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ABSTRACT 

Explicit relationships are derived connecting the author’s boundary 

condition formalism (BCF) to the Faddeev theory of three-body scatter- 

ing. In particular, it is shown that suitable input to the BCF can always 

be chosen so as to exactly reproduce the Faddeevamplitudes. This is 

also true in the presence of explicit three-body forces. It is further 

shown that such forces cannot be distinguished from off-shell properties 

of the two-particle interaction on the basis of three-particle scattering 

observables. A previous analysis of the n-d breakup reaction is dis- 

cussed in some detail. 
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I. INTRODUCTION 

Our present understanding of the nuclear force is largely empirical, and 

has developed in response to two-particle phenomena. The historical procedure 

has thus been to introduce just what is necessary in order to explain an enlarging 

class of experimental facts. 1 The constructs of such an empirical procedure 

are necessarily nonunique; these ambiguities are commonly referred to as the 

IToff-shell” characteristics of the theory, and cannot (by definition) be resolved 

at the two-particle level. One can easily demonstrate at least a formal depend- 

ence of three-body systems on the off-shell properties, and this has stimulated 

a great deal of interest in studying the three-body problem. 2 

In principle, therefore, studies of the trinucleon system should provide a 

clear test of the off-shell characteristics of the nucleon-nucleon interaction, 

enabling one to choose from among the many phenomenological potentials which 

have been proposed. Early calculations of the triton ground state properties 

were very encouraging, in that considerable sensitivity was exhibited to the 

momentum-dependence of the interaction, the type of short-range repulsion, 

tensor vs central forces, etc. 3 However, after a great deal of labor involving 

increasingly more sophisticated models, it appears that the differences generated 

by competing “realistic+’ potentials are comparatively minor. Thus, by concen- 

trating on models which produce identical (or closely similar) two-particle 

properties, much of the apparent tloff-shell’l sensitivity has been eliminated. 

In particular, theoretical values for the triton binding energy (ET) differ by only 

a few tenths of an MeV for realistic potentials, although the 1.5 MeV missing as 

compared to experiment is a clear signal that the interaction has not been fully 

understood. 4 
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What has emerged from this effort is the realization that the on-shell two- 

particle properties, and (more subtly) the constraints of three-body unitarity, 

to a large extent determine the three-particle observables. This understanding 

was obscured for a long time by the difficulties inherent in three-body calcula- 

tions. The standard procedure has been to perform successive computations 

with different potentials, thus generating a selection of input and output for com- 

parison. Inasmuch as the on-shell and off-shell properties are inextricably 

linked in the parameters characterizing the potential, this is a crude procedure 

at best. Nevertheless, if the numerical work were comparatively simple this 

would probably be adequate, but in practice it is slow, laborious and expensive. 

Also, it is clearly quite important to require phase-equivalent input when making 

judgments about off-shell sensitivities, but this is not entirely practical within 

the conventional (Faddeev) framework. 

Although N-d scattering calculations are considerably more difficult than 

the triton problem, and hence in a comparatively early stage, the success of 

fairly trivial models in fitting both elastic and inelastic (breakup) data suggests 

that a similar picture will emerge once the Faddeev calculations have become 

sufficiently exhaustive. 5 However, due to the inefficiencies of that approach, 

and the particular difficulties associated with the inclusion of local potentials, 

a definitive conclusion is likely to be some years away. This is particularly 

unfortunate from the standpoint of proposed experiments, since the outcome has 

clearly a great deal of bearing as to which will be most profitable. 

The boundary condition formalism (BCF) proposed by this author was de- 

signed to shortcut this problem, and provide a practical, efficient framework for 

analyzing experimental sensitivities to specific effects. 6 As a test case, the 

technique was applied to the analysis of the n-d breakup reaction at 14.4 MeV. 7 
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The results demonstrated that the differential cross sections are sensitive to 

only a single parameter, which may be fixed in terms of the n-d doublet scatter- 

ing length (itself strongly correlated with ET). This implies that with regard to 

these observables there is little to gain either from costly calculations with 

“realistic” potentials, or from the corresponding experiments. This conclusion 

is not dissimilar from that reached concerning the triton properties, but it was 

much easier to come by. 

This result has stirred considerable controversy, particularly among those 

doing the r%ronglf experiments. Various claims and counter-claims have arisen 

concerning the content, implications and generality of the analysis. *” In 

particular, it has been suggested that the variations considered correspond to 

three-body forces rather than to two-particle off-shell properties, and that the 

results depend strongly on the particular N-N phase shifts employed as input. 9 

These claims are in direct conflict with previous statements by this author, and 

it is therefore clear that a certain amount of confusion and misunderstanding 

exists concerning the BCF technique in general, and the n-d analysis in particular. 

A major purpose of this article is therefore to make quite explicit the connection 

between the BCF and the Faddeev formalisms, with and without the inclusion of 

three-body forces. In particular, it will be shown that BCF input of the class 

considered in the n-d analysis can always be chosen so as to exactly reproduce 

the Faddeev results, irrespective of the phase shifts, two-body potentials, or 

possible three-body potentials. Thus a systematic variation of the BCF param- 

eters must encompass any and all possibilities realizable in the Faddeev theory. 

On a more general note, the remarks of Haftel and Petersen illustrate a 

persistent misunderstanding concerning the equivalence of off-shell properties 

and true three-body forces. 9 Thus, there is a general impression that such 
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effects can be distinguished experimentally by concentrating on specific regions 

of phase space. 10 However, this is simply not the case, as will be shown via 

a simple extension of the off-shell equivalence proof. Specifically, there is no 

means by which one can distinguish a three-body force from off-shell properties, 

even in principle, given a complete knowledge of three-particle scattering 

observables. This result is implicit in the interior-exterior separation proposed 
. . 

sometime ago by H. P. Noyes, but has not been widely appreciated. I1 Hopefully, 

the more explicit development presented below will serve to exorcise the recur- 

rent confusion concerning this point. If studies of the three-body problem are to 

succeed in enhancing our knowledge of the nuclear force, it is essential that we 

clearly understand the limitations inherent in the problem. Thus, although the 

Faddeev equation provides a useful formalism in which to test a specific potential 

model, its complexity tends to obscure certain general features. In contrast, 

the BCF emphasizes three-body observables, and hence is a more suitable tool 

for experimental analysis. 

The organization of this paper is as follows. In Section II we briefly derive 

the Faddeev equation for three spinless particles in the presence of an explicit 

three-body force. The equation is then cast into operator form for ease in sub- 

sequent manipulations. Section III is concerned with the reduction of the 

Faddeev equation to an effective one-variable form comparable to the BCF equa- 

tion. The main content of the paper is presented in Section IV, which contains 

the explicit proof of off-shell equivalence. The essential ambiguity involved in 

distinguishing off-shell behavior from a true three-body force is also demon- 

strated in the context of this proof. Finally, Section V is devoted to a discussion 

of these results and the general problem of effectively utilizing three-body 

observables in investigating the nuclear force. In particular, assumptions 
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underlying the 14.4 MeV analysis are discussed in considerably greater detail 

than was possible in previous Letters. Relevant detai.ls concerning the BCF are 

provided in the Appendix. 

II. FADDEEV EQUATIONS WITH THREE-BODY FORCES 

Although the inclusion of three-body forces in the Faddeev formalism is 

straightforward, such forces have yet to be employed in scattering calculations 

and hence the formal development is largely unfamiliar. 12 We thus begin by 

briefly deriving the relevant equations. 13 In order to avoid mathematical 

subtleties we shall assume that the potentials are sufficiently well-behaved to 

guarantee the existence of various operator products and inverses employed 

below. For this purpose it is sufficient for the two-particle potentials to be 

bounded by a Yukawa potential, with a corresponding assumption regarding the 

three-body potential. In practice this includes all of the potential models 

(excluding Coulomb) actually employed in few-body calculations. l4 For simplicity 

we shall ignore the spin, isospin degrees of freedom; this specialization clearly 

has little bearing on the questions to be addressed. Furthermore, it should be 

obvious that the operator formalism we employ is equally valid in the general 

case given a trivial expansion of the basis, and hence the proofs are actually 

quite general. 

Consider the state vector IQ> describing the three-body system in its 

c.m., and let W denote the total energy in that frame. The Schrtrdinger equation 

may then be stated as 

Here Ho is the free hamiltonian (kinetic energy operator), Va is the two-body 

potential for particles p and y (cr#@y), and V3 is the three-body potential. We 
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consider a solution consisting of outgoing waves originating from an initial plane 

wave state lip>, and introduce the Green’s functions 

-1 , 

Ga! = 
( 
Ho+Va-W-ie -’ ) 

=GO-G’t‘ G . 004 0 (2) 

The latter equation defines for us tcr, the two-body scattering operator (t-matrix), 

and implies that GaV,! = Got,!. 

As it stands, the solution IQ> of Eq. (1) must satisfy rather complicated 

boundary conditions related to the various types of asymptotic states, and hence 

we introduce the Faddeev channel decomposition, I*>= x121) >. Inthe 
a! O1 

momentum-space representation this same decomposition solves the problem 

of disconnected graphs, as is well known. The I Ga> then must satisfy 

I+,’ = (l-Gota) IQ, > - GaV3 I#,> - Got,! c 1~ 
Bfa p 

> . 

If we define the three-particle t-matrix T via the relation 

I’@> = (l-GOT) 1% > , (4) 

(3) 

and expand T = c TV , we have 
CY 

I +&> = (l-GO,Q 14, > . 

Substitution into Eq. (3) then yields the equation 

(5) 

7- Q! = ta+ (l-t,!Go) V3(1-G0~J - tcrGO c 
P#Q 73 ’ (6) 

since IQ1>isarbitrary(Ho16,>=WI@>). In the special case V3=0, Eq. (6) is 

the usual expression of the Faddeev equations, and its solutions are known to be 

well defined for potentials Va of the type considered. The mathematical 
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properties of the equation are not altered for reasonable choices of V3#0 (as in 

the present case), and hence 7a! is uniquely specified. 

In order to perform the manipulations required below it is a great conven- 

ience to employ an operator notation which frees us from the explicit a! indices. 

We shall thus describe our three-body state by the three sets of Jacobi varia- 

bles (cxcq), where F is the relative momentum of particles p and y, andq 

is the momentum of a! relative to the py c. m. 15 The reason for employing 

three sets rather than one (only two vectors are linearly independent) is that 

tQ! is much more simply described in terms of (a!FT) than @SC). The F,z 

vectors correspond to the reduced masses pa, Ma, respectively, and a physical 

scattering state satisfies the on-shell condition 

p2/21ra + q2/2Ma =w . (7) 

Below we shall employ the momentum 

K = 
o! 63) 

which is positive imaginary for q > (2MaW) l/2 = Qa. Thus the physical states 

correspond to momenta q ( Qa, , with p = K~. 

We define a Hilbert space of states I Q! zz> with the normalization 

On this space we define a number of operators. The first is I, which 

*Y,nter connects” the various Faddeev channels, and provides the transformation 
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between the a! and p representations. Specifically, 

if o$Y are cyclic; 

if PcrY are cyclic; 

here ma is the mass of particle Q. It follows that 

I=IT , 

1-l = (1+1)/2 , 

(1-I)2 = 3(1-I) . 

We also define operators t, Go, V3 such that 

<CL+? lGoIP~;c>= 
6,p”G-3) HF-T) 

~~12~~ + q2/2Mcr 
, 

- W-i.C 

(11) 

(12) 

Here t,(‘$ ,F;sa) is the off-shell two-particle (Py) t-matrix. In addition we 

define 

B = &l-I) V3(1-I) , (13) 

which implies that 
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We can now state Eq. (6) as an operator equation on the I CYST> basis; the 

T operator must satisfy 

T = t(l-I) f (1-tGo) v(1-G07) + tIGOT . (15) 

Finally, we observe that T may be expressed as T= (1-1)~. 

III. REDUCTION TO ONE-DIMENSIONAL FORM 

In order to establish the connection between the Faddeev theory and the BC 

formalism, we first proceed to reduce Eq. (15) to an equivalent one-dimensional 

equation (only the q variable) analogous to the equation derived in BCA. We 

begin by observing that t may be quite generally decomposed as t= tS + t’, where, 

in a state of angular momentum Q, 

$&(P’,P;sQ) = faLe(P’, K@) t&sa) fo,(P, Ka) , (16) 

fa!Q(Ko!’ K~) = I, and t’ vanishes half-on-shell. Here tora(sa) is the on-shell 

t-matrix, 

e %!Q 

t&o) = - 
sin fial 

7P,K, ’ (17) 

This decomposition was discussed independently by K. L. Kowalski 16 and 

H. P. Noyes, 17 and is frequently referred to as the Kowalski-Noyes repre- 

sentation of the t-matrix. Unfortunately, the representation possesses some 

undesirable properties in that tS in general contains the left-hand cut structure 

of tcye(so); i.e., singularities for s < V&~/L,. a!- These singularities are not 

proper to ta, and are cancelled by corresponding terms in t’. 

In order to avoid this problem we choose s: such that - &:/8po < s”, < s”, , 

where s b Q! is the energy of the @y ground state (st=O if no bound states exist). 
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We then define 

fa,tl’~ Ka) = taQ(P, Ka;scr)/taQtsU) , 

TaQ(Scr) = taQtsa) , 0 ifs >s ; a- o! 

and (18) 

f (p K ) = N(‘)(P)/N(‘)(K ) 
al ’ 02 cd aQ a ’ 

‘aQ(s,) = f;tscr) , 

BC Here N(oOi(p) is the BC function defined in BCA, and taQ tSa) = NaQtKa)/Dan(Ka) 

is the BC representation of the (on-shell) t-matrix. Precise definitions of these 

and associated quantities are given in the Appendix. We now define tS by Eq. (16) 

using the modified faQ(p, KJ function defined in Eq. (18), and also using ToQ( sa) 

in place of taQ(scr). Defining t’= t-ts, we deduce the following properties: 

(1) tS contains all singularities of t, including the elastic cut for So > 0 and the 

proper residues at bound state poles; (2) t’ is real,,-bounded, and analytic in the 

disjoint domains so < s”, and so >sL; (3) t’ vanishes half-on-shell for sa! > s:. 

In particular, for physical three-particle scattering states (so > 0) t’ vanishes; 

for such states Go possesses a right-hand cut with discontinuity AGO, and this 

fact can be stated in the form 

AGotr = t’ AGO = 0 . 

Similarly, we define Vs such that 

<CX~<lvs I@$ > = c Y 
Qm Qm 

(;) faQ(p, KCr) * 

<alKQ(lQrn~l~IP~ ?> , 

(1% 

(20) 
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where u is 0 (1) if Q is even (odd), and we have employed the partial-wave de- 

composition F -. (pQm) . Defining Vr = T-V’, it follows that (1) Vs and Vr are 

real-valued and nonsingular; (2) AGoVr = 0. We may now introduce 

Kr = -VrGo + t’ GOvGO + trIGO , 

KS = -Vs + tSGOv + tSI , 

(21) 
Qr = t’(l-I) + Vr - trGov , 

i-2’ = ts(l-I) + Vs - tSGov , 

in terms of which Eq. (15) can be written as 

~=ff+ti’+ Kr+KSGo T . 
( > (22) 

Given Eq. (19), one may easily verify that K’ is a real L2 kernel, and hence 
r -1 there exists a unique inverse Zr = (1-K ) . Let 

7 = zr(if + To) ; (23) 

then 7. satisfies 

TO = Q. + KS ZrGo~o , (24) 

where zr = GOZrGil, and 

Q 0 = as+KS!j?G ar 0 

=tS+KS?(Gotr-1) . (25) 

Due to the properties of t” and Vr , we observe that T and 7. are identical on- 

shell for physical states (AGO7 = AGo7 o). The three-particle scattering ampli- 

tude (T) can thus be calculated from the knowledge of 7. alone. It is clear from 

the definitions of tS, Vs that Eq. (24) may be reduced to a one-variable form. 
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To exploit this it is convenient to introduce a partial-wave decomposition cor- 

responding to the basis Ia!LM.@Apq>, where T(T) and x(T) are coupled to a state 

of total angular momentum L (Lz = M). The normalization is 

<PL’M’Q’h’p’q’ Ia!LMQhpq> = d,p6LL,6MM,6QQ,6hh, a60 . (26) 

P2 q2 

Let F be a diagonal operator on this basis such that 

F&L@,q) = faQ@, Ka) 9 (27) 

and define operators i, G, 6, K such that 

tS=F; , 

VS=Fc , 

n,=F6 , 
(28) 

KS=Fk . 

Thus, for example, 

< ,8L’M’Q’h’p’q’ 1; I CyLNLehpq > = 601p6LL,6MM,6QQ, * 

*6hh,v faQ@, Ku) Taa(Kcr) ; (29) 
q 

i.e., the operators with the “hat” have no PI-dependence. We further introduce 

the diagonal operator d such that 

daL(p q) = y Qh ’ 
(K )/N(O) (K aQ a ad a! 

) . (30) 

Finally, setting TV= -FdXf in Eq. (24)) we find that Xf satisfies the equation 

Xf = -d-l; + ( d-lK%rGOFd)Xf . (31) 

Although Eq. (31) is expressed on the full (cYF~) basis, it is clear that the 

p label is superfluous. It is convenient to introduce a reduced basis I alhq I> 



such that 

(32) 

and to re-express Eq. (31) as an operator equation on this basis. It is under- 

stood that the operators have an implicit dependence on the conserved quantities 

W, L and M (only the driving term depends on the latter). We thus write 

where 

Xf=Gf+KfdXf , (33) 

N$ba) 
<oQhqI S2f1+> = - N < Cl!LM.thKaq Its -KS?? I@> , 

tO!Q(Ka?) 

< olQAq lKf I~Q’h’q’> = - ?((;a; -i,, 2 fPQf(p’,K~* 

CYQ CY b 

* < Q!Lh@hKaq I KS? I fiL~‘A’PPqq> , (34) 

and we have used the fact that tr I@> vanishes since I%> is a (physical) on-shell 

state. The above definitions imply that d-l&? is real, and hence that 

< aQAqIIm Kf I/3QfAfqf> = 
W-J& Nlyqe)(~~) * 

Ta~tKor) 

* < (YLh@hK$ I KS!? I ,f%~‘h’K;jq’> 

for qf 5QP (b-n Kf vanishes otherwise). We observe that if the three-body poten- 

tial vanishes identically, the on-shell matrix element of KSzr required in fif 

and Im Kf reduces to tsI, and hence is determined entirely by on-shell informa- 

tion accessible in two-particle scattering. 
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Finally, we note that the relationship between the physical channel ampli- 

tude T and Xf is given by 

<CfLM.hK$‘T1+> = - 
Ta~tKQ) 

N$(KCU) 

<crQhqlXf I+> . (36) 

This is precisely the same relationship which exists between T and the BC 

function Xb, defined as the solution of the equation 

discussed in BCA (and the appendix). 

(37) 

IV. OFF-SHELL EQUIVALENCE 

In the preceding section we have demonstrated that the Faddeev equation 

for two- and three-body potentials can be reduced to a one-dimensional form 

whose solution (Xf) is simply related to the on-shell three-particle scattering 

amplitude. This sounds too good to be true, and of course one must recall that 

the kernel Kf defined in Eq. (34) can only be constructed via a knowledge of the 

operator Zr . Except for separable two-particle potentials (and Vc = 0)) it is 

necessary to solve a two-dimensional integral equation in order to determine 

?. However, although computational techniques are irrelevant to our present 

purpose, it is worth noting that the K’ operator defined in Eq. (21) is nonsingular, 

and hence our reduction may prove useful in practical calculations. 

We now consider the relationship between the one-dimensional integral 

equations, Eqs. (33) and (37), which define Xf and Xb, respectively. Specifically, 

we recall that Im 53 is uniquely determined by on-shell information, whereas 

Re Kb is determined only up to an arbitrary real-valued operator A described 

in the Appendix. Below we demonstrate that such an A operator can always be 

chosen in such a way that the Xf and Xb amplitudes are identical on-shell, and 
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hence describe the same scattering observables. We also show that one cannot 

distinguish between off-shell two-body properties and true three-body forces on 

the basis of such observables. 

We introduce the operator s2’ such that 

<crQhqW%> = <CtLM&iKaqIifl-l) I%‘> 

co 

=TaQ(Ko?) / dp p2 < o!LmApq II-I I%> . 
0 

(38) 

We next demonstrate that a real operator Yf may be defined such that 

Qf I+> = (1-Yf) d-1!2Cl@> . (39) 

To do so we first consider any operator M on the full I cr<c > basis such that 

M=%!(l-I), or 

M = ; M(l-I) , (40) 

using Eq. (11). Examples of such operators include fi, V, Vr and 6. Corre- 

spondingly, we define an operator M’ such that 

< CrLMQpq I M’ I /3L~‘h’p’q’> 

= <aLMQhpqIM l/3LlMQfX $qf> Mpn’@f)/N~Q!(~b) , 

(41) 

where MpQ, (p’) is an arbitrary function such that 

J 
03 

dp P2 MpQ,(p) = 1 . (42) 
0 

One may then verify that 

Ml+>=M’d -1 h 
t I@> 

= f M’d-I +1-I) I+> . (43) 
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In particular , 

i&G> = (2-i&) lib, 

ZZ 
[ 1 - f (&? -i)’ d-I 1 &-I) I+> . (44 

Recalling that fif = -d-l;, it follows that 

1 -1 Yf=Td Y , (45) 

where 

< aQhq I Y I ,!3Q’h’q’> = < CXL&tthKaq I KS?+-tSI 1 @~‘h’K&q’>/ NfQi (K;) . 

Since d-lK%’ and d-Its1 are real, we have established Eq. (39). We observe 

that Yf vanishes in the absence of three-body forces. 

(46) 

In similar fashion, one may verify that 

iZb I+ > = (1-Yb) d-IG?cl +> , (47) 

where 

Yb = e+&-e)P , 

< aQhq IT l~Q’h’q’> = < dib@hK$ IQrj@-1) IPLMe’h’K&q’>/N~Q!(Kb) , (48) 

in terms of operators 8, $, N defined in the Appendix. Physically, 8 projects 

onto the interior region where the two-particle forces overlap. The develop- 

ment below is complicated by the fact that Yb, Yf are not compact, and hence 

we introduce the diagonal projection operator 9 such that 

9&(q) = 0 Q,-s , [ 1 (49) 

where O[x] is the unit step function. Thus 9 is unity acting on physical states 

such as I +>. It is sufficient for our purposes to work with 

q = (1-Yb sl) d-Itic , 
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3if = (1 - Yf9’) d+- , (50) 

which are equivalent to s, Inf when acting on I@> . 

In order to establish the desired equivalence we now introduce an operator 

U such that 

(l-u)-l(l-Yf 9) = l-YbP , 
(5 1) 

u = 1 - (l-YfP)(l-Yb8 )-1 . 

The existence of U follows from the fact that Yb,9 is a real compact operator 

on the I olehq> basis. Defining V via the equation * 

Kf = Ud-1 + V , (52) 

our two equations become 

Xf = I;ib+ (l&V dXf , 
(53) 

where it is understood that X f’ Xb are to act on I+>. 

Inasmuch as Re 53 is at our disposal, we can establish the desired relation 

Kb = (l-U)-1 V , (54) 

by proving that 

(1-U) Im Kb = Im V 

= Im Kf+U Im d(dd*)-1 (55) 

since U is real. To do so we define G such that 

this definition implies that GP = 2PG9 . Comparing Eqs. (35) and (46)) we 

find that 

YfB’ Kf dd*(Im d)-1 9 . 1 (57) 
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Furthermore, the formulas for Kb in the Appendix imply that 

Im 8 Kb = -8s Im d(dd*)-’ , 
(58) 

Im (l-O)Kb = -(l-O) (G+3Yb)P Im d(dd*)-’ . 

Solving Eq. (57) for Im Kf and employing Eq. (58), Eq. (55) is equivalent to 

[(l-U)e+U] (l-G)9 = 3 Yf-(1-U) (Y,-0) 9 
[ 1 , 

or 

[ 
Yf - (1-U) (Yb-0) 1 (2+G)LP = 0 , 

using Eq. (5 1). However, the relations 

YfG9 = -2Y,q , 

(yi-e)GB = -2(Yb-ep , 

(59) 

650) 

(6 1) 

follow from the above definitions in a fashion similar to Eq. (43). Note that 

(l-I)1 = -2(1-I) (62) 

as a consequence of Eq. (11). We have thus established Eq. (55), and can 

therefore guarantee Eq. (54) by requiring that 

Re Kb = (l-U)-’ Re V 

= (l-U)-’ [Re Kf - U Re d(dd*)-l] . 

Equivalently, in terms of the off-shell functions 6, 6; 

(63) 

<@1hqI6I@‘A’q’> = <cr8hql(I-8) LI-U)-lRe V-Re~i]l~~rhfqr>/D~~(~~ , 

(64 

A 
<olLhqlCI@PArqr> = <aJhqIe 

[ 
(1-U)-lReV-Re %I (‘) I /3PX’q’> ,‘D$ (zd , 

(for definitions see the Appendix), We note that Ka corresponds to Eq. (8) with 

W replaced by a negative energy parameter @ < Min (s:) . The purpose of this 
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device is apparent in Eq. (64), in which D compensates the exponential 

decline of V and $) in the limit q’ - 00 . The result is that i and C are L2 

functions decreasing at infinity according to negative powers of (q, 9’). Further- 

more, they are smooth functions for real (q, q’) since they do not possess the 

K 1 cut, and are analytic in a strip about the real axis characteristic of the off- 
P 

shell behavior. In particular, if p is the mass of the lightest exchanged particle, 

i and C are analytic for I Im q I < Min (IA, I 2MaW I l/2 ). In practice we may 

choose w such that the bound is given by 1-1; note that q is on the same footing 
h 

as 6, C in representing the off-shell structure arising from V3 and the Vo. We 

also observe that in the special case V3=0, 

(i-ebj(xJ)-l = i - e, , (65) 

where $ describes a somewhat larger region of finite volume than does 0 

(Ob 8 = 6). We then have 

< c&q I (l-eb)?3 IpQ%‘q’> = < aQhq I (l--eb) Re Kf - 
1 

Re eJl pQtAtqr> /DrPe),(K&) , 

636) 

so that the long-range part of the off-shell structure can be read off quite easily 

given Kf. 

In the development above we have assumed that W > 0 and that the initial 

state consisted of three free particles. If W > 0 and the initial state consists of 

a two-particle bound state plus a spectator, it should be clear that the same 

operator U guarantees Eq. (54)) and hence the equivalence of the kernels follows 

as before. However, for a @y bound state gin> Q,, and hence PI+> = 0. This 

would appear to indicate that the expressions for the driving terms must be 

modified, since now 

i$, I cP> = (l-Yb)d-1 S-JcIG> , 
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(1-u)-l qI@>= d -l ifI!3> . (67) 

However, the prescription for calculating the physical amplitude (elastic bound 

state scattering or breakup) is to pick off the residue of the pole arising from 

YoQ(“o) acting on I+>. Such terms arise upon iterating the Xf (or XIJ equation, 

since the factor d in the kernel can act on the 6(q-qin)/q2 term in fif (or s) . 

Thus, effectively one has 

<@Q’h’q’l$$J+> = <~Q’h’q’I(l-U)-l fiflQ> 

= < ,%‘h’q’ 1 d -l s-t%> w 

= -6 oq %e’ %h 
G(q’-qin) NEi (Kz) 

q,2 , 

assuming a fl bound state of angular momentum Q, with a spectator of angular 
b l/2 momentum A (~2 = i 121.1, so I for the ground state). This is also true for 

bound state scattering below the threshold for breakup (Min (s:) < W < 0), in 

which case 9, U, Im I$,, Im Kf all vanish and Eq. (55) is trivially satisfied. 

Finally, these operators also vanish in calculations of the three-particle binding 

energy (WC Min (sb,)); in this case the equations are homogeneous ( ab=af=O). 

We have thus demonstrated that functions B, C (summarized by 
* A 

A = (1-B)B+ 0C) can always be constructed with the properties assumed in 

previous work providing one specifies two- and three-particle potentials of the 

usual class. We now consider whether it is possible to distinguish between off- 

shell two-particle properties and three-body potentials on the basis of three- 

particle scattering data. Suppose, for example, that it were possible to deter- 

mine both fif and Kf from the data using Eq. (33) to construct Xf. In the absence 

of three-body forces l;lf and Im Kf are given by on-shell matrix elements of 

t’(l-I) and tSI, respectively, and hence are uniquely determined by on-shell 
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information. One could thus check whether the empirically determined values 

of 52 f and Im Kf agreed with two-particle data, and thereby prove the absence 

(or detect the presence) of a three-body force. Similarly, if one could recon- 

struct the Faddeev kernel (e.g., in Eq. (15))) one could distinguish the two 

terms in 

K = -(l-t Go)v Go + tIGO (6% 

from the fact that the o=p matrix elements of tIGO vanish (whereas those of V 

do not). 

However, the development above demonstrates that this is not in fact 

possible. Suppose that the data were adequate to completely specify B and C in 

the BC representation (experience with the three-nucleon system indicates that 

this assumption is incredibly optimistic). Knowing Kb, one could construct Kf 

from the relation 

Kf = Ud-‘+ (1-U) Kb , (70) 

in which U is any real-valued L2 operator. For a given U one could construct 

a corresponding Yf via Eq. (51), and hence achieve an interpretation of U in 

terms of a particular combination of two- and three-particle forces (only certain 

matrix elements of the potentials are required in Eq. (46); the remaining degrees 

of freedom can be determined by Eq. (63)). In particular, if one assumes 

a priori that V and chooses U accordingly, an effective off-shell behavior 3 =0 

can be deduced in accord with the data. We therefore conclude that a complete 

knowledge of three-particle scattering data is not sufficient, even in principle, 

to distinguish true three-body forces from the off-shell characteristics of the 

two-particle interactions. 
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V. DISCUSSION 

/* Originally, the BCF was derived as a general solution of the three-body 

unitarity relation consistent with specified two-particle phase shifts. In the 

present work we have demonstrated the explicit connection between this repre- 

sentation of the off-shell degrees of freedom (including three-body forces) and 

the conventional representation in terms of two-and three-particle potentials. 

Specifically, we have shown that for each set’of such potentials, there exists 

a real-valued L2 operator A such that the BCF generates precisely the same 

scattering observables as does the Faddeev equation. The same is true re- 

garding three-particle binding energies, which appear as poles of the operator 

(1-Kbd)-I. Thus the BCF reproduces the primary singularity structure of the 

on-shell three-particle scattering matrix T (right-hand cut plus bound state 

poles), but not its left-hand cuts (except for the very important contribution 

arising from the exchange of a physical particle). Correspondingly, the BCF 

does not yield the correct half- or fully-off-shell values of T, nor the bound 

state wave function. It is specifically designed for scattering calculations, which 

are most difficult in terms of the Faddeev formalism, and for which it possesses 

unique advantages. 

Some of these advantages are apparent in the analysis of n-d elastic scat- 

tering and breakup at 14.4 MeV. 7 By taking advantage of the smooth behavior 

of A as a function of the integration variables (q’, q), and expanding A in a com- 

plete set (i. e. , as an operator of finite rank; A= c ak Igk>< gk I for a set 

k;L k 
golJq) = <aPhqIgk>), it is trivial to reduce the BCF equation to a set of alge- 

braic equations with coefficients determined by the minimal equation (A ~0). 

This form is highly efficient for generating three-particle amplitudes corre- 

sponding to all possible values of A (arbitrary a$; we have shown above that this 
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must necessarily include all possible combinations of two-and three-particle 

potentials. In this way it was easy to demonstrate that the scattering observa- 

bles at 14.4 MeV are sensitive only to a single off-shell parameter, the overall 

scale of A, which could be normalized by fixing the value of the n-d doublet 

scattering length a2. Thus, taking A= hoA, choosing an arbitrary operator A, 

and varying A0 from zero to a value which gave a2=. 41 fm (chosen to best 

represent low energy n-d scattering), the differential cross sections were found 

to be independent of a to the level of a few percent. The conclusion was thus 

that no off-shell information can be extracted from such data which is not already 

implicit in the value of a2. 

Underlying this result are a number of specific assumptions concerning A. 

These are based partly on empirical experience with the trinucleon system, and 

partly on theoretical estimates linked to potential theory. In particular, one 

expects A (or the ak) to be a slowly varying function of W; this is clearly necessary 

if ho is to be fixed at the n-d threshold and employed at 14.4 MeV (or higher). 

Inasmuch as the dominant part of the (s-wave) nuclear force has a range 2 1 fm, 

one can infer quite generally that the appropriate scale is essentially (MnW) l/2, 

@y/2), and hence that A is approximately constant for TL < 70 MeV. This 

estimate is supported by numerical studies of specific models. In particular, 

these considerations rule out exotic energy-dependence such as employed by 

Haftel and Petersem this is equivalent to specifying that T has conventional 

analyticity properties as a function of W. 9 

Secondly, since the a2 parameter involves only the L=O state (for s-wave 

N-N forces), our normalization procedure would not constrain the L > 1 contri- 

butions (which dominate the cross sections even at 14.4 MeV) if A were com- 

pletely general. Here again one must appeal to potential theory, in which the 
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various L-states arise as the angular momentum projections of a function of the 

vectors <, c. For example, in the simple case of separable interactions the 

off-shell dependence is given in terms of form factors g,(F), g 
P 

(3)) where 

F, 3 are linear combinations of the integration variables z, q . Thus, if A is 

to represent a plausible interaction, the operators A w are correlated and can 

be represented as angular momentum projections of a smooth function of q, qf 

and q. if. This was assumed in constructing the A set employed in the n-d 

analysis. 

It should also be evident that for a given A, the value of A0 which corre- 

sponds to a fixed a2 is not unique. This is a simple consequence of the fact that 

if A is taken sufficiently large it will dominate KL, and hence one can obtain 

almost arbitrary results (at least for W < 0). It was therefore assumed that off- 

shell corrections are a relatively small effect, and hence that the smallest value 

of ho is the only plausible one. This is in accord with empirical experience 

regarding this particular three-body system, and may be inferred from the 

undramatic off-shell variations noted in the Faddeev calculations. Also, the 

next smallest value of ho was typically an order of magnitude larger than the 

minimal value, and the sensitivity to this parameter was such that A was clearly 

dominating the calculation. Given these basic ground rules A was allowed to 

vary widely, and even quite implausible shapes were ineffective in altering the 

calculated cross sections. 

The assumptions noted may be summarized by a simple basic rule: the 

search for off-shell sensitivity must be subject to reasonable theoretical guide- 

lines. The latter can be quite general within certain specified limits, but those 

limits must be applied if the results are to be meaningful. Thus, it is quite 

evident from the above discussion that the full generality explicated in the BCF 



- 26 - 

can be used to produce almost arbitrary llsensitivities” in predicted three- 

particle observables. However, these effects are irrelevant if they do not corre- 

spond to plausible interaction mechanisms. Thus, the three-body problem does 

not exist in isolation, and one must interpret three-particle data in terms of 

what is known about the N-N interaction, heavier nuclei, and the general postu- 

lates of nonrelativistic quantum mechanics. Otherwise, one tends to engage in 

mathematical games which have little bearing on the gaps in our basic under- 

standing. It is certainly unwise (particularly in an era of limited resources) to 

justify present or proposed experiments on the basis of such “sensitivity”. 

An illustrative example is provided by the case of off-shell effects vs. three- 

body forces. As noted above, one can define various combinations of two- and 

three-body potentials which generate identical scattering observables. Thus, 

although there are clearcut technical distinctions, one cannot distinguish them on 

the basis of scattering experiments. The only meaningful question one can pose 

is whether two-particle forces within a certain acceptable class can alone account 

for three-particle data. The definition of such an “acceptable class” must clearly 

be based on one’s present theoretical understanding (and modified if found to be 

inadequate). As this author has noted previously, it is unnecessary to perform 

massive Faddeev calculations in order to answer this question, 7 It will suffice 

to calculate ET, 2 a (and perhaps a few additional parameters) to define an equiva- 

lent A operator; all consequences of the given model can then be quickly explored. 

In passing, it should be noted that the emphasis placed on scattering observables 

is related to the inability of the BCF to determine the actual wave function. As 

this author has previously pointed out, the electromagnetic properties of the 

triton may be used to deduce the presence of an effective three-nucleon force if 

mesonic corrections can be neglected (or estimated). 18 Recent experimental 
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results on the deuteron form factor appear to indicate that such corrections are 

far less significant than had been supposed, 19 and an appropriate generalization 

of the previous technique could conceivably yield a definitive result. 

Above we have demonstrated that for a given set of two-particle phase shifts, 

any and all off-shell variations can be realized within the context of the BCF . In 

conclusion we consider the possible model-dependence of the n-d result as a 

consequence of the particular phase shifts employed. Thus, since the object of 

the analysis was to study off-shell dependence, it was argued that simple s-wave 

phases generated by a constant boundary condition were adequate for the purpose. 

This choice was purely a matter of convenience given the computer program 

then available. However, Haftel and Petersen have argued that these phases 

uniquely determine an off-shell t-matrix, and hence that the variations considered 

must be interpreted as due to three-body forces alone. ’ This argument would be 

valid except for two major points. The first concerns the alleged uniqueness of 

the t-matrix, which is apparently based on earlier work by this author. 20 How- 

ever, that work uniquely linked properties of the wave function to the t-matrix; 

the argument was not based on the phase shift. In view of the experience of 

Haftel and Petersen with phase-equivalent unitary transformations it is indeed 

strange to see them assert such a connection. 

Secondly, it is clear from the presentation given in this paper that the results 

of a given calculation are limited only by the values of the on-shell t-matrix in 

the domain sb < s < W BC . The extension of t a- o!- to energies so < SL is quite 

arbitrary since it can be compensated by A; and the use of a meromorphic 

logarithmic derivative (with a constant limit at infinity) is merely a computational 

device. 21 For example, it is clear that T cannot depend on the parameter S”, 

introduced in Section III, nor the particular values for to1 employed for so < So. o! 
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It is conceivable that the type of energy-dependent parametrization suggested 

previously for t& BC might not yield I tat-t:: I < E for arbitrary E in the important 

region (SL , W) , although this is unlikely to be important numerically. However, one 

could instead simply use toLB itself in that region and match tzc smoothly at 

%! = s 
b a. This is purely academic insofar as the 14.4 MeV analysis is concerned, 

since the domain (s”, ,W) falls into the effective range region where the simple 

phases agree with any model. 

It should therefore be clear that there are vast differences between the 

generalized BCF and the boundary condition model popularized by Feshbach and 

Lomon. 22 It is unfortunate that both the title and historical development of the 

approach have caused the two to be confused. Hopefully, the present article will 

serve to make clear the distinction. Although the trinucleon results are gen- 

erally regarded as disappointing, there is nevertheless valuable information to be 

learned in that system. The very absence of off-shell sensitivity in the low 

energy region should make it possible to pin down hard to measure N-N properties 

such as the n-n effective range parameters, the 3PI phase, and the EI mixing 

par ame ter . 23 Furthermore, this absence of sensitivity may be understood from 

the fact that momenta q> 1 fz are needed to probe the region where A has 

structure, whereas the momenta which are numerically important correspond to 

K~ physical, or q 5 Qo. This implies that for TL > 45 MeV cross sections could 

begin to exhibit some sensitivity to the off-shell properties. This is not an 

easy regime to handle theoretically, since many angular momentum components 

of the N-N interaction will contribute. For this reason Faddeev-type calculations 

with other than trivial forces will not be feasible for this purpose in the near 

future. However, the simplified structure of the BCF makes it an ideal tool 

for probing this region. 
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APPENDIX: BOUNDARY CONDITION FORMALISM 

The on-shell properties of the @y subsystem are specified by a boundary 

condition at a relative displacement x = ao, 

applied to the asymptotic form of the two-particle (partial) 

This results in a specific representation for the t-matrix; 

tBC aQ ts,) = NaQtK a)/DaQ(K a) 3 

NQIQ(Ka) = (acrhaQ -Q) jQtaaKcr) + acyKajQ+ltaaKa) , (A- 2) 

, (A. 1) 

ext wave function #ad . 

DaQtKcr) = iqaKa! hQtaaKa) + aaKa hQ+lta,Kc,) 1 ’ 

In previous work it was assumed that ao can be so chosen that h (K2 ) is a mero- al a 

morphic function of ~~ 
(0) (l! approaching a constant, holQ , as K”, - 00 . This provides 

an essentially unique analytic continuation from the physical region (K: > 0) 

where haa is completely determined by the phase shift ( 6oQ), to the domain 
2 

-w< K a! < 0 required by the Faddeev (or BCF) equations. This assumption is in 

accord with empirical experience concerning the N-N system 22 (and is apparently 

true for hadron-hadron scattering in general, insofar as the phases are known24). 

However, we are concerned here with a purely mathematical statement regarding 

off-shell equivalence, and in. general the phases will not be in accord with this 

assumption. Nevertheless, one can simply modify the previous prescription by 

taking haQ(~z) directly from the model in the physical region (and such that the 

proper residues are generated at any bound state poles), and using the mero- 
b morphic form to the left of some matching energy Za! < so. BC The value of taQ 
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will then be identical with that of the model in the accessible physical domain 

sL( So 2 W, and hence yaQ(scr) = t:f (s(y, . Below and in the text we use N (0) 
old 

and D$ to denote NoQ and DcrQ with AarQ (0) replaced by its asymptotic value holQ . 

The boundary conditions are applied to the three-particle wave function in 

the exterior region, defined by the requirement that each pair of particles @y is 

separated by a distance x > a o!’ The displacements ‘;I, y are taken (for a given 

a) to be conjugate to the momenta F, c, and hence the basis in the coordinate 

representation is 1~22 yf> . A projection operator Pe on the exterior region is 

most simply defined in this representation; 

.G~l ge I@ 7, = $@ 6(ZS) s<y-s;1) W@)(T;,-j;) e , 

zP~)(Z,~j = 0(x-a,) e(xp+ e(xy-ay) , 
(A- 3) 

where x x are appropriate linear combinations of 2 and y. Application of the 
P’ Y 

boundary condition sets x=ao, bringing in Pe (a) (T ,,F) as an explicit factor. For 

each channel a! there exist displacements y=y”, and y=bc, such that 

da+x e o!’ 7) = 1 , Y ‘b,! 

= 0 , Y<Yi * b4.4) 

It is convenient to introduce operators 8 and Ob which correspond to the step 

functions e y [ i-33 and e[Iba-y] , respectively, in the coordinate representation. 

In practice, the short-range character of the interaction effectively restricts 

one to a finite set of Q values in each channel (QL Qyx) . For a given L , the 

equations are thus written on a truncated space corresponding to a finite range 

for Q,h . Defining an operator Q such that 

<~QAylQl~Q’A’y’> = 6ap - Q%,,,(Y) , 
Y2 
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Qa&,Af (y) = f’+h’-Q-A Pi?$$(a@, y) , (A. 5) 

where P is the partial-wave projection of pe @f!) (; a!, 7)) an inverse 

G may be defined on the truncated space such that 

(l-8)QG = (i-e) GQ 

=1-e . (A- 6) 

As a consequence of Eq. (A. 4)) it follows that 

(i-eb)Q = (l-e,)B = i-e, , 

eQ=o . (A. 7) 

The BCF equation can be stated in operator form by defining N,g such 

The operator G is then defined via the relation 

N.Pe = (l-O)(QN+ij) , 

:. 

, ‘. 

(A. 9) I 

^ao!;L and corresponds to the function N given in Eq. (41) of BCA. We note that 

(l-e)6 is nonzero only in the finite domain y”, < y < bo. With this notation the 

equations derived in BCA imply that 

(0) <aQhqlKb-Kb IpQ’h’q’> = <~Qhql(l-O)B+6i:l/3Q’~‘q’> D 

00 
< o!Mq I (l-0)$) l~‘h’q’> =/ 

0 
dp’pf2< o!LNLehKaq I (1-6’)g(N9’eI-k)Gog l~LNLQ’h’p’q’> , 
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< CwQAq I B$) IPQ’A’q’> = < alhq 

Here 

) =pQttK? (0) -1 

NpQt (K;) - =PQ' (K$ ’ 1 (*’ lo) 

<crQhq161@Qthtq’>= 6 
(A. 11) 

2r2 qjA+l 
e,ts, qW = 7 

[ 

tw) j-/q’) - qtjh+ltW j,trs) 

q2 - 9’2 I 
I 

and Ka! corresponds to Eq. (8) with W replaced by a negative energy parameter 

m < Min (s:) . The purpose of this device is to compensate the exponential growth 

of d in the limit qt - 03 by the explicit factor D $(Eb). With this convention the 

functions g, 6 are arbitrary real-valued L2 operators on the I crQhq> basis. For 

a given set of, potentials they can be constructed via Eq. (64). The appearance 

of 2’ in the expression for 
P 

8 $3 is somewhat arbitrary; what has been done is to 

insure the correct expression for Im OKb (O) (Eq. (58)) by choosing the simplest 

form which is analytic and L2 (note that the bracket in Eq. (A. 10) tends to zero 

faster than the exponential since N 
w 

- N$ and DpQt(~b) - II:! as qt - w). 

The driving term is given by 

< crQhq 1 s = < o!LMQh Kaq @Nge(I-l) . (A. 12) 

In conclusion, we observe that although the equations stated above are .e 

designed to approach a specific limit (singular cores) as B, 6 - 0, they possess 

a disadvantage for data analysis in that the operators become rather complicated 

in the near-overlap region yi <y <bc,. Phenomenologically, there is no reason 

to insist on this picture, and one can greatly simplify the numerics by replacing 

0 by (Jb in Eq. (A. 10). 25 Noting that 

(l-Bb) q(N9’eI-N) = (l-e,)NI , (A. 13) 
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the corresponding integral for (l-Bb,$’ can be done analytically, and is essen- 

tially given by Eq. (37) of BCA. One can easily verify that the equivalence 

theorem of Section IV goes through as before (e.g., Yb becomes eb, etc.). 
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