SLAC-PUB-1641 August 1975 (T/E)

STUDY OF $K^{-}p \rightarrow \overline{K}^{*}(890)n$ AT 13 GeV *

G. W. Brandenburg[†], R. K. Carnegie^{††}, R. J. Cashmore^{†††}, M. Davier[‡],
W. M. Dunwoodie, T. A. Lasinski, D.W.G.S. Leith, J.A.J. Matthews^{‡‡},
P. Walden^{‡‡‡}, and S. H. Williams

Stanford Linear Accelerator Center Stanford University, Stanford, California 94305

ABSTRACT

The results of a wire chamber spectrometer experiment studying $\overline{K}^*(890)$ production in the reaction $\overline{K}^- p \rightarrow \overline{K}^- \pi^+ n$ at 13 GeV are presented. Strong forward structure is observed for $|t| < m_{\pi}^2$ in the s-channel density matrix elements and differential cross section. These features are similar to those observed in $\pi^- p \rightarrow \rho^0 n$ data and are characteristic of π exchange. In contrast in the intermediate, $|t| \sim 0.2 \text{ GeV}^2$, and large momentum transfer regions $\overline{K}^*(890)$ production is dominated by the natural parity ρ -A₂ exchange contribution.

(Submitted for publication)

*Work supported by the U.S. Energy Research and Development Administration.

††Department of Physics, Carleton University, Ottawa, Ontario, Canada.

†††Department of Physics, Oxford University, Keble Rd., Oxford, England. ‡ Laboratoire de l'Accelerateur Linéaire, Orsay, France.

‡‡Department of Physics, Michigan State University, East Lansing, Michigan. ‡‡‡TRIUMF, University of British Columbia, Vancouver, B. C., Canada.

Present address:

[†]Department of Physics, MIT, Cambridge, Massachusetts.

[#] Daboratorie de l'Accelerateur Emicane, orbay, rrance.

In this letter we present new results on $\overline{K}^*(890)$ production [1,2] in the reaction $\overline{K}^-p \rightarrow \overline{K}^-\pi^+n$ at 13 GeV from a wire spark chamber spectrometer experiment performed at SLAC. In the small momentum transfer region, the data show the characteristic features of the dominant π exchange very clearly: in particular, the pronounced forward turnover of the differential cross section for $|t| < m_{\pi}^2$ and the striking small t variation of the s-channel density matrix elements. These π exchange features are quite similar to the structure observed in the forward direction in high statistics data on $\pi^-p \rightarrow \rho^0$ n [3,4]. However, in the \overline{K}^* data there exist significant differences which reflect the presence of the additional exchange contributions allowed in the K⁻-induced reaction. The data sample comprises 14,200 events in the $\overline{K}^*(890)$ region defined as $0.87 < M(\overline{K}^-\pi^+) < 0.92$ GeV, and extends to a momentum transfer $|t| \sim 1.2$ GeV². For |t| > 0.20 GeV², we find that \overline{K}^* production is dominated by natural parity exchange.

The experiment was performed in an RF separated 13 GeV K beam at SLAC. Fig. 1 shows a plan view of the apparatus [5]. Scintillation counter hodoscopes, two threshold Cerenkov counters, and 1 mm wire spacing proportional chambers were used to measure the mass, momentum, and trajectory of each beam particle incident on the 1 meter long hydrogen target. Beam resolution is $\pm 0.3\%$ in momentum and ± 0.5 mrad in angle. The $(K^-\pi^+)$ system was detected in a forward spectrometer which included three scintillation counter hodoscopes and nine magnetostrictive readout wire spark chambers, four upstream and five downstream of an 18 kg m dipole magnet. The dipole aperture was 0.6 m by 1.8 m. Each chamber had small polyurethane plugs installed through which the beam passed. The spectrometer measures the $(K^-\pi^+)$ production angle to better than 1 mrad and the effective mass resolution is ± 5 MeV at the $\overline{K}^*(890)$. The trigger for the experiment required that 2 or more charged particles pass through the spectrometer after originating from a K⁻ interaction in the hydrogen target. In addition, the magnet was lined with scintillation counters to reject events in which a secondary particle strikes a pole piece. The large aperture Cerenkov counter contained eight optically distinct elements and provided K, π identification of the secondary particles.

Events from the reaction $K^-p \rightarrow K^-\pi^+n$ are selected by requiring that the missing mass of the recoil system fall in the neutron region, 0.70 - 1.05 GeV [6]. In addition, events are rejected if the $\pi^+\pi^-$ hypothesis for the secondary particles corresponds to a K⁰ mass or if the K^+K^- hypothesis yields a ϕ meson mass. After these selection criteria are imposed, there still remains a small background (5-10%) from $K^-p \rightarrow K^-\pi^+\Delta^0$ events which fall in the neutron missing mass cut due to the experimental missing mass resolution. This experiment also included a high statistics measurement of the reaction $K^+p \rightarrow K^+\pi^-\Delta^{++}$. The correction of the $K^-\pi^+n$ events for the $K^-\pi^+\Delta^0$ background is made by directly subtracting the properly normalized observed $K^+\pi^-\Delta^{++}$ events which would satisfy the neutron selection criteria from the observed $K^-\pi^+$ angular distribution for each $K\pi$ mass and t bin independently.

The spherical harmonic moments, $\langle Y_{lm} \rangle$, of the $K^-\pi^+$ system have been measured as a function of momentum transfer for the $K\pi$ mass interval $0.87 < m(K^-\pi^+) < 0.92$ GeV. The moments are obtained by comparing the experimental $K^-\pi^+$ angular distribution to an acceptance corrected sum of spherical harmonics using a maximum likelihood fitting procedure. The spectrometer acceptance is determined using a Monte Carlo program which incorporates measured apparatus efficiency factors, the effects of secondary K decay, nuclear absorption, and resolution, and subjects the Monte Carlo events to the

- 3 -

identical geometric and kinematic criteria that the experimental data must satisfy. The fits to the $\bar{K} \to \bar{K} \pi^+$ n data in the \bar{K} *(890) region have been restricted to ℓ , $m \leq 2$, corresponding to only s and p waves being present, since separate fits with ℓ , $m \leq 4$ yielded no evidence for the presence of d-wave in this $K\pi$ mass region. The results, re-expressed as elements of the spin density matrix, $\rho_{mm'}^{\ell\ell'}$, are presented in Fig. 2 for the s-channel analysis. All of the s-channel moments exhibit a strong variation with momentum transfer.

The $K^-p \rightarrow K^-\pi^+n$ differential cross section, $d\sigma/dt$, for $0.87 < m(K^-\pi^+) < 0.92$ GeV is obtained concurrently with the moments and is shown in Fig. 3 for t < 0.6 GeV². The estimated systematic error in absolute normalization is $\pm 10\%$. The differential cross section has a maximum for $|t| \sim m_{\pi}^2$ and exhibits a clear forward turnover indicating the dominance of pion exchange in the small momentum transfer region. There is a distinct break in the slope of the differential cross section near $t \sim 0.15$ GeV².

The particular linear combinations of the density matrix elements,

$$\sigma_0 = (\rho_{00}^{11} + \rho_{00}^{00}/3) d\sigma/dt$$

and

$$\sigma_{\pm} = (\rho_{11}^{11} \pm \rho_{1-1}^{11} + \rho_{00}^{00}/3) d\sigma/dt$$

project out helicity zero \overline{K}^* production via unnatural parity exchange (σ_0) and, to order (1/s), helicity one \overline{K}^* production via natural (σ_+) and unnatural (σ_-) parity exchange. The decomposition of the K π differential cross section into σ_+ and into σ_0 and σ_- in the s-channel is also presented in Fig. 3.

Since the six experimentally measurable moments do not determine the seven s,p wave density matrix elements, each \overline{K}^* partial cross section contains a small $K\pi$ s-wave background. Previous measurements of $K\pi$ scattering phase

shifts in this mass region [7,8] provide an estimate of the s-wave strength relative to the m=0, p-wave. Using an s-wave phase shift of 35° , $\rho_{00}^{00}/\rho_{00}^{11} = 0.14$. Furthermore, an experimental upper limit on the s-wave contribution is provided by the σ_{-} distribution. The s-wave differential cross section, which should resemble σ_{0} in shape, can at most account for the observed σ_{-} cross section at the dip near $t \sim m_{\pi}^{2}$. Thus the factor $\rho_{00}^{00}/3$ only makes a small contribution even for the σ_{+} and σ_{-} distributions.

The dominant exchange contributions for \overline{K}^* production may be inferred directly from the data by comparing our results with those for $\pi \bar{p} \rightarrow \rho^0 n$ [3,4]. The helicity zero cross section, σ_0 , displays the strong forward t dependence expected for the dominant π exchange amplitude. Its shape is very similar to that observed for ρ production indicating that B exchange contributions which are allowed for \overline{K}^* production are probably small. Both σ_0 and the density matrix element combination $\rho_{00} - \rho_{11}$ exhibit forward turnovers in both the s- and t-channels.

The density matrix elements Re ρ_{10}^{11} and Re ρ_{10}^{10} both exhibit a rapid variation at small momentum transfer in the s-channel with the zero crossover near $|t| \sim 0.011 \text{ GeV}^2$. This result differs significantly from $\pi^- p \rightarrow \rho^0 n$ data [3,4] where the crossover zero occurs at $|t| = m_{\pi}^2$. The crossover location corresponds to a zero in the unnatrual exchange helicity one amplitude and is associated with π exchange absorptive effects. The shift in the crossover location then implies that an additional term is present in the m = 1 unnatural exchange amplitude for \overline{K}^* production at small t.

The density matrix element ρ_{1-1}^{11} and the natural exchange cross section σ_+ are very much larger for the \overline{K}^* data than for the ρ data in the intermediate t region around 0.2 GeV². This is due presumably to a large ρ exchange

contribution to the \overline{K}^* production in addition to the A_2 contribution, which for ρ production is the only natural parity exchange allowed by G parity conservation. From Fig. 3 it is seen that natural parity exchange is the dominant contribution to \overline{K}^* production for $|t| > 0.16 \text{ GeV}^2$. It is this marked transition from the dominance of π exchange at small t to the much flatter t-dependence of the ρ and A_2 exchange that accounts for the flattening of the \overline{K}^* differential cross section in this t region. σ_+ also exhibits a significant forward dip near $t \approx 0$. However, this dip cannot be simply and directly associated with ρ exchange since there is a large contribution to the σ_+ cross section in the $|t| \approx m_{\pi}^2$ region from π exchange absorptive effects. Comparison of these data with 4 and 6 GeV $K^-p \rightarrow K^-\pi^+n$ data [2] shows that the energy dependence of σ_+ near $|t| = m_{\pi}^2$ is the same as that of σ_0 , i.e., it is related to π exchange, whereas the relative contribution of σ_+ to the \overline{K}^* cross section for $t > 0.10 \text{ GeV}^2$ increases substantially with s, as expected for $\rho - A_2$ exchange.

In conclusion, in this experiment studying $\overline{K} p \rightarrow \overline{K}^*(890)n$ we have observed the pronounced forward t structure of the s-channel density matrix elements previously seen in $\pi^- p \rightarrow \rho^0 n$ data. Furthermore, by comparison of the \overline{K}^* results with $\pi^- p \rightarrow \rho^0 n$ analyses, we may conclude that π exchange with absorption will qualitatively account for the forward structure observed. In the intermediate and large momentum transfer region, the natural parity ρ -A₂ exchange contribution dominates. A quantitative analysis of the \overline{K}^* amplitude structure will be presented separately.

REFERENCES

- [1] For some previous experimental results see:
 - M. Aguilar-Benitez et al., Phys. Rev. Lett. 26 (1971) 466;
 - M. Deutschmann et al., Nucl. Phys. B36 (1972) 373;
 - B. Chaurand et al., Phys. Lett. <u>38B</u> (1972) 253;
 - M. Deutschmann et al., Nucl. Phys. B81 (1974) 1.
- [2] A. B. Wicklund et al., contributed paper #99, XVII Int. Conf. on High Energy Physics, London, 1-10 Jul 1974.
- [3] F. Bulos et al., Phys. Rev. Lett. <u>26</u> (1971) 1453;

P. Baillon et al., Phys. Lett. <u>35B</u> (1971) 453.

[4] G. Grayer et al., Nucl. Phys. <u>B50</u> (1972) 29;

P. Estabrooks and A. D. Martin, Phys. Lett. 41B (1972) 350;

B. Hyams et al., Phys. Lett. <u>51B</u> (1974) 272.

- [5] G. Brandenburg et al., to be submitted to Nucl. Instr. and Meth.
- [6] The missing mass squared resolution is $\sigma(MM^2) = 0.18 \text{ GeV}^2$.
- [7] H. H. Bingham et al., Nucl. Phys. B41 (1972) 1.
- [8] M. J. Matison et al., Phys. Rev. D <u>9</u> (1974) 1872.

FIGURE CAPTIONS

- 1. Plan view of the experimental apparatus.
- 2. Density matrix elements for $K^-p \rightarrow K^-\pi^+n$ at 13 GeV for 0.87 < m($K^-\pi^+$) < 0.92 GeV in the s-channel helicity frame.
- 3. Differential cross section for K⁻p → K⁻π⁺n at 13 GeV for 0.87 < m(K⁻π⁺)
 < 0.92 GeV. The partial cross sections σ₀ and σ₋ correspond to helicity
 zero and one K^{*} production by unnatural parity exchange in the s-channel.
 σ₊ corresponds to helicity one K^{*} production by natural parity exchange.
 Each contains a small s-wave component. (See text.)

Fig. 2

Fig. 3