OBSERVATION OF AN INTERMEDIATE STATE

 IN $\psi(3684)$ RADIATIVE CASCADE DECAY*W. Tanenbaum, J. S. Whitaker, G. S. Abrams, A. M. Boyarski, M. Breidenbach, F. Bulos, W. Chinowsky, G. J. Feldman, C. E. Friedberg, G. Goldhaber, G. Hanson, D. L. Hartill \dagger, B. Jean-Marie, J. A. Kadyk, R. R. Larsen, A. M. Litke, D. Lüke $\dagger \dagger$, B. A. Lulu, V. Lüth, H. L. Lynch, C. C. Morehouse, J. M. Paterson, M. L. Perl, F. M. Pierre \ddagger, T. P. Pun, P. Rapidis, B. Richter, B. Sadoulet, R. F. Schwitters, G. H. Trilling, F. Vannucci革年, F. C. Winkelmann, and J. E. Wiss

Lawrence Berkeley Laboratory and Department of Physics University of California, Berkeley, California 94720 and

Stanford Linear Accelerator Center Stanford University, Stanford, California 94305

Abstract

We present evidence for the existence of an intermediate state observed in the decay sequence $\psi(3684) \rightarrow \psi(3095) \gamma \gamma$. The mass of the state is either $3500 \pm 10 \mathrm{MeV}$ or $3270 \pm 10 \mathrm{MeV}$. The branching fraction of the sequence is $3.6 \pm 0.7 \%$.

(Submitted to Phys. Rev. Letters.)

[^0]Since the discovery of the ψ particles ${ }^{1}\left(\psi(3095) \equiv \psi\right.$ and $\left.\psi(3684) \equiv \psi^{\prime}\right)$, there has been speculation on the existence of other narrow resonances which are not produced directly from $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation. Some models ${ }^{2}$ have predicted several such states with masses between those of the ψ and ψ^{\prime}. We have previously presented evidence for the decay $\psi^{\prime} \rightarrow \chi \gamma$ with at least two states χ which decay directly to hadrons. ${ }^{3}$ The DASP group has recently observed the radiative cascade decay $\psi^{\prime} \rightarrow \mathrm{P}_{\mathrm{c}} \gamma ; \mathrm{P}_{\mathrm{c}} \rightarrow \psi \gamma^{4}$ We here present evidence for this decay, confirming the DASP observation, and we present a measurement of the branching fraction.

Our results come from the study of about $100,000 \psi^{\prime}$ decays observed with the SLAC-LBL magnetic detector at the SLAC storage ring SPEAR. ${ }^{5}$ The decay $\psi^{\top} \rightarrow \psi \gamma \gamma$ has been studied in three ways. In all approaches the ψ is detected by its decay into two muons, but the photon identification differs. In the first, the two photons are observed in the shower counters. In the second, one of the photons converts to an $\mathrm{e}^{+} \mathrm{e}^{-}$pair, allowing a 1-C fit to the event with better photon energy resolution than in method 1. In the third, the photons are not observed, but the two photon branching fraction is deduced from spectrum of the missing mass squared $\left(\mathrm{M}_{\mathrm{x}}^{2}\right)$ recoiling against the dimuon system, with greater precision than from either method 1 or 2 .

We require the observed dimuon to have a mass squared between $8.8 \mathrm{GeV}^{2}$ and $10.4 \mathrm{GeV}^{2},{ }^{6}$ and then constrain the dimuon mass to be equal to the ψ mass to improve our resolution. Events without (with) additional observed charged tracks are called two-prong (multiprong) events. There is about an 8% contamination of the two-prong sample from the radiative tail of $\psi^{\top} \rightarrow \mu^{+} \mu^{-}$.

In the first approach described above, we search for photons in two-prong events by observing signals in the shower counters without an associated charged track. Signals in adjacent counters are considered to be from the same
photon. Figure 1a shows M_{x}^{2} as a function of the number of photons observed. For events with three or more detected photons, the spectrum is consistent with that expected from $\psi^{\prime} \rightarrow \psi \pi^{\circ} \pi^{0}$. ${ }^{7}$ For events with no more than one detected photon, there is contamination from the radiative tail of $\psi^{\prime} \rightarrow \mu^{+} \mu^{-}$. The dimuon mass constraint causes many of these events to have negative M_{x}^{2}. For events with exactly two detected photons, the radiative background is absent. We now use positional information from the shower counters to remove $\psi^{\prime} \rightarrow \psi \pi^{0} \pi^{\circ}$ from the sample with two photons.

The 24 shower counters divide the azimuthal angle into 24 equal bins. The shower counters and associated trigger counters have phototubes at both ends, and the relative pulse heights and/or pulse arrival times provide an rms longitudinal (z) position resolution of 20 cm at a radius of 1.82 m . This crude positional information twice overconstrains $\psi^{\prime} \rightarrow \psi \gamma \gamma$. We reconstruct each event ignoring the z position information, and compare the measured and reconstructed z positions as a consistency check. We discard all events that have a $\chi^{2} /$ d.o.f. >2 or that have no physical solutions. Figure 1a also shows M_{X}^{2} for the surviving events. The roughly flat distribution is what is expected from the decay sequence $\psi^{\prime} \rightarrow \mathrm{P}_{\mathrm{c}} \gamma ; \mathrm{P}_{\mathrm{c}} \rightarrow \psi \gamma$ if both transitions are dipole. ${ }^{8}$ We require $\mathrm{M}_{\mathrm{x}}^{2}$ to be less than $0.27 \mathrm{GeV}^{2}$ to eliminate $\psi^{\mathrm{r}} \rightarrow \psi \eta$ events. ${ }^{9}$ By studying events with ≥ 3 photons, a pure sample of $\pi^{0} \pi^{\mathrm{o}}$ events, and comparing with the two photon events, we determine that the 51 surviving events have a $\pi^{\circ} \pi^{\circ}$ contamination of less than 10%.

When we reconstruct the masses of intermediate states, we have a twofold ambiguity since we do not know which photon is emitted in the first decay. Figure 2 shows both solutions, with each event plotted twice. The two solutions for a given event are approximately symmetric around a mean of about 3380 MeV . The dashed curve represents the phase space distribution for direct $\psi^{\prime} \rightarrow \psi \gamma \gamma$
decay with no intermediate state. The solid curve is the predicted distribution for a narrow intermediate state of mass either 3270 MeV or 3500 MeV . The rms mass resolution for both the data and the Monte Carlo is 35 MeV . The solid curve includes the expected contribution of the $\pi^{\circ} \pi^{\circ}$ background, shown separately as the dotted curve. The data suggest a state of mass $3270 \pm 10 \mathrm{MeV}$ or $3500 \pm 10 \mathrm{MeV}$.

In the second approach, we obtain better resolution by detecting events where a photon has converted either in the beam vacuum pipe or in the surrounding ~ 0.03 radiation length scintillation counters. We find 11 dimuon events that have an additional oppositely charged pair with an opening angle of less than 10 degrees. The $\pi \pi$ opening angle from $\psi^{1} \leftrightarrow \psi \pi^{+} \pi^{-}$is so strongly peaked at large angles ${ }^{7}$ that the background from pion pairs is negligible. We remove events where the converted photon comes from final state radiation by one of the muons by eliminating those two events where the converted pair is collinear with one of the muons. The efficiency for converting and detecting photons of a given energy is negligible below $170 \mathrm{MeV}, 0.25 \%$ at $200 \mathrm{MeV}, 0.9 \%$ at 300 MeV , and 1.2% at 400 MeV .

From the nine events remaining, we select the eight with missing mass squared in the interval -0.02 to $+0.02 \mathrm{GeV}^{2}$ as $\psi^{\prime} \rightarrow \psi \gamma \gamma$. There is a relative absence of detected photon conversions from $\psi^{\prime} \rightarrow \psi \pi^{\circ} \pi^{\circ}$ because the typical photon from this decay has an energy of 150 MeV , too small to be detected. Four of the eight events have an extra shower counter that fired, presumably from the missing photon. In all four cases, the reconstructed missing photon points to the correct counter. Only one of the eight events fits the hypothesis $\psi^{\prime} \rightarrow \psi \eta$; $\eta \rightarrow \gamma \gamma$, and it is discarded.

We perform a 1-C fit on the remaining seven events and calculate the masses of intermediate states. As before, there is an ambiguity from not knowing which photon is emitted in the first decay. Figure 3 shows the two solutions for each event. The clustering indicates the presence of an intermediate state with a mass of 3283 ± 10 or $3504 \pm 8 \mathrm{MeV}$, consistent with our resolution for a narrow state.

In the third approach, the $\psi^{\prime} \rightarrow \psi \gamma \gamma$ branching fraction is determined most precisely from M_{x}^{2} for two-prong events, shown in Fig. 1b. The rms resolution ranges from $0.01 \mathrm{GeV}^{2}$ at high $\mathrm{M}_{\mathrm{x}}^{2}$ to $0.02 \mathrm{GeV}^{2}$ at low $\mathrm{M}_{\mathrm{x}}^{2}$. The events include $\psi^{\prime} \rightarrow \psi \eta, \psi^{\prime} \rightarrow \psi \pi \pi$, and the radiative tail of $\psi^{\prime} \rightarrow \mu^{+} \mu^{-}$as background.

We consider only the interval $0.0 \mathrm{GeV}^{2}$ to $0.27 \mathrm{GeV}^{2}$, thus excluding $\psi^{\prime} \rightarrow \psi \eta$. We determine the spectrum for $\psi^{\prime} \rightarrow \psi \pi^{+} \pi^{-}$from the multiprong events, and we assume the spectrum for $\psi^{\prime} \rightarrow \psi \pi^{\circ} \pi^{\circ}$ has the same shape. We further assume the pions are in an $\mathrm{I}=0$ state, ${ }^{6}$ in which case $\psi^{\dagger} \rightarrow \psi \pi^{\circ} \pi^{\circ} / \psi^{\prime} \rightarrow \psi \pi^{+} \pi^{-}=0.5$. The $\psi^{\prime} \rightarrow \psi \pi \pi$ contribution is then subtracted. The M_{X}^{2} spectrum of the radiative tail of $\psi^{\prime} \rightarrow \mu^{+} \mu^{-}$is flat over the interval considered. Its contribution is determined by observing the interval from $-0.09 \mathrm{GeV}^{2}$ to $-0.01 \mathrm{GeV}^{2}$ and then is subtracted. The results are shown in Fig. 1b. The resultant branching fraction for $\psi^{\prime} \rightarrow \psi \gamma \gamma$ over the missing mass squared range 0.0 to $0.27 \mathrm{GeV}^{2}$, is $3.6 \pm 0.7 \% .^{10}$ If we assume a priori that the M_{x}^{2} spectrum for $\psi^{\prime} \rightarrow \psi \gamma \gamma$ is flat, we can, without the $\mathrm{I}=0$ assumption, fit the data to a sum of $\psi^{\prime} \rightarrow \psi \gamma \gamma$ and $\psi^{\prime} \rightarrow \psi \pi \pi$. The branching ratio thus obtained is $3.4 \pm 0.7 \%$, consistent with that obtained assuming $I=0$. The branching ratios obtained from the observed events in methods 1 and 2 are also consistent.

We have observed $\psi^{\prime} \rightarrow \mathrm{P}_{\mathrm{c}} \gamma ; \mathrm{P}_{\mathrm{c}} \rightarrow \psi \gamma$, where the state P_{c} has a mass of either $3500 \pm 10 \mathrm{MeV}$ or $3270 \pm 10 \mathrm{MeV}$. We have previously observed ${ }^{3} \psi^{\prime} \rightarrow \chi \gamma$;
$\chi \rightarrow$ hadrons, with χ states at $3410 \pm 10 \mathrm{MeV}$ and $3530 \pm 20 \mathrm{MeV}$. The absence of $\chi(3410)$ in the radiative cascade decay suggests that for this state the ratio $\frac{\Gamma(\chi \rightarrow \text { hadrons })}{\Gamma(\chi \rightarrow \gamma \psi)}$ is substantially larger than for the P_{c}. From the data in Fig. 2, we can put a 90% C. L. upper limit on the product of the branching ratios $\psi^{\prime} \rightarrow \gamma \chi(3410) ; \chi(3410) \rightarrow \gamma \psi$ at 0.5%.

It seems natural to identify the P_{c} with the $\chi(3530)$ reported in Ref. 3. However a single state of mass $3500 \pm 10 \mathrm{MeV}$ is not easily reconciled with the broad mass spectrum, centered on 3530 MeV , observed ${ }^{3}$ in the decay $\chi \rightarrow 2 \pi^{+} 2 \pi^{-}$. This comparison suggests that either the $\chi(3530)$ is a broad state or is composed of at least two states, only one of which decays significantly to $\gamma \psi$. In either case, there must be at least three χ states. If the correct mass of the P_{c} is 3270 MeV there must still exist at least three χ states with only the P_{c} decaying significantly to $\gamma \psi$.

We wish to thank F. Gilman for his invaluable contributions.

REFERENCES

1. J. -E. Augustin et al., Phys. Rev. Letters 33, 1406 (1974);
J. J. Aubert et al., Phys. Rev. Letters 33, 1404 (1974);
G. S. Abrams et al., Phys. Rev. Letters 33, 1453 (1974).
2. T. Appelquist et al., Phys. Rev. Letters 34, 365 (1975);
E. Eichten et al., Phys. Rev. Letters 34, 369 (1975).
3. G. J. Feldman, B. Jean-Marie, B. Sadoulet, F. Vannucci et al., SLAC-PUB-1621, LBL-4220, submitted to Phys. Rev. Letters. As in this reference, we use χ as a generic name for new C even states and P_{c} for the specific state seen decaying into $\psi \gamma$.
4. W. Braunschweig et al., Phys. Letters 57B, 407 (1975).
5. J.-E. Augustin et al., Phys. Rev. Letters 34, 233 (1975).
6. G. S. Abrams et al., Phys. Rev. Letters 34, 1181 (1975).
7. J. A. Kadyk et al., LBL-3687 (1975).
8. G. J. Feldman and F. J. Gilman, SLAC-PUB-1582 (1975).
9. $\quad \psi^{\gamma} \rightarrow \psi \eta$ will be discussed in a future paper.
10. Assuming the muons are isotropic. For $1+\cos ^{2} \theta$, the result is $4.2 \pm 0.8 \%$, for $1-\cos ^{2} \theta, 2.9 \pm 0.6 \%$.

FIGURE CAPTIONS

1. a) M_{x}^{2} for two-prong events as a function of number of detected photons.
b) M_{x}^{2} for two-prong events before and after subtraction of $\psi^{\prime} \rightarrow \psi \pi \pi$.
2. The reconstructed mass of intermediate states in $\psi^{\prime} \rightarrow \psi \gamma \gamma$. The smooth curves are explained in the text.
3. Scatterplot of the two solutions for the mass of intermediate states in $\psi^{\prime} \rightarrow \psi \gamma \gamma$ events with a converted photon.

Fig. 1

Fig. 2

Fig. 3

[^0]: *Work supported by the U. S. Energy Research and Development Administration.
 \dagger Alfred P. Sloan Fellow.
 $\dagger \dagger$ Fellow of Deutsche Forschungsgemeinschaft.
 \ddagger Permanent address: Centre d'Etudes Nucleaires de Saclay, France. $\ddagger \ddagger P e r m a n e n t$ address: Institut de Physique Nucleaire, Orsay, France.

