
HEURISTICS FOR PARTIAL-MATCH RETRIEVAL
September 1975

DATA BASE DESIGN

Jon Louis Bentley*
Stanford Linear Accelerator Center

Stanford University
Stanford, California 94305

Walter A. Burkhard**
Computer Science Division

Department of Applied Physics
and Information Science

University of California, San Diego
La Jolla, California 92093

ABSTRACT

This paper considers several practical heuristics for the design

of good, if not optimal, partial-match data bases in situations which

are typical of real life information retrieval systems.

(Submitted to Information Processing Letters)

* Work supported in part by U.S. Energy Research and Development
Administration under Contract E(Oh.-3)-515.

** Work supported in part by National Science Foundation Grant GP-8557.

-2-

KEY WORDS AND KEY PHRASES

associative retrieval

algorithms

heuristic algorithms

partial-match retrieval

search tries

information retrieval

data base design

-3-

1. ~ Introduction

This paper is concerned with information retrieval based on

secondary keys, that is, keys which cannot in general uniquely identify

a record but can indicate certain attributes of the associated records.

Partial-match retrieval is concerned with accessing those records of a

file which match the user's query, although his query may be only

partially specified. In this paper we will consider specifically "real

life" files which are stored as binary search tries (binary search tries

are described in section 2.)

Much work has appeared recently on the problem of partial match

searching. Rivest has studied hashing techniques for partial-match

searching in [Ri74a-b,75]. He gives algorithms with desirable worst case

performance and algorithms with optimal average case performance.

Burkhard describes a class of hash functions with very good worst case

performance in [Bu75a]. Rivest was the first to use tries for partial-

match searching [Ri74b,75]. He studies only their average case behavior.

Burkhard develops a class of tries with very good worst case performance

in [Bu75b-c]. Independently, Dubost and Trousse discovered a similar

scheme which they describe in [DuTr75].

Thus we see that much work has been done on the questions of worst

case and average case performance (average is usually defined as all

queries and all records are equally probable to occur.) In "real-life"

applications, however, one is often interested in different measurements.

Specifically, one is interested in fast average retrieval time with good

worst case bounds given non-uniform data and queries, In this paper we

develop heuristics for building search tries that will produce data bases

-4-

with such properties. This problem was designated by Rivest [Ri74b,75]

as one of the main open problems in this area.

In section 2 we give the definitions and basic concepts necessary

for reading this paper. Section 3 contains five heuristics we propose

for binary search tries in "real-life" applications. We state our

conclusions and directions open for further work in section 4.

2. ~ Definitions

A record R is defined to be an ordered k-tuple (rl,r2,...,rk)

of values. Each coordinate of the k-tuple is referred to as a key and

we assume that each key takes as value either 0 or 1 (the consequences

of restriction to binary keys are discussed later in this section.)

Let % denote the set of all valid records; the cardinality of Rk is

2k . A file F is a subset of % ; there are 22k possible files.

Every record in a file is required to have the same number of attributes;

thus the discussion here is not amenable to files comprised of records

with differing numbers of attributes as described by Hsiao and Harary

[HsHa70].

Let Q denote the set of queries the information system is to

handle. For a given file F and query q C Q , the set q(F) denotes

the desired subset of records in F . Our interest centers on partial-

match queries Q t
in which t keys are specified and k-t keys are

unspecified. The unspecified keys are replaced in the query by the

special place-holding symbol ft*" . For partial-match query

4 = (4 .,"',qk) 1 , q(F) denotes the subset of records R = (rl,...,rk)

-5-

in F such that ri = qi if qi is either a 0 or a 1 for

lsiik . For example, the query q = (l,*,O) requests all records

that have rl =l and r3=0 , regardless of their r2 values.

We will now give a formal definition of a partial-match binary

search trie: the reader interested in more detail is referred to Rivest

[Ri74b,75]. A trie is a binary tree such that

1. each leaf node corresponds to exactly one record and

conversely,

2. each internal node specifies an attribute position j such

that no other nodes on the path from the root to that node

specify j , and

3. if a node specifies attribute j , then all nodes in that

node's left subtrie have a 0 in attribute j and all nodes

in its right subtrie have a 1 in attribute j .

A partial-match trie search algorithm is easy to define recursively.

As the algorithm visits an internal node with attribute position j ,

it visits both sons recursively if q.
J

is an asterisk; otherwise it

visits only the appropriate son. As the algorithm visits a leaf node

it checks to see if the corresponding record answers the query description

and if so reports it.

If the size of the file is relatively small compared to the

main memory of the computer, then the trie could be stored entirely in

the main memory. If the size of the file prohibits this then the

internal nodes of the trie could be stored in the primary memory and

the external nodes of the trie could be stored on some secondary memory,

such as disk. If this is the case, then the leaf nodes usually

correspond to more than one record: they are referred to as buckets

-6-

and are typically assigned enough records to occupy a substantial part

of a physical record of the secondary memory.

We have assumed in this discussion that the keys of the records

will be binary. This is a general assumption, as any other keys can

be encoded in binary., Sometimes, however, that is not the proper

approach to take. Bentley discusses a trie-like structure for non-binary

partial match queries in [Be75]. Many of the ideas we discuss in this

paper can be easily extended to non-binary keys.

The storage costs of tries is fairly small; this is especially

true when buckets are used. For tries stored entirely in main memory,

the cost of a search is usually the sum of internal and external nodes

visited during the search. When the records are stored in a secondary

memory the cost of transfer from secondary to main memory usually

dominates the search time and the cost of the search is therefore taken

to be the number of external nodes visited. We will not always mention

which of the particular cost functions we are assuming in the following

discussion since minimizing one usually minimizes the other.

3. ~ Heuristics

In this section we present five heuristics for use in files

stored as partial-match search tries.

3.1 Subtrie record descriptors

The contents of a subtrie are necessarily characterized by the

-7-

path from the root of the tree to the root of the subtrie--this is the

defining property of binary search tries. This characterization is

not necessarily the most complete possible due to the interdependencies

of the keys of the records in the file. For example, in a file containing

records of people, if the "over six feet tall" bit were on and the "husky

build" bit were on, then the "under hundred pounds weight" bit would not

be on. One approach to using this information is to describe each bit

among the records in the subtrie as being all zeros, all ones, or mixed.

This approach could be implemented easily using 2k bits at each internal

node.

3.2 Unbalanced trie schemes

Because there are k positions in a query, any one of which

could be either a 0,l or *, there are 3 k possible partial-match

queries. Given a collection of records under the assumption that any

one of these queries is equally likely to be posed, the optimal trie is

defined to be that which minimizes the average number of records

examined per query. Since the optimal trie is merely that element of a

finite set which minimizes an easily computable function, it is clearly

well defined. However, it appears not to be easy to compute the optimal

trie; Comer and Sethi [CoSe75] have recently sho& that a related problem

is NP-Complete. In this light we offer the following heuristic which

will build good, if not optimal, search tries.

Given that all partial-match queries are equally likely to occur

the probability that a given node on level J? will be examined is

2 L

0 7 since ther are .2'gk-& queries of the possible 3k that will

-8-

visit that node (assuming that heuristic 3.1 is not used.) For this

reason the deeper a node is in the trie,the less often it is examined.

Therefore, very unbalanced tries (which have many deep nodes) should

have good average search times. (Rivest pointed this out in [Ri74b,75].)

Every bit position not yet tested in a search trie is a candidate

for the next tested position. In building a trie for a particular file,

we could maximize the trie unbalance at every node in hopes of attaining

a globally unbalanced trie. For example, if we are given a collection

of records to make into a trie we choose a bit position which is the

most unbalanced value (highest ratio of zeros to ones or ones to zeros

without being all of one value) to be the root attribute position. We

recur for both subtries using the partitioned file of the root. This

heuristic could be extended to be more global. In particular, we

could attempt to maximize the unbalance for the selected root node by

considering the unbalance for several levels of the trie. This

"look ahead" helps avoid local optimization that is globally sub-optimal.

This heuristic constructs a trie which is totally sensitive to the

records in the file.

3.3 Query set schemes

In section 3.2 we assumed that all queries were equally likely

to be posed. In most "real life" situations this is not the case--the

queries are usually taken from a relatively small subset of all possible

queries. It is desirable to take the actual queries into account as

the trie is being constructed. We therefore. propose the following

heuristic algorithm to transform a set of queries into a skeletal trie

-P-

into which the records of a file could be inserted to form a binary

trie as defined in section 2.

As a search procedure is traversing the trie each node visited

will cause either one or two of its sons to be visited (with possible

exception if the record descriptors of section 3.1 are employed.) Since

two sons will be visited if and only if the query position is an asterisk

it is desirable to use as attributes positions that have the smallest

number of asterisks among the queries. The extension of this strategy

to a recursive algorithm to build a trie given a set of sample queries

is obvious. As in section 3.2, look,ahead could be used to take a more

global picture into account.

Proceeding formally, we can define the cost of a query in a given

skeletal trie as the number of internal and external nodes visited by the

search corresponding to the query. The cost of a skeletal trie is the

sum of the costs of the queries in the trie. A recursive expression for

the cost of a skeletal trie is the sum of the costs of its left and

right subtries plus the sum of the number of queries of each external

node in the two subtries. This expression suggests the heuristic noted

above since using positions with many asterisks as attributes will increase

the number of queries in external nodes,thereby increasing the cost of

the trie.

3.4 Hybrid schemes

Here we propose that heuristics 3.2 and 3.3 be combined to produce

a search trie which is sensitive to both the record structure and the

query structure of the data base. A recursive approach to this problem

- 10 -

would choose as the attribute for a given internal node that untested bit

position maximizing some function of the records and the queries in that

node's subcollection. One possibility would be to choose as the root

attribute that bit maximizing the product of the percentage of one bits in

the records (or zero bits if more were specified) and the percentage of

non don't care queries. As in sections 3.2 and 3.3 once a local

optimization prescription is found it could be applied with look ahead to

avoid global suboptimizations.

3.5 Self organizing files

Heuristic 3.4 uses both the initial file structure and the initial

query structure to build a trie well suited to those conditions. It

could happen that during the course of the user interaction the query

structure changes or some records are retrieved with great frequency.

Thus, there is a need for reorganization criteria which would be used to

ensure that the data base will continue to achieve low average retrieval

times. A counter scheme associating counters with each record and each

internal node of the trie could be used to record query requests and

record accesses. The most commonly accessed records and queries should

be given greater weight during a file reorganization,

4. ~ Conclusion

The main thrust in this paper has been to present certain

heuristics computationally suitable for determining good (if not optimal)

binary search tries. The approach has been descriptive rather than

- II -

analytic. The analyses for these heuristics are not currently available

and offer very reasonable research projects. The heuristics evidently

offer practical approaches to partial-match file design. The authors

would certainly appreciate learning of other experiences with the

heuristics mentioned here.

REFERENCES

[Be751

[Bu75a]

[Bu75b]

[Bu75c]

[CoSe75]

[DuTr75]

[HsHa70]

[Ri74a]

[Ri74b]

[Ri75]

J. L. Bentley. Multidimensional binary search. trees used
for associative searching. To appear in Communications of
the ACM.

W. A. Burkhard. Partial-match queries and file design. To
appear in Proceedings of the Conference on Very Large Data
Bases, 1975.

W. A. Burkhard. Hashing and trie algorithms for partial-match
retrieval. Submitted to Communications of the ACM.

W. A. Burkhard. Partial-match retrieval: performance bounds.
UCSD Computer Science Division TR 83, 1975.

D. Comer and R. Sethi. NP-completeness of tree structured index
minimization. Technical report 167, Computer Science Department,
The Pennsylvania State University, May 1975, 43 pp.

P. Dubost and J.-M. Trousse. Software implementation of a new
method of combinatorial hashing. TRY/ STAN-CS-75-511, Computer
Science.Department, Stanford University, 35 pp.

D. Hsiao and F. Harary. A formal system for information
retrieval from files. Communications of the ACM. Volume 13:2,
1970, 67-73.

R. L. Rivest. On hash-coding algorithms for partial-match
retrieval. Proceedings of the 15th Annual Symposium on
Switching and Automata.Theory, October 1974, 95-103.

R. L. Rivest. Analysis of associative retrieval algorithms.
Technical report STAN-CS-74-415, Computer Science Department,
Stanford University, 1974, 102 pp.

R. L. Rivest. Partial-match retrieval algorithms. To appear
in SIAM Computing Journal.

