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ABSTRACT 

The surprising narrowness of the J or G(3.1) is interpreted as indication of 

a pure cc state, and hence as evidence for the SU(8) - SU(6) x SU(2)s x U(l)y 

symmetry breaking chain (zc = charmed quark spin generators, 
C C 

Yc= hypercharm 

generator) instead of an approximate SU(8) - SU(4) x SU(2)s chain (? = quark 

spin generators) which would imply strong mixings. Decompositions under 

both chains of the s wave q& meson states of the 64 = 1 + 63 of SU(8) and of 

the 3q baryon states of the three-particle symmetric 120 representation are 

given. The most general mass splitting operators with breaking in the Y and 

Yc directions for these two multiplets are derived which commute with the 

Casimir operators of the SU(6) x SU(2)s x U(l)y chain, which contain only 
C C 

one- and two-body operators, and which are invariant under rotations. Two 

independent mass relatio 
P 

follow for mesons containing charmed quarks; six, 

for baryons containing charmed quarks. In an appendix, for reference rela- 

tive to previous SU(6) symmetric quark model mass analyses, the reduced 

numerical coefficients as determined by the meson 36 of SU(6) are listed. 
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1. INTRODUCTION 

Our purpose is to discuss here two topics from the standpoint of the 

charmed symmetric quark model: 

(i) The ground state 64 = 1 + 63 (meson) and 120 (baryon) representations 

of SU(8) together with their decompositions under the subgroups SU(6) x SU(2)s 
C 

x wy and SU(4) x SU(2)s where S stands for spin. The SU(2)s subgroup 
C c 

acts on the c quark’s spin, and Yc is the hypercharm operator, see Section 3, 

with eigenvalues -l/4, -l/4, -l/4, and 3/4 for, respectively, the p, n, h, and 

c type quarks. 

(ii) The mass operator for these states in the SU(6) x SU(2)s x U(l)y 
C C 

chain which is derived by extending the one- and two-body force analysis of the 

SU(6) symmetric quark model’ which previously gave the successful mass for- 

mulas l-3 for the baryons, e.g., the Gursey-Radicati formula4 for the 56 of 

SU(6) theory. 435 Electromagnetic effects will be ignored. 6 

The motivation, of course, is the recent discovery7 of narrow resonances 

J or G(3.1) , and z/’ (3.7)) which can be interpreted as charmed8 quark-antiquark 

objects, pc = 1--, IG = O-, with N = 0 and 2 harmonic oscillator quanta ex- 

cited, respectively. The N = 2 state is either a radial or an orbital excitation. 

It is important to recognize that present difficulties with the charm interpreta- 

tion (the rise of R to 5.3 f 0.6 at 7.8 GeV, the absence of narrow peaks in 

missing mass plots, the absence of increased kaon to pion production ratio, 

etc D ) , principally involve phenomena in e e - hadrons above the transition region 

at about 3.6 - 4.1 GeV. Hence, these difficulties may, in fact, not exist if the 

transition region is due to excitation of first the charm, and then at about 3,9 

GeV of the color degrees of freedom which would be a natural occurrence 9-11 in 

the Han-Nambu version of the three-quartet model, In this case, the details of 
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the discussion in this article apply to the SU(3) ” -color singlet states. On the 

other hand, this type of mass analysis remains relevant, though not in detail, 

even if additional heavy quarks 12-14 are found to be necessary, because this 

analysis preserves successful SU(6) results and accepts the heavy quark ex- 

planation, based on the Zweig rule, of the narrowness of the new particles. A 

single charmed quark is certainly the simplest of such heavy quark models. 

Lastly, we emphasize the basic contrast between (a) the present spectra 

and mass analyses in which the cc purity of the #and $I is given greatest im- 

portance, and (b) various previous analyses 15 in which broken SU(4) is treated 

in analogy with broken SU(3) so as to derive mass relations and mass mixing 

angles and to predict specific mass values from existing data, but where 

#~,cG+~(pp+nG)-l- dhXresultswithe,b#O. 

We first discuss the mesons, Sections 2 and 3, and then the baryons, 

Section 4. 
. \ 
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11. SPIN-UNITARY SPIN SPLITTING OF THE 
MESON 64 SUPERMULTIPLET OF SU(8) 

We will make use of the well-known fact 16 that the breaking of an approx- 

imate symmetry group can be simply expressed in terms of a trchainll of suc- 

cessively smaller subgroups which are valid to an increasingly better approx- 

imation. The prime example is the chain SU(6) -+ SU(3) x SU(2)s , Sq stands 

for the spin of the non-charmed quarks, with SU(3) -. SU(2)I x U(l): in SU(6) 

theory. Here, for instance, the hypercharge operator, which breaks the SU(3) 

symmetry, is conserved at the level of the smaller SU(2& x U(l)y subgroup. 

The eigenvalues of commuting sets of generators in the chain provide quantum 

numbers with which to label, in practice uniquely, the states in the irreducible 

representations of the initial approximate symmetry group. Often two or more 

chains are relevant physically, and then superposition effects occur such that 

the physical resonances are eigenstates of neither chain. In the preceding ex- 

ample, there is also the chain SU(6) - SU(4)N x SU(2)s X U(l)y with 
h 

“t4) N 4W)~ x W2)s , 
N 

SN stands for the spin of the n a& p type quarks, 

whose existence is announced by the “mixing” of the I = Y = 0 pairs of s wave 

meson states, the C$ - w and r] - 7’. 

In the SU(8) theory there are two analogous reduction chains, the “SU (6) 

chain ” 

SU (8) - SU(6) x SU(2)s x U(l)y (1) 
C C 

where the SU(6) subgroup is that discussed above; it acts on the p, n, and h 

type quarks. The other chain is 

SU 63) - su (4) x su (2)s (2) 

The SU(4) subgroup here acts on the p, n , h and c type quarks; it does not in- 

volve spin and is not to be confused with the SU(4)N subgroup of SU(6) theory. 
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It has the further reduction 

FJJ (4) --t SU(3) x U(Qy 
C 

where SU(3) is the usual group for the p, n, and h type quarks, This second 

chain we will call the ‘ISU(4) chain. *’ 

The physical resonances, as we noted, need not be eigenstates of either 

chain so we will, first, consider the meson eigenstates in each chain separately. 

The ground state of an s wave, Fermi quark-antiquark pair with negative parity 

and spin J = S = 0,l is the reducible 64 of SU(8) 

8 x 8* = 64 = I+ 63. 

In the “SU(6) chain, I1 the direct sum 

64 = [l, 11; + [35, 11; 

+ [6,2*&l+, 6*,2;; + ;l, 11; + [1,33; 

with the no&ion dim SU(6), dim SU(2)s 
L C I 

yc where nc is the total number of 

n 
C 

charmed quarks plus charmed antiquarks. Mesons associated with the first 

two representations contain no charmed quarks and are the familiar ones from 

the SU(6) theory. Continuing the chain, there next are the further reductions, 

SUP) - SU(3) x su(2)s with the notation dim SU(3), dim SU(2) s 
q 4 

1 = (1,l) 

35 = (8,1) + (1,3) + (8,3) 

6 = (3,2) 

6* = (3*, 2*) 

and similarly for the other SU(6) chain SU(6) - SU(4)N x SU(2)s 
h 

x U(l)y with 
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the notation dim SU(4)N, 

5 

1 = (l,$ 

35 = (15,s; + (4*&l + (4,2”,i 

+ (1,s; + (1,s; 

6 = (4,l); + (1,2);l 

6” = (4*, 1); + (1,2*); 

The SU(6) 4 SU(3) x su(2)s chain yields, for the nc # states, after recoupling 

the spins by 3 = Fq + zc, 
q 

II 6,2*!;1 = (3,2) l- + (3,,2) O- 

;6*,2]; = (3”, 2*) 1- + (3*, 2”) o- 

[l, 11; = (1, 1) o- 

p,3$ = (1,l) 1- 

with the notation 
( 
dim SU(3), dim SU(2) s ’ Jp, 

q ) 
J = S for the 64 representation. 

The (3*, 2*) l- consists of the isospin singlet F*+ = (xc)+ and a doublet 

D*+ = (z c)+ and D*O = 5~)‘. The (3*, 2*) O- consists of a singlet F+ = (xc)+ 

and a doublet D+ = (K c)+ and Do = <p c)O. The [6,2*];’ contains their anti- 

particles. The cl, 3-j: is the Jp = l- isospin singlet $“, = (C c)‘, and the 

t1,4; 0 is the O- singlet q c = (C c)‘. 

On the other hand, for the “SU(4) chain” under SU(8) - SU(4) x SU(2) s 

these SU(8) representations decompose into 
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1 = {l,li 

63 = {15,1t + {1,3t + {I5,3t 

with the notation {dim SU(4), dim SU(2)s ) , Then, under SU(4) - SU(3) xU(~)~ 
C 

the SU(4) representations decompose into 

1 = lo 2 

15 = 1; + 8; + 3; + 3:-l 

with the notation dim SU(3), . The corresponding wave functions can be easily 
C 

written down; we only note that in this chain the eigenstates are superpositions 

of w 8 - $1 - #ct and of v8 - 77,’ 7,. 

For several reasons, we will assume that the SU(6) x SU(2)s x U(l)y 
C C 

subgroup of SU(8) and the chain associated with it are of major importance for 

the breaking of SU(8) for mesons and baryons. First and foremost, the striking 

narrowness of the q(3.1) and the $’ (3.7) suggest that they are pure cc states 

due to some new dynamical invariance principle, for example, nc is exactly 

conserved in the strong interactions responsible for the mass spectra. In par- 

ticular, the q(3.1) will be identified with the [l, 31; irreducible representation 

of the SU(6) x SU(2)s x U(l)y subgroup of SU(8). Note that decay modes such 
C C 

as zj - 5n can go, for instance, via unitarity corrections rather than from mix- 

ings of the quark content of the zl, and z/l. This l7 has been pointed out in the con- 

text of Zweig rule suppressions, e. g., + - Kg and Kl? - 3 r both have con- 

nected duality diagrams so QJ -+ 3 7r, with a hairpin diagram, can go via unitarity 

corrections which are difficult to distinguish from $ being other than an eigen- 

state of the SU(6) -. SU(4)N x SU(2)s 
A 

x U( Qy chain. However, in the case of 

the $ resonance, the mass spectrum, see Appendix B, indicates that the latter 

e N AA + E (p; + nz), E # 0, indeed occurs. Second, the lowest mesons can 
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be identified in the 64 of SU(8) with the 1 and 35 of SU(6), and this 1 + 35 can be 

identified with the [l + 35,118 representation of the SU(6) x SU(2)s x wy 
C C 

subgroup of SU(8). Also, as discussed in Section 4, the lowest baryons can be 

similarly identified in the 120 of SU(8) with the 56 of SU(6), and this 56 can be 

identified with the [56, I] 8 irreducible representation of the SU(6) x SU(2)s 
C 

x wy subgroup of SU(8). 
C 

Thus, in our derivation of the mass splitting operators for the s wave meson 

64 = 1 + 63 and baryon 120 representations of SU(8), we will assume that the 

operator (i) commutes with the Casimir operators of the SU(6), SU(2) s , and 
C 

wy subgroups of this chain, and is invariant under rotations. We want the 
C 

derivation to be a direct extension of SU(6) analyses in the symmetric quark 

model used to rederive’ the Giirsey-Radicati result, used to study the first ex- 

cited baryon multiplet, the (70, I-) 1 in the notation (dim SU(6), Lp)N with N the 

number of orbital or radial quanta excited in harmonic oscillator shells, and 

used 3 to treat uniformly all of the baryon multiplets with N = 0, 1, or 2 harmonic 

oscillator excitation quanta. Hence, we will assume that the mass splitting op- 

erator (ii) contains only one- and two-body operators, 18 and that it (iii) trans- 

forms like a linear combination of three types of terms which transform, re- 

spectively, as a singlet, as the hypercharge operator under SU(3), and as the 

hypercharm operator under SU(4). For one-body operators, this transformation 

assumption is equivalent to mass splitting between the non-strange and strange 

quarks, and to an independent mass splitting between the non-charmed and 

charmed quarks. 
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III. MESON MASS OPERATOR 
AND INDEPENDENT MASS FORMULAE 

We use a formalism in terms of the generators of SU(8) to derive the 

ground state SU(6) x SU(2)s x U(l)y meson and baryon mass splitting oper- 

ator s . 
’ Ns 

The 63 generators zf SU(8), IMr withM=1,2,3,4orp, n,h, cfor 

SU(4) and r = 1, 2 or T , 1 for SU(2)s, are constructed from Fermi creation 

and annihilation operators for s-wave quarks and antiquarks in the charmed 

symmetric quark model in Appendix A. The SU(8) commutation relations, 

which can be easily computed from Eq. (Al), are 

N's' 1 Ns N's' b,rt = dMTrf ‘Mr _ b N's' INs 
Mr M’r’ ’ (3) 

The charm operator C with eigenvalue 1 (-1) for a c quark (antiquark) and 0 for 

p, n, A quarks and their antiquarks is not a linear combination of generators of 

SU(8) so we introduce the operator 

Yc=C-$B=Iz; +I Cl 
cl 

with B the baryon number operator. This relation is the analogue of Y = S + B = 

AT Al 
‘aAT 

+ 9 hiwhich relates the hypercharge SU(3) generator and strangeness op- 

erator for the p, n, and h quarks. The generators of SU(6) and its subgroups 

will be denoted by script letters to distinguish them from SU(8) generators. 

Since the c quark has B = l/3, S = 0, the phenomenological extension to include 

the c quark is Y = 9 AT Al 
AT +%L1 =B+S- 

In Section 2, we discussed the relevant reduction chains which occur in 

SU(8). Generators 
19 for the subgroups in these chains are tabulated below: 



Subgroup 

SU(4) 

SUP) s 

WY 
C 

SW) 

SW? s 
C 

sum s 

q 

“t4)N 

SUP) s 
N 

SW) 63 
h 

The tensor operators in the mass formula will be expressed in terms of the 

Casimir operators for the various subgroups. Casimir operators needed are 



(p) = ; 
2 [1 

$9s, $7 
qr (yl’s] + = ; [Ig , I;Fs]+ - ;y: 

$3 2 (I) = &Pm Jnn - ;Y” = 21(1+ 1) 

and those for the several SU(2) subgroups describing the spins of particular sets 

of quarks. All these Casimir operators can be expressed as bilinear terms in 

the SU(8) generators of the form [X, Y]+. 

We can now derive 20 the mass splitting operator for the s wave meson 

64 = 1+ 63. Our assumptions require the mass operator be a quadratic poly- 

nomial in the generators of SU(8), commute with C2 , @) Cr’ (SC), and YE, be in- 

variant under rotations, and transform like a linear combination of three types 

of terms which, respectively, transform as a singlet, as Y under SU(3), and as 

Yc under SU(4). For mesons, the mass operator must be invariant under charge 

conjugation. We group the 63 generators of SU(8) into seven types: Iql 1’ q’ c’ 

I l and I: , 1:: , I zz , 1::’ , I ” and I zz . 
qr 

Modulo pieces to make them 

traceless, I ” q are the generators of SU(3); I z is the generator of U(l)y ; 1; and 

its adjoint, 1: , are generators of SU(4) not contained in the SU(3) and G(ljy 
C 

subalgebras, etc. 
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The most general term linear in the generators and a scalar under rotations 

must be a linear combination of the generators of SU(4). Generators I z’ and 1: 

are clearly admissible. We next consider the linear combination of the remaining 

generators @ = aq I ’ + bg I z . 
c q 

Using the identity 

[WI+ z]- + [Pl+X] -+ [Pxl, y]- = 0 (5) 

and Eq. (l), 

[[ 1 
I;, 1; , aqIC + bCIq 

+ c q I- q c 

Since symmetrized expressions which have different numbers of different types 

of generators are linearly independent, the conditions that this commutator 

vanish are 

a: = bl = 0 t v 9) * (6) 

Thus \ and nc are the only admissible one-body terms which satisfy the trans- 

formation requirement and which are invariant under charge conjugation. 

For bilinear terms in the generators of SU(8), invariance under rotations 

implies that there are two classes of terms that can be considered separately: 

those constructed from 1:’ , I “, , 1: andI:, and those constructed from 

19s p Iql’ 1” andI’” qr ’ cr ’ qr ’ qr cr ’ We write the terms quadratic in the gener- 

ators in the form [XY] + so that they are linearly independent of the terms 

linear in the generators. The most general term in Iql 1’ q’ c’ andIC and its 
q 

adjoint is a linear combination of the six expressions of the form [XY],. Of 



-13- 

of the form 

lc c 
when commuted with 5 I c, I c [ 1 yields combinations 

+ 

so these can be considered separately. The vanishing of 

implies that 

aW’P = 
0 ( v q, q’, P) * (7) 

The adjoint I [ “9, , IE],s also eliminated. The same argument with 18’ + I z 

eliminates terms of the form I”, , I 
C [ 1 q+ 

and its adjoint. Similarly the terms 

and their adjoint are excluded. Under commutation with 

leads to combinations of 

and its adjoint; so, this term can be considered separately. The vanishing of 



implies that 

aqql = 0 ( v 4, 9') - (8) 

This then leaves as admissible terms 

Linear combinations of these lead to 

[.#“4 , $3, 

which transforms as a singlet, 

Ysg’ 
[ 

L?ps’ , 3; 1 + 
which transforms as Y, and 

cf$g, IoM3, - $[I$¶ I;]+ 

which transforms as Yc and a singlet. Here the numerical diagonal matrices 

q’ 
yq 

= diag (l/3,’ l/3, - 2/3) and cz = diag (- l/4, - l/4, - l/4, 3/4) have been 

used. 
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Next, we discuss the second class of bilinear terms: those formed from 

generators transforming as vectors under rotations. These terms must also 

(6) commute with the Casimir operators C2 , cp (SC) and with Y”, so the candi- 

dates are the rotation-vector analogues of the surviving first class terms; plus 

those constructed with (SC): and (9): . These analogues are 

Since the admissible terms linear in the generators are 1:’ and 1: , the only 

candidates constructed from (SC): and (9): are 

* 
and 

(6) Commutation withy:, C2(Sc), and C2 shows that all these terms enter. The additional 

linear combinations of bilinear terms, satisfying the transformation requirement, are 

9; 1 , and c 
+ 

Finally, we collect the admissible terms and obtain the mass formula for 
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the s wave meson 64 = 1 + 63. The terms, together with their form in terms of 

quantum numbers, are tabulated below: 

Form in terms of quantum numbers 

2 Linear Terms: 

n 
C 

9 Bilinear Terms: 

$1 
2 

2 s (S+ 1) 

c(3) 
2 

I(I+l) - +y2- $cfJ 

In form of generators 

INS 1 1 c Or Or +-TINS, INS Or 1 + 

1s NMr 
“z ‘r’ c ‘M’Ns + 3 
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These give the following twelve parameter mass formula: 

M=mo+m.inh+m2C~)+m3 2S(S+ 1) + m4 Cf’ 

-l-m5 I(I+1) 
C 

- $Y” Sh (Sk+- 1) - Cf’ (N) + + Y”] 

+m7 2 SN(SN+l) 
[ 

- 2Sh(Sh-t1) - 5 2 sq (Sq + 1) 1 
2 +m8nc+mg Yc+m10 2Sc(Sc+ 1) 

+ ml1 2 Sq (Sq + 1) (9) 

This mass formula predicts the following independent equalities: 

F” - D” = F - D (10) 

the strange-nonstrange mass differences for the pseudoscalar and vector SU(3) 

triplets, and antitriplets, are equal; and from the observed mass splittings of 

the states in the meson 36 of SU(6), the magnitude of this mass difference 

F - D = 76 MeV linear mass formula 

= 0.074 GeV2 quadratic mass formula (11) 

The numerical reduced coefficients as determined by the 36 are given in Appen- 

dix B. The quadratic formula for a D mass of 2 GeV implies an almost degen- 

erate F mass of 2.02 GeV. Equation (lo), as well as Eq. (11)) is an SU(8) pre- 

diction, since the four states are in the [6,2*] ;’ multiplet of SU(6) x SU(2)s x 

C 

wy which involves recoupling the charmed and non-charmed quark spins. 
C 

Note that in Eq. (9) the SU(6) breaking terms enter with the same coefficients 

for each SU(6) multiplet. This is the same as for the coefficients of the SU(3) 

breaking terms in the Giirsey-Radicati formula and in the SU(8) baryon mass 
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formula obtained below, Eq. (13). Here Eq. (9) mixes the 1 and 63 of SU(8) 

only as a consequence of the standard 1 and 35 mixing of 77, and q8 in the SU(6) 

theory. Relative to the SU(6) - SU(4)N x SU(2)s chain, the 77 - Q, mixing is 

due to the Cf’ and CF’ 
A 

terms; the breaking of ideal $ - w mixing is due to 

the Cf’ term, i. e. , it is solely responsible for @ not being a pure hh state. 

The choice Mw (3) = Mp requires, in addition to C2 being absent, the absence of 

[ 
I(I+l)-$Y2 . 1 From the viewpoint of an SU(3) singlet-octet system, nh 

mixes the singlet and octet whereas [ I (I + 1) - $ Y2 1 only breaks the octet; 

however, the m6 and m7 terms also mix the states and break the octet. If sys- 

tematic use of SU(6) is used to classify the terms, as in the SU(6) irreducible 

tensor approach, the m5, m6, and m7 terms arise 16,21 from SU(6) tensors 

35T8, 1 35T8, 1 
189 , and 35T8, ’ 

mTZim SU(3), dim SU(2) S 
405 * Irreducible tensor operators are labeled 

dim SU(6) where ‘,rn,, specifies the SU(6) state of q and/or 4. 

Experience 2,3 with baryon levels and past confusions 22 over inadequate meson 

mass operators indicate that such operators with the larger SU(6) representa- 

tions should not be excluded, but should be retained as has been done here. 

This means that only mixing angles can be predicted for the s wave mesons of 

the 36 of SU(6); however, these predictions alone are significant for decay tests. 
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IV. MASS OPERATOR AND INDEPENDENT MASS FORMULAE 
FOR THE BARYON 120 SUPERMULTIPLET 

For completeness, we first discuss the “SU(4) chain” reduction of the to- 

tally symmetric three-particle representation of SU(8), the 120, in which we 

place the baryons. As in the symmetric quark model, to be consistent with the 

spin and statistics theorem, we assume that there exists an SU(3)” ‘-color de- 

gree of freedom and that the states in the 120 are in the totally antisymmetric 

three-particle representation of SU(3)” -color, the singlet. The direct sum 

120 = {20s, 41+ 120,’ 2) 

in the SU(8) + SU(4) x SU(2)s chain with the notation j dim SU(4), dim SU(2)s 1 

where a permutation symmetry subscript, s = symmetric and m = mixed, suf- 

fices to distinguish the two twenty-tuplet Young diagrams. Under SU(4) - 

SU(3) x U(l), , 
C 

2om = 8. + 61 + 3; + 32 

2oS 
= loo + 61 + 32 + I3 

with the notation dim SU(3), . Note that nc = C, i. e. , nc has the charm eigen- 
C 

value, for states containing no antiquarks. While the W(3) decuplet and octet 

are obtained by this reduction, their physical relation as submultiplets of the 

56 of SU(6) is not made manifest by the SU(4) reduction chain. Hence, we re- 

turn to the SU(6) chain. 

The relevant reductions of the 120 under the SU(8) - SU(6) x SU(2)s x U(l)y 
C C 

chain are 

120 = 156, lJo + [21, 211 + [6,33, + [I, 43, 

with the notation, as before, of SU(6), dim SU(2)s 1 and then under 
cn 

C 
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SU(6) - SU(3) x su(2)s 
q 

56 = (10, 4) + (8, 2) 

21 = (6, 3) + (3*, 1) 

6 = (3, 2) 

1 = (1, 1) 

with the notation dim SU(6), dim SU(2) s 
( 

. 
4 

In order to obtain the physical states with nc $ 0, the spin of the charmed and 

non-charmed quarks must be recoupled, i.e., F = gq + gc. This yields 

[21, 211 = (6,3)$+ (6,3)+++(3*,1)++ 

[6, 3J2 = (3,2) $+ + (3,Z) [ 

[l, 4j3 = (1,l) ;+ 

with the notation dim SU(3), dim SU(2) JP 
% ’ ) S = J for the 120 representation. 

It is a straightforward exercise to tabulate the wave functions for the thirteen 

charmed states, and from their composition in terms of p, n, h and c type 

quarks to read off their respective I, B, Y and C quantum numbers. The (6,3) 

consists of an isotopic spin singlet (h A c)‘, a doublet (n h c): and (p h c): , and a 

triplet (n n c)‘, (npc): and cPpc)*. The (3*, 1) consists of a doublet (n h c): 

and (phc); , and a singlet (np c);. The (3,2) consists of a singlet (h c c)+ and 

a doublet (n c c)+ and (p c c) 
4-l- . The S and A subscripts denote the permutation 

symmetry of the two-particle combination of p, n, h quarks. 

For the 120 representation of SU(8) there exists the identify 

2Sc(Sc+1) = cc+2 c L c2 (12) 
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Thus, by the derivation of Sec. 3, the most general SU(6) x SU(2)s x U(l)y 
C C 

mass formula for the 120 which satisfies our conditions has eleven parameters 

and is 

M = mo+mlY+m2C~)+m3[I(I+ 1) - i y2] 

+ m4Cf) + m5 2S (S + 1) + m6Yc + m7YE 

+ m8 
[ 
2SA (SA + 1) -cf’ (N)+;Y2 1 

+mg 
[I 
2SN(SN+ 1) - 2SA (Sh+ 1) 1 +mlo2Sq(Sq+ 1) (13) 

On the 56 of SU(6) only the first four terms, the Giirsey-Radicati formula, are 

independent. Here, as in SU(6) theory, for baryons the two-body dominance 

assumption has led to a significant simplification. 

For the 56 of SU(6) the Giirsey-Radicati formula yields four independent 

sum rules. For the thirteen additional states in the 120 of SU(8), Eq. (13) pre- 

dicts the following six new independent equalities: 

[“p” - (pAcy6,3) g+= i”““i(6,3) g+ 

(15) 

W-3 
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(pee) 
[ 

- @cc) 1 Z2 
(3,2) i+ 

same 1 1 (3,21$+ 

@cc) 

(3,2) $+ 

- @cc) 

(3,2) $+ 

= (PPC) 

(6,3) $ 

- (PPC) 

(693) ;+ 

(17) 

(18) 

4 
[ 
(pee) - (AC c) 1 (392) ++ 

- 3 - WWs 1 (6,3) ;+ 

A-@hC)A 1 (3*, 1) ;+ 

ZZ- ; N- 
{ 

++3z+ 

= - 188 MeV 

P 

(1% 

where the subscripts denote dim SU(3), dim SU(2)s 
( > 

J’ . Equalities (14) and 

(15) specify equal spacing for both of the two SU(3) :extets, Eq. (16) specifies 

that this spacing is also common, Eq. (1’7) specifies a common spacing for the 

two SU(3) triplets, Eq. (18) specifies the same separation between isotopic 

spin multiplets in the J P = 3/2+ and l/2’ levels for the triplets as for the sex- 

tets, and Eq. (19) specifies a relation between the splitting of the anti-triplet 

and those of the other charm levels and the nucleon octet. 

Equations (14) and (15) are SU(3) equal spacing statements. Both Eq. (16) 

and (17) are SU(8) results for recoupling of $ and-$ is involved, and clearly 

Eq. (18) and (19) are SU(8) results. 
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v. SUMMARY 

We again emphasize, from the point-of-view of future $spectroscopy, that 

the mass relations derived in this article preserve ccpurity of the $(3.1) res- 

onance. We studied the charmed symmetric quark model for mesons and bar- 

yons using approximate SU(6) x SU(2) s X U(l)y symmetry with breaking in the 
C C 

Y and Yc directions in order to resolve mass degeneracies among resonances 

in the same sub-multiplets. To reduce the number of possible mass formulas 

for baryons, we assumed that one- and two-body contributions to the mass 

splitting operator dominate. For the six meson levels containing charmed quarks, 

we predicted two new independent mass relations. For the corresponding thirteen 

new baryon levels, we predicted six new mass relations. In an appendix, for 

reference relative to previous SU(6) symmetric quark model mass analyses, we 

gave the reduced numerical coefficients as determined by the meson 36 of SU(6). 
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APPENDIX A: SECOND QUANTIZED FORMALISM 

We introduce a set of Fermi creation and annihilation operators’ for the 

q”t s-wave quarks and antiquarks, aMr , a Ns 
P ft ’ 

by?, and bp” 
q 

Ns where M = 1, 2, 

3, 4 for SU(4), r = 1, 2 for SU(2)s, and q” = 1, 2, 3 for SU(3)“-color. The 

spin and SU(4) indices for the antiquark operators can be grouped together since 

complex conjugate representations in SU(2) are unitarily equivalent to the orig- 

inal ones. The generators of SU(8) constructed in terms of these are 

= I(q)& 
Ns 

Ns + I(:+& 

with 
Ns q”t Ns 1 d Ns aq”t aOt 

‘tq)Mr = aMr aq,, - 8 Mr Ot ql’ 

(4 

64.9 

From these expressions, Yc (s) = i( -Nq + 3 NC) and yc(<)’ - 2 -N 
( 1 

+3N- . 
C 1 

These lead in the s-wave meson mass splitting operator, for a system composed 

of a fixed number of quarks and antiquarks, to a single charge conjugation in- 

variant term. 

n c=Nc+N = 
c 

(YcW - ~&i)) + ; (N+ m) . (A3) 

This is the number operator for the total number of charmed quarks and anti- 

quarks . 

From the other linearly independent terms in the SU(6) x SU(2)s x U(l)y 
C C 

meson and baryon mass splitting operators in the text, this second quantized 

formalism can also be used to extract specific dynamical parameters charac- 

terizing single quarks and the two-body inter-quark forces. Such an explicit 

interpretation in the three-quartet model of the forces responsible for the 
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observed hadronic mass splittings brings these mass operators in closer con- 

tact with more basic quantum field theory approaches to quark dynamics, for 

example, gauge fields on a lattice and the bag model. 
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APPENDIX B: NUMERICAL COEFFICIENTS AS DETERMINED BY 
MESON 36 OF SU(6) 

On the s-wave meson 36 multiplet of SU(6) the terms in the meson mass 

formula derived in the text, Eq. (9), reduce to the first eight terms. For each 
-1 

term a normalization factor &i = ( * Tmax - Tmin + 1 
) 

is introduced so as 

to treat them in a comparable manner. It is in order of the terms in Eq. (9), 

1, l/3, l/13, l/5, l/7, l/5, l/13, and l/9. The reduced coefficients, 

Mi = mi/Ai , for the linear (quadratic) mass formula as determined from the 

experimental data 23 are 1.000, -0.489, -1.853, 0.594, 1.800, -0.411, 0.593, 

and 0.530 (0.975, -0.353, -2.364, 0.697, 1.967, -0.710, -0.176, and 0.054) 

in units of GeV (GeV2). The last term does not contribute significantly to the 

quadratic mass formula. Otherwise, for a simultaneous treatment of Jp = o- 

and l- states it does not seem possible to reduce the number of terms a priori, 

for example, by abstracting rules from the nearness of mesons to eigenstates 

of the SU(6) - SU(4) N X SU(2)s chain. Note that for both the linear and quad- 
h 

(6) ratic formulas, the two terms with largest reduced coefficients are C2 and 

($3) 
2 which are the operators responsible for Q - 7 t and Cp - 0 mixing of the 

associated eigenstates of the SU(6) - SU(4)N X SU(2)s chain. 
h 

The ideal mixing angle is 

esU(4)N 
= tan-’ (l/d) = 35’ 16’ 

to be compared with the empirical mixing angles 8 v = 37’ 27’ (linear), 39’ 59’ 

(quadratic) and ep = -24’ (linear), -10’ 33’ (quadratic) as determined from 

sin2 8 = V 4 -$(4K*-p)l/[~-01, etc. 
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