) behaves 

CN(S) - (log s)-5’6 . (162) 

The exponent is again determined in expansion around D=4. This calculation 

serves to demonstrate that the shielding effect of absorptive Pomeron corrections 

does fix up the old Finkelstein-Kajantie disease of the multiperipheral model 

(Zachariasen, 1971). Without Pomeron corrections a,(s) grew faster than 

(log s)~ for N large enough and violated the elementary relation gN.< ototal < (log s)~. 

The same calculation shows that Pomerons alone are not sufficient to build 

up a gN(s) which when summed on N yields the gtotal of the full q3 Reggeon field 

theory. Instead c (T 
N N 

N gelastic < ototal. Since the contributions to a,(s) 
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involve looking into the bare Pomeron couplings to discover how they are built 

from more fundamental processes, it is perhaps not surprising that Pomerons 

alone do not build Pomerons. Additional contributions from secondary objects 

will be needed. This is in striking contrast to the attempts from the s-channel 

point of view to make aN(s) and atom1 (s) from a self-consistent Pomeron. 

The study of the triple Pomeron region of inclusive processes is important 

for in the multiperipheral model where o(t) = l+a!% , the study of the graph in 

Fig. 52 showed that the triple Pomeron coupling had to vanish when t=O 

(Abarbanel et al. , 1971b). Looking into this coupling one found further and 

further restrictions on zero momentum transfer Pomeron couplings until it was 

shown that the Particle-Pa-rticle-Pomeron coupling which governs total cross 

sections had to vanish as well (Rrower and Weis, 1972). 

A Reggeon field theory for this process involves the energy nonconserving 

triple Pomeron vertex r --(l’ 2)(Ei,?$) which reduces to our usual J?(” 2, when 

El=E2+E3 (Fig. 52). The energy nonconservation arises because the process 

involves an intermediate “time”, r = log M2, M2=the missing mass, in the pro- 

gression of Reggeons from zero time up to log s. One must sum up Reggeon 

diagrams as in Fig. 54 and more tricky as in Fig. 55, using the renormalization 

group (Abarbanel et al., 1975b; Frazer and Moshe, 1975). 

The result of operating this machinery is that the total cross section from 

the triple Regge region behaves as (log s)-~ and not greater than o,(s) as in the 

multiperipheral model. SO the interacting Pomeron restores the consistency 

with the elementary requirement CT triple Regge 5 gtotal * The triple Pomeron vertex 

need not vanish analytically at t =O, and none of the Pomeron decoupling theorems 

need be addressed. The differential cross section in the triple Pomeron region has 
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more or less the form 

d@ 

dt d log M2 
- (log M2)-‘/(log s/M~)-~’ e-t(log ‘)’ , (163) 

for log M2 >> log s/M2. This has no tendency to vanish at +O and givks the 

integrated cross section (log s)-’ mentioned above. This closes the circle on 

the mysterious Pomeron decoupling theorems and provides substantial support 

for the consistency of Reggeon field theories with s-channel unitarity. 

D. Other Matters 

There are two other interesting results within the framework of Reggeon 

field theory which bear reporting. The first has to do with scattering on nuclei 

(Kancheli, 1973; Lehman and Winbow, 1974; Schwimmer, 1975). In the single 

pole approximation (Fig. 56) when the nuclear radius ROA 113 is large compared 

to the impact parameter fluctuation distance Jm given by the Green’s 

function (110) 

ds << RoA1’3 , (164) 

the total cross section should behave as 

atotal M 2~ R2A2’3 0 ’ (165) 

and the multiplicity of produced particles as 

<roA(s) - A l/3 log s D (166) 

Now experiment (Busza et al., 1974) shows that the cross section does behave -- 

more or less as A2’3, but the multiplicity is essentially independent of A. What 

is missing is interaction among the Pomerons. Figure 57 gives the leading term. 

Now the multiplicity grows as log s essentially independent of A. One may 

heuristically understand this by thinking of the Pomeron interactions with the A 
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nucleons as just producing a new Pomeron-Nucleus-Nucleus vertex function as 

in the right hand part of Fig. 57. Now a constant cross section and <n> m log s 

are quite natural. Pomeron radiative corrections as in Fig. 58 have not yet 

been accounted for, but the whole apparatus described above is ready for that. 

Finally there has been an interesting technical achievement in determining 

not only the scaling indices y and z but also the scaling functions like @I 1 in 
, 

Eq. (141) (Abarbanel et al., 1975b; Frazer and Moshe, 1975). In particular for -- 
]r t19 l) the functional dependence on the scaling variable is determined by the 

two equations 

iI’gyl) E,c2,~b,ro = - qg [l+n(1+7)] [l+;12r (167) 

and the scaling variable 77 is given through 

-2 
“$I 

(-E) 1+7 
=‘17(1+g/2)T . (168) 

These are valid in the expansion in e=4-D described before and to the appropriate 

order -y=e/12 and 7= e/24. 

The technique is essentially to express l? (1,1) in terms of integrals over the 

Zi as done in (156). Then determine the Zi using the renormalization group 

equations for them and the expansion about D=4 to establish the coefficients in 

these differential equations. Using a general normalization point EN,qi to define 

the theory one is able to determine the dependence of the Zi on the dimensionless 

variables g (Eq. 125) and v=olqi/EN. This yields up (167) and (168) by means 

of an expansion in E . This result shows that there are no fixed singularities at 

E=O for c2 fixed. Further it allows one to arrive at an explicit formula for the 

elastic differential cross section which exhibits the usual sharp fall off in t for 

small t and then “bouncesl’, that is has a zero and a secondary maximum which 
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lies about six orders of magnitude below the diffraction peak at t=O. This, 

crude as it is, appears to be in rough accord with the data at the CERN-ISR 

(Giacomelli, 1974). 

X. ASSESSMENT OF THE t-CHANNEL APPROACH - 

As I have indicated several times in this article, I very much favor the view 

from the t-channel. It presents a consistent, attractive way to deal with the 

interplay between Regge poles (or the multiperipheral model, if you will) and 

the branch points demanded by unitarity. Indeed, it does it in a formal structure 

that is an abstraction of unitarity itself. With Reggeon field theories we are able 

to focus our attention on two critical indices y and z for the elastic amplitude 

T(s,t) = s/$$sEkE 1 

’ f-E) 
(16% 

which characterize the total cross section 

CT(S) - (loi% s, -’ , (176) 

and the shrinkage of the diffraction peak. The leading asymptotic amplitude 

factorizes, despite the presence of branch cuts. s-channel unitarity is at least 

enforced at the level of crucial inequalities; such as, a(O)< 1, -y < 2 and so forth. 

The problems of a p trajectory with a,(t) remaining almost linear and of Fermion 

Regge behavior are very neatly answered. The possibility of using the field 

theory formalism in the study of specific interesting s-channel processes has 

proven real and has allowed one to further delve into the key question of s-channel 

unitarity. 

The matter of the full behavior of diffraction amplitudes has hardly been set 

to rest, however. Looking back at our list of properties of diffraction, one will 

note that we have not even begun to deal with the question of the vertices 
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Pomeron-Particle-Particle and any selection rules for it (Leith, 1974). We 

have not faced up to the question why o!(O)=l, but only have been able to demon- 

strate that it cannot be greater (Abarbanel et al., 1975d). Frankly, these -- 

questions are, I believe, not amenable to answer within the framework dis- 

cussed in this paper. More about it later. 

An important issue we have postponed is when we ought to expect the scaling 

behavior to set in. The dimensionless expansion parameter of the Reggeon field 

theory is 

2 
‘0 ---$ logs . (171) 

0 

Certainly as long as this is much less than one, we need not look for the scaling 

solution since the only graph of any importance will be the old one Pomeron 

exchange. Since it has ace> 1, it will give a rising total cross section. From 

data on the triple Regge regime of pp - p+X and pd - d+X one learns that 

2 
r. 1 
70-3 ’ (172) 

so when 

log s ;L 25 , (173) 

the Moscow-Batavia scaling solution will certainly be necessary. A more pre- 

cise estimate examines how far away from Reggeon energy E=O we can trust our 

scaling formula at D=2 
2 [ 1 

-l/6 

iF(lyl)(E,O) = -/-“dx I+& . 
0 0 

(174) 
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This deviates from the scaling formula noted in Eq. (167) and (168) by the time 

(Abarbanel et al. , 1975b) -- 

E 
3ri 

=s71(Yo ’ (175) 

or when 

log sz5 . (176) 

Other estimates (Amati and Jengo, 1975) of the same ?ransition” energy lie at 

log s =9 or 10. Since at the maximum energy the CERN-ISR has log s M 8 and 

a 1000 GeV/c on 1000 GeV/c colliding beam would have log s M 14, one may 

(let optimism prevail!) be in or about to go through the transition region. 

Further optimism would suggest that phenomenology done with the scaling for- 

mulae even at the present highest energies might be significant. 

If we have not yet entered the scaling regime, then it is difficult to give an 

a priori estimation of what would comprise a useful phenomenology in the context 

of Reggeon field theory. Certainly one will be involved in the evaluation of at 

first a few and, then as s increases, of more and more terms of perturbation 

theory for whatever field theory one chooses. Since terms with many derivative . 

couplings and high powers of the Pomeron field are suppressed quite rapidly, one 

might imagine adding just 

IO - 4 w+9J2 hl - 6 ($‘$3 + ++3+) + a few derivatives , 

to begin a finite phenomenology. The territory is basically unexplored. 

There is another suggestion due to Gribov (Gribov, 1975) for finding a dif- 

fraction theory useful at lfintermediate’l energies. He notes that the Pomeron 

slope ck!b is like an effective mass 

E = c2/2meff + A , (178) 
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1 
meff = m. ’ (179) 

so that the Pomeron, with Q’ - o-O. 3 (GeV/Qe2 is much less mobile in 2,~ space 

than, say, a p meson with aoN ’ -1. Until the times (log s) become very large, the 

rapidly moving lower lying trajectories and even particles will dominate the 

t-channel dynamics. He has formulated a diffraction theory as an expansion 

around m eff 
=mor (yl=() 

0 * It goes into the Moscow-Batavia scaling solution. It, 

too, is basically unexplored territory. 

The t-channel view of Reggeon field theory teaches us a lesson which is 

attractive while disappointing. We learn that a few basic bare Pomeron param- 

eters (o!b, ro, and maybe others) are sufficient to yield the asymptotic behavior 

of diffraction amplitudes. We are rewarded by a simple, universal behavior 

whose detailed features lie in a small number of critical indices like y and z. 

This is the attractive part. The disappointing part is that in large s, small t 

physics we learn nothing about the underlying structure of the hadrons themselves. 

We have averaged over hadron coordinates in forming the Reggeon field $(??, T) 

in the first place. Then we took a limit which emphasized an infinite correlation 

length in rapidity space ( cc l/A) and thus washed out the details of the production 

processes which occur at finite rapidity gaps. 

The analogy with systems like a magnet near a critical temperature is 

persuasive . One is able to characterize the interesting quantities such as the 

susceptibility and spontaneous magnetization by a few universal critical indices. 

However, in the neighborhood of the critical temperature the correlation length 

among spins goes to infinity and one does a grand averaging over the detailed 

coordinates of the original magnetic system. It eventually doesn’t matter if the 
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spin lattice is body centered cubic or face centered cubic or if the spin-spin 

interactions are nearest neighbor or fifth nearest neighbor; all that gets washed 

out. 

XI. OUTLOOK: THE BARE POMERON AND a(O)=1 - 

We have come close to the conclusioncof our overview of theories of hadron 

diffraction. We have looked at diffractive processes from the direct channel 

by examining the production amplitudes which build up diffraction through uni- 

tarity. We have peered down the t-channel to satisfy unitarity in that direction 

through the medium of Reggeon field theories. 

I would like to end this extended discussion not by reviewing the review but 

by pointing to the crucial problem raised by the last several years’ hard effort 

in the theory of high energy hadron scattering. This is the question of the bare 

Pomeron and bare (or noninteracting) Reggeons in general. In the Reggeon field 

theories we found that having been given a set of parameters ao, CY~, ro, . . . 

for the Lagrangian, we could calculate, using the renormalization group or what- 

ever technique, a universal asymptotic behavior for any s-channel process we 

like. Two very important matters remained unaddressed: (1) Where do the bare 

Reggeon parameters come from? Are they “fundamental” quantities in theories 

of diffraction to be determined by experiment? Or are they calculable from some 

underlying field theory or S-matrix principles? (2) If we adopt the view that, 

indeed, the Pomeron intercept a(O)=l, then a special relation among the bare 

parameters (like Eq. (158)) must be met (Abarbanel et al., 1975d). I haven’t the 

answers to these questions. There has been some work on the former; the latter 

is wide open. 
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We have identified the bare Pomeron or bare Reggeon with the multiperiph- 

era1 model. The reader will have noticed that the key element in Pomeron 

making was the presence of bound states in the t-channel whose total spin J 

varied with t: J=a!(t) . Making the Pomeron or other Reggeon then becomes a 

question of finding the bound states from some underlying field theory, say, and 

studying their variation in the (J, t) plane. Clearly then we are adopting the point 

of view that the bare Pomeron parameters come from an underlying theory. In 

Fig. 59 is a schematic flow chart of the hierarchy of hadron physics suggested 

by this outlook. The bulk of this article has concentrated on the bottom or 

middle box. The questions we are raising here probably find their answers in 

the top box. “Fundamentality”. decreases as one goes down the page. 

There are at least two major views on the study of the bare Pomeron. One 

is to concentrate on good old quantum field theory and try to find the spectrum 

in the (J, t) plane. Attention has focused (properly I suspect) on theories which 

have “asymptotic freedom”; namely, ultraviolet behavior which is almost that 

of free field theory (Coleman, 1973). The most realistic example of this is 

non-Abelian gauge theories, although, because of its simpler structure, q3 theory 

in six space-time dimensions has been studied in this category (Cardy, 1974; 

Lovelace, 1975). These theories have very complex infrared behavior and, since 

bound states grow on infrared or soft quantum exchange (hard quanta destroy 

binding), the problem remains. Indications are encouraging, however, since 

q3 in six dimensions shows Regge pole behavior while similar field theories: 

+4 in four dimensions and electrodynamics do not. The latter two are not free 

in the ultraviolet region, and that makes all the difference. 

The second approach is complementary to this field theory and in a sense 

resides in the middle box of Fig. 59. Without specifying what field theory one 
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makes hadrons from, it is proposed to classify the Feynman graphs of the 

theory according to the “planarity”. (There is a more precise topological 

definition (Chan et al. , -- 1975; Chew and Rosenzweig, 1975; Ciafaloni et al., 

1975; Schmid and Sorensen, 1975) .) One can do this by hand or by introducing 

a U(N) internal symmetry group and considering N to be large. (N=3 may be 

large enough. ) The leading graphs in powers of N are planar. They, in a 

multiperipheral sense, are identified with Reggeons involving quantum number 

exchange, certainly with a!(O)< 1. Next in orders of N are a set of nonplanar 

graphs which are identified with the bare Pomeron. Again it is a pole in the 

J plane whose o. is bigger than the quantum numbered Reggeon since there are 

more graphs. In this scheme the triple Pomeron vertex comes out 0(1/N) 

giving some rationale for the smallness of the observed number (Eq. (172)). 

Although at the time of this writing it is too early to assess the quantitative 

value of the l’topological Pomeron l1 or the fundamental field theory approach 

they do promise to be valuable tools in the search for the bare Pomeron. 
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FIGURE CAPTIONS 

1. The measured total cross sections for lr*, K*, i and p incident on protons. 

The references on the figure may be found in Kycia (Kycia, 1974) from 

whom the graph has been taken. s (x plab. 

2. The measured cross section for n-p - non (called oCEX). The references 

on the figure may be found in Barnes et al. (Barnes et al., 1974) from -- 

whom the graph has been taken. s cc plab. Compare the rapid fall off of 

this cross section with the slow variation of the total cross sections. 

3. The two body - two body collision AB -L A’B’. When the quantum numbers 

of the vacuum (I=O, P=G=C=+l, . . . ) are allowed in the t direction, then we 

have cross- sections which are almost constant in s for fixed,’ small t as 

s-00. This is a key signal of diffractive processes. 

4. (a) The s-channel point of view in looking at the diffraction amplitude of 

Fig. 3. One examines each N particle intermediate state. 

(b) The t-channel point of view in looking at the diffraction amplitude of 

Fig. 3. One characterizes the s dependence by the allowed exchange 

mechanisms. Diffraction requires the effective spin of the exchange to be 

one. 

5. The unitarity relation in the s-channel. It relates the imaginary part of 

the two body amplitude to the production amplitudes TAB -) N. 

6. Double exchange of the wiggly line of Fig. 4b with effective spin M 1. Each 

exchange contributes a power of s1 while the integral around the loop con- 
-1 tributes a power s . The net amplitude behaves as s1 which is the same 

order as the single exchange in Fig. 4b. 

7. Some measured elastic total cross sections. The points at 50, 100, and 

175 GeV/c for r-p, K-p, and ljp are taken from recent Fermilab experiments 
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(F ermilab , 19 75). All other points are from references in Leith (Leith, 

1974) from whom the graph has been borrowed. 

8. The inclusive cross sections for pp -A -I- anything where A= R*, I?, p and 

5. This graph shows do/d2pTdy for a fixed value of the produced particles’ 

transverse momentum (pT = 0.4 GeV/c) as a function of the incident energy 

(s) and the rapidity of the produced particle. The independence of s is 

striking. References on the graph may be found in Giacomelli (Giacomelli, 

1974) from whom the figure is borrowed. 

9. Plots of p(E) = Re T(E, t=O)/Im T(E, t=O) for elastic proton proton scattering. 

s cc E. The curves on the graphs should be ignored. References on the 

graph may be found in- Leigh (Leith, 1974) from whom the figure is borrowed. 

10. The ratio of the differential cross sections Ap - AN*(1688)/Ap - Ap for 

A= 7r-, K- and lj as a function of t. The equality of these ratios is a test of 

factorization. 

11. On the left is the amplitude for r-(K-) + p --L anything + p. When this ampli- 

tude is squared the picture on the right emerges. The ratio of 7r-p - X+p 

and K-p + X+p cancels out the little dragonfly of Pomeron and four protons 

and leaves a number equal to u total(~~P)/qotal(K-p), independent of s, t, 

and x. 

12. The reactions n-p - X+p and K-p -. X+p plotted as a function of x the frac- 

tion of beam momentum carried by the recoil proton. The ratio of these 

cross sections should be independent of x, beam energy and t, the momentum 

transferred between the protons. References to the data may be found in 

Leith (Leith, 1974) from whom the figure is borrowed. 

13. The slope parameter b(s) in elastic scattering. The elastic cross section 

is parametrized as dc/dt = (constant) exp - 2b(s)t and the data shown is for 

t= 0.2 (GeV/c)-2. 
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14. Mass spectrum for Nnr in the reaction m - K(Nnn) at beam momentum 

of 10 GeV/c. References to the data will be found in Leith (Leith, 1974) 

from whom the figure is borrowed. 

15. An exchange of quantum numbers along the wiggly line connecting particles 

rapidly moving by each other requires radiation as the wiggly line rapidly 

changes its momentum. This decreases the cross section into the channel 

shown. When vacuum quantum numbers are exchanged, no radiation need 

occur. 

16. Total cross sections plotted versus @lab) -l/2 showing how particle and 

antiparticle cross sections approach each other as s a plab - 03 . Data is 

referred to by Leith (Leigh, 1974) from whom the graph is borrowed. 

17. The exchange of a spin JR, mass mR resonance in the s-channel. 

18. The exchange of a spin JR, mass mR resonance in the t-channel. 

19. The simplest peripheral amplitude approximation to elastic scattering: 

exchange of a spin 0 particle in the t-channel. 

20. The most elementary multiperipheral approximation to the 2 - N produc- 

tion amplitude: single particles are produced by the repeated exchange of 

a spinless particle in the ti = QF channel. More complicated multiperipheral 

models have clusters of particles produced with total momenta pi and/or 

more elaborate exchanges in the ti channels. When such augmentation does 

not change the “smoothnessY1 of the potential K (Eq. (33)), much the same 

consequences follow. 

21. The multiperipheral integral equation. 

22. The partially diagonalized mu&peripheral integral equation. I and t are 

parameters in the equation (i. e . , they have been diagonalized) , and the 

dynamics resides in the two dimensional s space. 
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24. 

25. 

26. 

27. 

28. 

29. 

30. 

31. 
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Two body scattering taking place via the double exchange of potential VI 

and potential V2. Going over to impact parameter space makes the T matrix 

a product of VI and V2. The impact parameter is thus like a generalized 

s-channel angular momentum. 

The multiperipheral approximation to the 2 --t N production amplitude. 

Each T is a two body amplitude. The whole process is expressed in 

rapidity, impact parameter space. 

Elastic rescattering correction to the y,g form of the multiperipheral 

amplitude. One introduces rescattering between pairs of particles by 

multiplying with & = exp i6(Ay, A!?) for each pair. Corrections are multi- 

plicative in y,I? space.. 

Many particle interactions missing in the elastic rescattering approximation. 

The iterative approach to rescattering corrections in the s-channel. 

Pomeron interactions produce the many particle interactions absent from 

Fig. 25. 

The many Pomeron [eikonal phase x] exchange graphs summed by the 

eikonal approximation. The factor N! and the relation gN= (g,) N are crucial 

to the exponentiation of the eikonal formula. They are not expected in general. 

Pomeron interactions missing from the eikonal formula. They will crucially 

alter the couplings and combinatorial factors needed to exponentiate the 

eikonal phase or Born term. 

The kernel for the multiperipheral bootstrap model: elastic unitarity 

involving T (s , t) itself. 

The dominant double exchange graph in the high energy limit. The colliding 

particles break up to exchange the Reggeons at the same time. Figure 30 

requires Reggeon emission at different times, but as s - ~0 the colliding 

particles spend less and less time in each other’s vicinity. 
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32. 

33. 

34. 

35. 

36. 

37. 

38. 

39. 

40. 

41. 

42. Double Reggeon exchange from hadron to hadron. 

The contribution to elastic unitarity from Fig. 30. 

Kinematics of the two Reggeon exchange contribution to the t-channel 

partial wave amplitude F (J, t) . N2 is the amplitude for two particles -. 

two Reggeons. 

The approximation to N2 coming from the double cross graph of Fig. 31. 

The contribution of two Reggeons to an absorptive part (discontinuity in J) 

of F(J, t). This is the simplest Reggeon unitarity relation. It can be 

“rigorously” derived from analytically continued four particle unitarity 

for t-channel partial waves. It is also true in all models. 

The simplest graph that contributes Reggeon branch points to N2, the 

particle-Reggeon transition amplitude. 

The pole and branch points in the Reggeon energy (E=l-J) plane. If the 

on-shell Reggeon energy satisfies E (GO)=0 (a(O)=l), then all the cuts 

collapse on the pole at E=O when <= 0. 

Reggeon unitarity for the particle-Reggeon amplitude N2 showing the two 

Reggeon cut. The four Reggeon amplitude M4 enters here. 

Reggeon unitarity for the Reggeon amplitude M4 showing the two Reggeon 

cut. 

Examples of Reggeon interactions showing 1-2, 2-2, and 3-t3. When 

quantum numbers allow, any number of Reggeons may go into any other 

number. Both heuristic and firmer arguments show that only the triple 

coupling is important for the eventual asymptotic behavior of cross sections. 

Space-time picture of a Reggeon. It diffuses with the Green’s function 

Eq. (110) from a hadron at zero rapidity, zero impact parameter to another 

hadron at (y,c). 
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43. Reggeons interacting on their way from one hadron to another. Between 

interactions they propagate with the Green’s function (110). Eventually 

all Reggeons except the Pomeron with A=0 are killed by this propagator. 

44. The minus sign associated with absorption. It is taken to each triple 

Pomeron vertex as m. 

45. The function p(g) for Reggeon field theory. In the infrared limit (E,c-0) 

governing diffraction scattering the effective coupling constant of the theory 

becomes g1 where p(gI)=O. In Reggeon field theory gl a m where D is 

the number of dimensions of impact parameter space. This suggests a 

fruitful expansion in e=4-D for D<4. Physics takes place at D=2. 

46. The dominant asymptotic contribution to the elastic cross section and total 

cross section. U?(S) factorizes and rises as (log s)-‘. -y is a positive 

number which is one of the critical exponents in the scaling form of the 

Moscow-Batavia Pomeron. _ Numerical estimates indicate l/4 2 -?/ 2 l/2. 

47. The hierarchy of contributions to the total cross section in Reggeon field 

theory. The leading term factorizes; the others need not. 

48. The Schwinger-Dyson equation of Reggeon field theory. Early Soviet work 

attempted to find self consistent solutions to this kind of nonlinear equation. 

49. Reggeon graphs summed to study the Pomeron or absorptive corrections to 

secondary Reggeons co, A2, . . . ) or Fermions. The Pomeron is shown with 

a wiggly line; it enters to all orders. The other Reggeon, which has a(O)<l, 

enters only once. 

50. The model for cutting open a Reggeon to study its s-channel particle content. 

It’s the multiperipheral amplitude, of course. 

51. Processes one may learn about by cutting open the simplest triple Pomeron 

graph. 
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52. 

53. 

54. 

55. 

56. 

57. 

58. 

59. 

The triple Reggeon region for inclusive reactions. Reggeon energy is not 

conserved here because an intermediate fixed l’tirne” = log M2 is exposed. 

Reggeon graphs to be summed in the study of 2 -N production cross sections. 

Each heavy dot is a particle produced. 

One of the Reggeon graphs to be summed in the study of the asymptotic 

behavior of the triple Regge region of inclusive reactions. Reggeon rules 

do not allow Reggeons to traverse between the t1 and t2 channels. 

A pleasant complication in the Reggeon graphology for the triple Reggeon 

region of inclusive processes. 

The simple Pomeron exchange for particle scattering on nuclei. It gives 

a multiplicity of produced particles a A l/3 log s for a nucleus of A nucleons. 

Experiment gives only log s. 

The dominant graph for particle-nucleus scattering. It gives a multiplicity 

a log s. 

Pomeron radiative corrections to particle-nucleus scattering. 

The hierarchy of hadron physics. This review dwells primarily in the 

middle and lower boxes. The upper box contains the secret of the bare 

-Pomeron. 
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