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ABSTRACT 

An interpolative technique is presented which yields accurate 

numerical solutions to various types of linear integral equations, the 

kernels of which contain poles. It is also shown that two techniques 

which are successful when the kernel is weakly singular’are unsatis- 

factory when the singularities are poles, The approaches discussed 

for the various equations are illustrated by example, 
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1. Introduction 

Linear integral equations with kernels that contain pole singularities arise 

in various physical problems. In this paper, three such representative equa- 

tions are considered to illustrate a method of obtaining a numerical solution to 

such equations by matrix inversion. 

In general, nonsingular linear integral equations can be inverted by approx- 

imating the integral by a sum over a suitable set of quadrature points. That is, 

if the kernel, K, is nonsingular, 

J b 
W) = Icl,w + h K(z) z’)$J(z’) dz’ (1) 

a 

is written approximately as 

I = $O(‘i) + id g wJK(zi*zj)$(zj) 

j=l 
(2) 

where zj and wj are the abscissas and weights of the quadrature used. The so- 

lution by matrix inversion is then achieved. 

(3) 

with M.. 
11 

= wjK(zi,zj)’ 

If K(z, z’) is singular, such a straightforward scheme cannot, in general, be 

used, If, for example, 

lim K(z,z’) = ~0 
z-z 1 

the diagonal elements of M.. are infinite, 
1.l 

In an earlier paper by Ickovic and myself [ 11, integral equations which had 

weakly singular kernels were considered, A weakly singular kernel is defined by 

lim K(z,z’) ==J, lim (z - zl)K(z,zl) =0 (4) 
z -z’ z -z’ 
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The method presented in ref. 1 is outlined briefly at this point. Referring to 

equation (l), we interpolated $(z’) over the range z1 E [a, b] as 

(W 

where Fj(zl) is a known function which must satisfy F.(z ) = 6. 
Jk Jk 

D As before, 

z k belongs to a set of quadrature abscissas. In ref. 1, we showed that if K(z, z’) 

= Iz-z’ ,-l/2 , it was sufficient to take 

Fj(z) = 
I 

1 for Bj~zfBj+I 
(5b) 

0 otherwise 

where 8 j is the midpoint between z. 
J-I 

and z., 
J 

Thus, equation (1) becomes 

$(zi) = $,(zi) + h E $J(z~) pjilK(zi,z’) dz’ 
j=l 8. 

J 

The integrated kernel is no longer infinite and matrix inversion can be applied. 

In ref. 1, we compared this approach to two other techniques which also 

handle weakly singular equations successfully. A scheme introduced by 

Ullman [Z] treats the equation as if the kernel were nonsingular, as in equation 

(2). However, the singular (diagonal) term is replaced by 

#(‘i) K(zi, z’)dz’ 

which is no longer infinite. Thus, the integral equation can be inverted. 

The other successful approach discussed in ref. 1 was a well-known simple 

subtraction scheme which Schlitt [3] had used to solve the weakly singular equa- 

tion used as an example in ref. 1. In this approach, equation (1) is written 

q(z) = $J,(z) + hlbK(z,z’)D(z’)-~(z)]dz’ + ~$(z)jhK(z,z’)dz’ (7) 
a a 
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Assuming $(z’) has a Taylor series expansion around z’ = z, the first integrand 

is no longer infinite (in light of equation (4)), and so the first integral can be ap- 

proximated by a sum over quadratures, The second integral is evaluated ana- 

lytically, the integrated kernel being finite for all z since the singularity is 

weak. 

This paper is concerned with integral equations with kernels that have pole 

singularities. Three types of linear equations are considered and examples are 

presented to illustrate that the proposed method works well for these equations. 

In section II, the type of equation considered is one for which the kernel is of 

the form 

K(z,z’) =w 
P 

(8) 

where T is a bounded, continuous, well-behaved function and P implies the 

Cauchy principle value., The proposed method of solution is presented in this 

section. 

In section II, an equation with the kernel described in equation (8) is 

treated, considering both the inhomogeneous and homogeneous forms. Section 

III is devoted to applying the proposed approach to the Lippmann-Schwinger 

equation, the kernel of which is of the form 

V(z,z’) 
W,z’;E) =(z’-E)p 

where E is a fixed (energy) parameter. 

In section IV, the approach is applied to nonlinear equations of the type 

that arise from dispersion relations. The numerical problems encountered in 

attempting to invert the resulting algebraic system are described. 

Two appendices are included in the paper. In the first, integral equations 

containing infinite limits are considered, No illustrative examples are 
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considered. 

The second appendix deals with the generation of inhomogeneous equations 

like those discussed in section II which have known solutions. 
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11. Linear Squations with Cauchy Singularities 

The first type of equation considered is one containing the kernel of equa- 

tion (8); namely 

z)(z) = z),(z) + h I” T(z,z’) +(z’) dz’ 
a (z-z’), 

where A is a known constant, and z/O and T are well-behaved, bounded functions. 

It is quite straightforward to show [ 11 that if either a or b is finite, equa- 

tion (10) can be transformed into an equation of the form 

q)(x) =f(x) + h (11) 

It is in this form that a solution to equation (10) is studied. 

An example of such an equation is the Omnes equation [4] which arises in 

the theory of low energy scattering processes involving the pion and nucleon in 

the initial or final state. The simplest form of the Omnes equation which con- 

tains the pole singularity is 

+(z) = F(z) + ; jm&!‘+ $(z’) dz’ (12) 

where h(z) = exp [id(z)] sin S(z). Writing (z’-z-ie ) -1 = (zl-z,; + in6 (z’-z), and 

noting that 1 - ih* (z) = exp [ -i6(z)]cos 6(z), equation (12) can be written as 

G(z) = F(z) + 1 I 
O” tan s(zP)G(z’) dz, 

“1 W-z), 

where G(z) = exp [ -i6(z)] cos S(z)+(z). Using the transformations 

z = 2/(1-+x), z’ = 2/(l+y), $6) = G(zW)/(l+x), f(x) = F(z(x))/(l+x) 

equation (13) becomes 

1 
4(x) =fW +; I 

’ tan 6[2/(1-$)] 
(X-Y )p @tY) dY 

-1 

(13) 

(14) 
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which is in the form of equation (11). 

At first, I attempted to solve equation (14) using the approach of ref., 1, 

where q(y) is interpolated over the interval [ -1, l] as in equation (5). It was 

found that this simple approach, which approximates equation (11) as 

‘j+l U(Xi,Y)dY 
xi-Y (15) 

is unsatisfactory. Approximating integrals which contain poles by equation (5) 

is very inaccurate. To illustrate this inaccuracy, I compared the value of the 

integral 

I 
1 

lM(xi) = YM 
-1 txiBy)J? 

as approximated by equations (5) 

(xi-y);’ dy = -$ xM log I (8 
j=l J 

-x.) I j+l 1 

to the analytic form 

- = xr Iog[l+x.)/(l-x.)] - c” ~(~-~)[l - (-l)k]/k 
1 1 kc1 i 

(16a) 

(16b) 

I also investigated the accuracy of UIlman’s scheme to this problem by com- 

paring equation (16~) to 

ww 

The term corresponding to j = i is 
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/ 

Xi+wi/2 

(xi-y);’ dy = 0 

xi-w J2 

Table I contains the results of these comparisons for M = 50 at representa- 

tive values of xi, in the 20, 40, and 80 point Gauss-Legendre quadrature sets. 

As can be seen, the inaccuracies arise at points near the end points of the inte- 

gral, where IM is singular, 

The approach used by Schlitt was also considered in ref. 1. This approach 

involves writing equation (11) in the form 

$6) = f(x) + h 1’ u(xy~~~@)-~ol dy + h+(x) _i,’ w dy (17) 
-1 P P 

The second integral can be evaluated analytically, and the first integral, since 

it no longer contains a singularity, can be approximated by a sum; namely, with 

x =x i, the first integral is 

The diagonal term in this sum is 

-wi U(Xi,Xi) $- 
Yqi 

Wb) 

This scheme, therefore, introduces the unknown derivative @/ay in addition to 

the unknown @. It is, of course, straightforward to relate a$/@ to G0 For ex- 

ample, as was done in equation (5a), interpolating Cp by 

yields 

ma) 

g = C FI(Xi)$j 
X. j 

1 

Ugb) 
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This leads to the equation 

$txi) = f(xi) + ’ C u(xi,xj)[~(xj)-~(xi)l (xi-xj)-l 
j#l 

- hWiU(Xi,Xi)C F;(Xi)~(Xj) “@(Xi) I’ U(xi,Y)(xi-Y)~’ dY 
j -1 

(19c) 

This equation is in satisfactory form for inverting the integral equation. How- 

ever, it is somewhat cumbersome, and the remaining integral in equation (19c) 

might require numerical evaluation, 

In what follows, I propose a slightly different manipulation of equation (ll), 

and a particular interpolative approximation to r$, It yields a noticeably less 

cumbersome equation than (19c) and, as will be illustrated by example, highly 

accurate results. 

To begin, equation (11) is rewritten 

$I (x) = f(x) + A 1’ [“(;;T;;U(x ‘x)l $(y) dy + hU(x ,x) I 
’ Q&J dy 

-1 (X-Y), (20) 
-1 

It is immediately noted that the first integrand is no longer singular, and the 

first integral is thus approximated by a sum. With x = xi, the first integral is 

approximately 

where the j = i term 

?.~~~i ) Y ) 
-W. 

1 ay 
$txi) 

Yqi 

@la) 

@lb) 

does not contain the derivative of $. 



- 10 - 

In order that the matrix inversion be straightforward, the second integral of 

equation (20) must be approximated (accurately) by a sum in which C#I is evaluated 

at the same quadrature points {xii as used in equation (21a) for the approxima- 

tion to the first integral. To accomplish this, note that the quadrature ab- 

scis.sas, {xi}, are the zeros of some polynomial AN(x) (for an N-point quad- 

rature rule). That is, AN(xi) = 0. Thus, c$ is interpolated over the interval 

[-l,l] as 

(22) 

Because the interval is [ -1, l] , it is very convenient (though not necessary [5]) 

to take AN(y) to be the Legendre polynomial PN(y)O With equation (22), the 

second integral becomes 

(23) 

Using the integral representation of the Legendre function of the second kind, 

Q,(x) = $ ~lPN$)(X-Y)~ldY 
-1 

the second integral becomes 

where the j = i term is 

Pa) 

Thus, with equations (21) and (24), the matrix equation for $I is 
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@(xi) = f(xi) + A f M..@(xj) 
j=l ‘J 

(25a) 

where 

M.. = 
1J I 

wj [u(xi,xj)-u(xi,xi)] + 2 utxi’xi) [QN(xi)-QN(xj)]}(xi-xj)-l 
pi (25b) 

the diagonal terms being given by equations (Zlb) and (24b). The matrix ele- 

ments are all finite, and relatively simple to generate, and equation (25a) can be 

inverted. 

At this point, it is noted that when the limits of the integral in equation (10) 

are finite, transforming to the interval [ -1,lj and using the Legendre poly- 

nomial interpolation seems to be the mostconvenient and natural interpolation. 

When the limits are semi-infinite or infinite, interpolations using other poly- 

nomials are possible. In an appendix, to this paper, an interpolative approach 

like the one above is discussed for equations in which the limits are [a, m] , 

which can be transformed to [ -1, l] , and for those with limits [ -00, ~1, which 

cannot be cast into the form of equation (11). 

To illustrate the accuracy of a method, it is customary to solve an equation, 

and compare the results to a known solution. In general, since the kernel of 

equation (11) is singular, both the homogeneous and nonhomogeneous equations 

have nontrivial solutions q Thus, the total solution is the particular solution to 

the inhomogeneous equation, added to a linear combination of all independent 

solutions of the homogeneous equation & 6,7] D The inversion method will only 

yield a solution to the inhomogeneous equation; that is, only a particular solution. 

However, if the inhomogeneous term, f(x), is generated by first choosing a func- 

tion $(x) as solution, the particular solution obtained by matrix inversion can be 

compared with the chosen analytic form. That is, if C#J is chosen to be some 
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known function e,(x), and if f(x) is generated from Go by 

f(x) = Q,(x) - A i’ U(X,Y)~~OT)(X-Y);~ dy 
-1 

(26) 

then the solution to equation (11) obtained by matrix inversion is then 9,(x). 

Generating an equation with a known solution is discussed in greater detail in 

Appendix B. 

To illustrate the matrix inversion approach of this paper, I solved the 

Omnes equation in the form of equation (14). The function f(x) is generated from 

(and, therefore, yields the solution) 

G(x) = (1+x) exp [-x2] (9-x2)-l 

The phase shift in equation (14) is parametrized by 

(27) 

6(z)==Lr __ 
Z2 

l<z<=c 

or wm+Y)l = (1-Y2)7d4 -1zyc1 ’ (28) 

The function f(x) is then generated using equation (27) for q. with U(x,y) = 

tan[ (1-y2)r/4] and A = l/n. The resulting f(x) is a rather complicated looking 

series involving a double sum. The identity [8 ] 

tan[ (1-y2)7r/4] = set [y27r/2]-tan[y2~/2] =% ~ 

k-odd k-even 

was used. 

In Table II, the result.. of inverting the Omnes equation is compared with the 

analytic form of equation (27). As can be seen, the technique is quite accurate. 

Using a IO-point quadrature rule yields six decimal-place accuracy. A 20- 

point rule yields results which are essentially limited by the accuracy of the 

computer (10 decimal places in this single precision computation). > Thus, this 
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straightforward scheme appears to be very satisfactory for equations typified by 

equation (10). 

As mentioned above, the total solution to the integral equation (10) also re- 

quires the solution of the homogeneous counterpart. When the interpolative ap- 

proach described by equations (29 through (25) is applied to the homogeneous 

form, an equation identical to equation (25) with f(xi) = 0 results. Thus, solu- 

tion of the homogeneous integral equation becomes solution of the homogeneous 

algebraic set of equations 

(29) 

where Mij is given by equation (25b). 

An example of such an equation, and a method of solution, is considered by 

Bareiss and Neumann [ 91. To solve this set of equations, the idea is to nor- 

malize the unknown function so that, for example, $(x,) = 1. That is, equation 

(29) is divided by $ (x,) and becomes 

3. = AMNN f &I MNjqj 
j=l 

N-l 
g,, = hMiN -I- A c M..$. 

j=l 1J J 

(3Oa) 

t3w 

where qi = $(xi)/Q(xN). The N-l dimensional subset of equations in (30b) are 

solved by matrix inversion, with equation (30a) serving as a consistency check 

on the solution. 

To illustrate the accuracy of the proposed approach for homogeneous equa- 

tions, I solved the Milne equation for the radiative flux (the problem treated in 

section IV of ref. 9); a problem well known in the theory of radiative transfer 

and neutron transport [lo]. 
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L1 - ; z 1% (lwz) O] z)(z) =; !,” z~~(z~)(z~-z)-,~ dz’ (31) 

To compare the results of inverting equation (31) by the technique proposed 

here with those obtained in refs, 9 and 10, I used a 20-point quadrature, and 

inverted the set of equations corresponding to equation (30b). I then used a 

Lagrange interpolation to obtain It,(z) at the points reported in refs. 9 and 10. 

The comparison is presented in table III. As will be noted, the 20-point quad- 

rature rule with the present approach is closer to Chandrasekhar’s values than 

the 50-point scheme used in ref. 9. As can be seen in table IV, the consistency 

of the calculation, suggested by equation (30a) is also quite good. 

It therefore appears that an integral equation, the kernel of which contains 

a Cauchy singularity, can be inverted in a straightforward way using a relatively 

small matrix. 
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III, Kernels with Fixed Poles: the Lippmann-Schwinger Equation 

In this section, the technique described for inverting equations with Cauchy- 

like kernels is applied to equations with kernels containing a fixed pole. To 

describe the scheme for such a kernel, a Lippmann-Schwinger equation will be 

used as an illustrative example. 

The partial wave Lippmann-Schwinger equation, which is the momentum 

space integral equation corresponding to the Schroedinger equation, has the 

form 

+,(P’ .p’2;k;) = Vab2 ,P’~) - ; 
*2 k 

0 
dk Ve(p2, k2)q1(k2 ,p’2;ki)(k2-kt-ie )-I (32) 

where, in this form, the on-shell amplitude is related to the phase shift by 

+Qe(k~,k~;k~) = -exp[i6p(k~)]sinse(k20)/k0 (33) 

The first step, as expected, is to project out the principal value integral in 

equation (32). Suppressing the angular momentum dependence, this becomes 

2 00 
z,b(p ,pt2;k2,) = V(p2,pv2) - ; 

0 
V(p2,k2)il,(k2,pv2;k;)(k2-k;);!k2 dk 

- iko V(p2 ,k~)111@~,p’2;k~) (34) 

Setting p2 = ki yields an equation for $(kt ,pQ2;ki). Inserting this into equation 
I 

(34) yields the desired equation, containing only the principal value integral. 

$(p2,pp2;k;) = V(p2 ,pf2) - ikoV@2,k~)V(k~,p?)[l+ik0V(k~,k~)J~1 

W2,&k;) 2 
v@2,k2)-ikOV@2,k~)V(~,k2)[L+koV~~,k20)1-1}-.-:2’-2 k dk 

e -k())p 

, 

(35) 
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It is now straightforward that one can proceed to use the technique of section II 

to invert equation (35). First, a transformation is made from (p, k, ko) which 

E [0,03], to variables (x,y,E) which E [-l,l], where E = (k:-l)/(k:+l). The 

subtraction is now made at y = E (k = ko) rather than at y =x (k =p) as in sec- 

tion II. Transformation to the (x ,y , E) variables yields the matrix equation 

$(xi,x’;E) =f(xi,x’;E) - j~l Mij~ (xj ,X’;E) Wa) 

with 

“ij = 
[ U(xi,xj;E)-U(xi, E;E)] + 2 

V(xi, E;E) 

‘ktxj 1 
[QN(xj)-QN (E)] (36b) 

where U(x,y;E) results from the transformation of the bracketed terms in the 

integral of equation (35) and f(x,x’;E) comes from the’transfor,mation of the in- 

homogeneous term. As before, all elements of Mij are finite, the difference 

being replaced by derivatives if xj happens to equal the chosen value of E. 

To illustrate the scheme’s value in solving this kind of equation, I consider 

the Lippmann-Schwinger equation treated by Osborn [ 111. Equation (32) has 

been normalized to yield equation (33) on-shell, as in ref. 11. In ref. 11, 

Osborn presents a method whereby he interpolates $ using the eigensolutions of 

the free Green’s function equation. He solves equation (32) for the Yamaguchi 

potential 

v(p2,p’2) = A(p2 + p2)-1@f2 + p2)-l (37) 

h and p being chosen as -8.110 and 1.444 respectively so that the triplet n-p 

bound state energy and scattering length are correctly given by equation (37). 

This potential has the nice feature that because it is separable, the kernel of 

equation (32) is degenerate. Thus, it is quite straightforward to find the analytic 

solution. It is 
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$@2,p’2;k;) = (p2 + ,82)-1@v2 + ,B2)-l 1 -I- i A 
-1 

zPt~-iko~2 
(33) 

. 

I compare the result of inverting equations (36) to this analytic form setting 

’ =k 
p 0” The transformation p2 = (l-x)/(1+x) takes the interval [ 0, W] to [ -1, 11. 

These comparative results at representative values of x are presented in Table 

V. As can be seen, a 20-point quadrature rule yields accuracy to three decimal 

places 0 A 30-point scheme increases the accuracy to at least four decimal 

places, indicating the viability of this approach for solving equations with ker- 

nels containing fixed poles. 

As a final comment, it will be noted that the solution to this fixed pole equa- 

tion is less accurate for a given number of quadrature points than the corres- 

ponding problem containing a Cauchy-like kernel. This may be due to the fact 

that the example chosen here with a fixed pole has a complex solution, and the 

inaccuracy may be the result of using complex arithmetic here, whereas real 

arithmetic was used in the examples of section II. 
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IV. Non-linear Integral Equations Arising from Dispersion Relations 

In this section, integral equations which come about from dispersion rela- 

tions for scattering amplitudes are studied. Such equations are of the form 

ReF(x) = F. (s) + $ 
/ 

V (s, s’) ImF (s’) (s’ - s)il ds’ 

a 

(39) 

where V(s, sl) is specified by the type of subtraction made. Equations arising 

from dispersion relations are non-linear, the non-linearity coming from the 

unitarity constraint 

ImF(s) = p(s) IF(s) I2 (40) 

To handle the singular part of the kernel in Eq. (39), it is quite reasonable 

to use the interpolative approach introduced in this paper. Transforming the 

interval to [ - 1 , 1; , and then applying the interpolative technique, Eq. (39) 

becomes 

N 

a(xi) = Fo(xi) + 5 
c 
j=l 

‘ij P txj) (41) 

where 

F(s) = a!(s) + ifi (424 

and 

f 

-1 + 2a/x a#0 
S= (42b) 

(1 + x)/(1 - x) a=0 

Here, V 
11 J 

(x., x.) = V ,‘s (xi), s (xj)] x (a factor coming from transforming the range 

of integration). 
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Equation (40) can now be written as 

P (xi) = P txi) [~ 2 txi) + P2 txi( 

Putting Eq. (41) into Eq. (43) yields 

N 
P (~3 = p (xi) 3': (Xi) -t 9 Fo (xi) P (Xi) C 'ij ' txj) 

j=l 

N 

+p(xi)$ c 
T Lk 

Cij ‘ikP (Xj) P (~) ’ P (xi) P2 (Xi, 

With 

E E 
i d - ij 

i F. (X?P (Xi, Cij 
> 

-‘P(Xj) ‘t txj) 

(43) 

(9 

(45 a) 
j=l 

and 

N 
V 

ijk E C-i 
d ie - %Fo(xi)P(Xi)C d jQ%f! + -Q c n2 Qj Qk > 

Wb) 

Q=l 

Eq. (44) becomes 

/qxi) = Ei + ‘ijk P txj) P CX) (46) 

In order to illustrate the viability of the proposed approach to this type of 

problem, I considered, as an example, an equation introduced by Blankenbecler, 

Goldberger , Khuri, and Treiman [12] with which they tested the validity of ap- 

proximating the left-hand cut in potential scattering by the contribution from 

the Born term, The equation is 
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F(s) = -2g/(l+ 4s) + ; 
/ 

ds’ 71 Im F (s’) (s’ - s - ie) -1 

0 

with 

ImF(s) = 4 IF(s)!’ . 

The analytic solution to this equation is 

F(s) = 
-2g/(l+ 4s) 

03 

1 + 2g(1+4s) @ds’ 
3-r I (l+4s1)’ (s’-sic) 

0 

(47a) 

(47b) 

(48) 

The simplest approach to a solution of Eq. (46) would be an iterative one, 

/j(N) = E + 
i i c 

Vijk py - l) pr - l) 

0 

(4% 

(0) with pi = p(xi), and pi = Ei . I find that such an approach diverges quite 

rapidly, and thus is not suited to solving this type of problem. 

I also tried another iterative approach. Rewriting Eq. (46) as 

,Bi = Ei + ; 
c Cvijk ’ ‘ikj) P jPk 

Lk 

I then considered the iteration 

/jtN)=E + ’ 
i i Z 

v 
ijk 

+v )/?tN-l)&q 
ikj j 

WW 

(5Ob) 
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again using pi to) = E i. This is a linear approximation to equation (46) which is 

solved for p(N) i by matrix inversion. This procedure does not seem to diverge, 

but oscillates over a fairly wide range, and does not converge to any solution. 

Thus, it appears that the numerical problem of obtaining solutions to non-linear 

algebraic systems of equations (including the question of uniqueness of solution) 

is a formidable one, and will be left for a later investigation by other methods [13]. 

However-, at this time, there is no reason to doubt that once a satisfactory meth- 

od of solving the algebraic system is found, the interpolative approach proposed 

here will prove suitable for dispersion integral equations as well as linear ones. 
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Appendix 

Interpolative Approach to Linear Integral Equations 
with Infinite or Semi-Infinite Limits 

In the body of this paper, all integrals were transformed to the interval 

c-1, l] , including equations in which the parameters ranged over the interval 

[ o,co-. The range c-1, l] is found to be very convenient for this approach 

since the integral 

is easily evaluated when +(y) is interpolated over the Legendre polynomials. 

Quite a bit of information about the second Legendre functions Q,(x) is readily 

available. Equations involving the interval ‘y-00, cc 1 were not considered be- 

cause there is no simple transformation which will take 

co 1 

f (x’) (x’ - X)P -’ dxt+ I- f (Y’) T Or’) ty - y’,;’ d y’ 

where T(y’) is defined for a transformation by 

dx’ = T (y’) dy’ 

It is possible to deal directly with semi-infinite or infinite intervals using 

the interpolative approach of this paper. To illustrate this, consider first an 

integral equation of the form 

00 
O(x) = f(x) + h ( 

yjJ(x, y) - U(x,x)] 
(X-Y) +(Y) dy+AU(x,x) 

I jiy- dy (Al) 
P 

0 0 
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and define 

I(x) S 
/ *edy x- P 
0 

W) 

It is necessary to interpolate Cp(y) in this integral over the interval [O, co] in 

such a way that the integral of the interpolating functions, with the pole, can be 

evaluated easily, as with 

1 

Q,(x) = (A3) 

For the interval [0, co], it is most natural to approximate the first integral 

in Eq. (Al) by a sum over Laguerre quadratures [14]. Therefore, the inter- 

polating function for the second integral, I(x), should involve Laguerre poly- 

nomials, which satisfy the recurrence relation 

NLN(x) = (ZN-~-X)L~-~(X) - (N-l)LN-2(~) Nz2 (4 

Define 

00 
A,(x) E 

/ 
exp [-y] LN td tx - y$ dy (A5) 

0 

Using Eq. (A4), it is easy to show that A,(x) also satisfies the recurrence 

relation 

NAN(x) = (2N - 1 - X)ANml (X) - (N-1)ANm2(X) N12 W) 

where 
cc 

I 
“xP[-Y] LNel(Y)dY = 0 

0 

N12 
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by the orthogonality of LN. The AN can thus be generated from 

A o (x) = exp c-x] Ei (xl , A1 (x) = 1 + (1 - x)Ao (x) 

Thus, in I(x) in Eq. (AZ), q(y) can be interpolated over the interval [O, co] as 

N +txj)exP [-Y] LNb) 

+ tY) = C (y - xj)exp [-xj]L$xj) 
j=l 

647) 

where the points xj are the zeros of LN(x). Then, I(xi) becomes 

N 
I(Xi) = 

c 

@ (x.) [AN txi) : ‘N tx-)] 
-x L’ (x 

j=l 
exp [ j] N j) (“i -xj) 

w-u 

To evaluate the terms in Eq. (A8), L’ (x.) is needed. It can be generated 
N J 

from 

Lo (Xj) = Y:LN (Xj) - LN _ l(Xj)I /“j = -N LN _ 1 (“j’/“j W) 

The j = i term in Eq. (A8) contains A k(xj) , which can be generated from 

Ak(x) = ; LN(“) - AN(x) + ; [n,(x) - ‘N _ ,fx)] - [‘N(O) -‘N _ 1 (0) ) (AlO) ] 

With AN(x) completely defined, the integral equation of Eq. (Al) can now 

be approximated by 

C#$=fi’h w.nJ 
JL ij-‘ii]+ (X 

-1 
imxj) 0. 3 (All) 

and can be inverted. 

However, as pointed out earlier, the [O,co] type equation can be transformed 

to the [-1, l] form, the integrand still retaining the singularity in the form (x-y);‘. 
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It may, in fact, be desirable to make the transformation. My experience has 

been that unless the integrand contains the factor exp [-y] naturally, the integral 

0 0 

is poorly approximated by a Laguerre quadrature rule 7 wj exp [xj] f (xj) [14] . 

Thus, the first integral in Eq. (Al) may be very badly approximated by such a 

sum, unless U(x, y) - exp C-y]. Transforming-LO, co] to r-1, l] and using a 

Legendre quadrature rule is generally fairly accurate. 

Equations involving the interval [- co, ccl cannot be transformed to [:l, 11 
with the integrand of the r-1,1, integral still containing the pole in the form 

* the [O,m] type (X-Y);:. Thus, an approach similar to that described above for 

equation is essential. 

To begin, a quadrature over the Hermite polynomials is most natural for 

a [- oo\co_ integral ‘153 . The Hermite polynomials obey the recurrence relation 

HN+#) = 2xHN(X) - 2NHN-1tX) N 11 WV 

Defining 

00 

?+x) = 
/ exp L-y23 HN (Y) (X-Y);’ dy 

VN(x) satisfies 

qN+l tx) = 2xqN(x) - ~WI~-~(X) 

where 

co 

/ 
ex&y2]HN (Y) dy = 0 

N11 

Nzl 

(A13) 

(A19 

--oo 
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by the orthogonality of HN. It is straightforward to show that 

v. = exp[-y’ldy = ~6, 77, = 2 J;; (x - 1) 

Thus, for an integral equation of the form 

co 

W) dy+ hU(x, x) 
/ 

ad, W5) 
P 

the second integral can be evaluated by interpolating $(y) as 

The second integral at x = xi becomes 

c $(x*) [ n,txi) - &fxj) 
J exp -xf H’ [ 1 N J 

(x.) (xi - Xj) 

Using 

Hhfx) = 2NHNn1 (X) 

it can easily be shown that 

qhtx) = -$+I w w3) 

W7) 

Thus, the diagonal (j = i) term of Eq. (A17) is well defined and the interpolative 

approach of this paper can be applied to equations with infinite intervals. How- 

ever, as with the [0, co] integral equation, caution must be exercised. Unless 

U(x, y) contains the factor eSy 
2 

, the first integral in Eq. (A15) may be poorly 

approximated by a sum over a Hermite quadrature. 
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As a final note, it is obvious that non-linear equations with infinite or semi- 

infinite limits can also be dealt with straightforwardly using the approach out- 

lined in this appendix. The problem becomes one of finding solutions to the 

non-linear algebraic system, as in section IV. 
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Appendix B 

The Generation of Inhomogeneous Cauchy-like 

Linear Integral Equations with Known Solutions 

In the text of Section II, it was noted that, in general, the solution to 

Eq. (11) is determinable only up to arbitrary additions of solutions to the ho- 

mogeneous equation. However, it seems to be possible to generate an equation 

which has a known solution by generating the known inhomogeneous term, f (x), 

from an a priori chosen solution +,(x) as in Eq. (26). If the approach discussed 

in connection with Eq. (26) is valid, the numerical solution obtained will be 

m) = @,(x). 
Starting with Eq. (ll), 

$ (xl = f(x) + A j’ w 
-1 

p @tY)dY 

with 
1 

/ 
f 00 = e. 6) - A 

utx, Y) o. (Y) 

I (x-Y)p dy 

-5 

Thus the difference A (x) G $(x) 

1 

A(X) = A 
I 

w A(Y) dy 
-1 

P 

PI) 

032) 

$. (x) satisfies the homogeneous equation 

u33) 

As discussed in Section II, such a homogeneous equation generally has a non- 

trivial solution. Thus, one would suspect that G(x) # G,(x) in general. How- 

ever, the numerical results presented for the Omnes equation indicate that 
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A(x) = 0. I have been unable to find a proof that such an equality must obtain [15]. 

I have investigated the possibility that this equality exists because of some 

particular properties of the Omnes equation. For example, e(x) = Q,(x) may be 

due to the fact that the Omnes equation has the property that 

utx, Y) = U(Y) %Y E L-L 11 tw 

and, furthermore, the parameterization used for the phase shift gives 

U(*l) = 0 (B5) 

To test whether C$ (x) = e. (x) is due to some properties unique to the Omnes 

equation, I have generated some other examples which have no physical signif- 

icance, but with which I attempted to test whether the equality holds. Two such 

examples are given below. The first is 

1 . 1 

+ 04 = f 64 + h TV (Y) dy 
d 

W 

-1 

with 
X2 

~,(X)=e . 

This yields 

3 -(x2+y2) 
f(x) = I, -A (Y-X )e ~$~(y) dy= e X2 

(x-Y)p 
+ heax 

The factor y - x3 was included to eliminate the effect the inherent singularities 

at x = f 1 might have on numerical accuracy. The second example considered was 
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1 

I 

e-(x2 -t y2) 
c$ (x) = f(x) f h 

(X-Yjp + (Y) dY 

-1 

again with $. (x) = e X2 , and, thus, 

f (x) = e x2 2 - hemx log [Cl + x)/P - x) ] 

(‘38) 

tw 

This was considered to see if the absence of the “singularity killing” factor 

had much effect on the accuracy of the numerical approach. As can be seen 

in Table VI, the method is accurate with and without this factor. 

However, the point to be made here is that in these examples the numer- 

ical solution matches +,(x), as can be seen from Table VI. Thus, although I 

cannot prove that the equality should hold, it appears, in general, that the 

described method of generating an inhomogeneous term for an equation like 

(Bl) does yield an analytic function e,(x), to which a numerical solution 4(x) 

can be compared, and, therefore, is a useful tool for testing a proposed nu- 

merical approach. 
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Table I 

Values of IM(x) of Eq. (16a) using the Cohen-Ickovic and Ullman 
approximations, for various quadrature rules. 

X Ullman Cohen-Ickovic Analytic 

20 point 

40 point 

80 point 

* 9931 .2402 .7640 .0784 
.0765 -. 0031 -. 0036 -. 0031 

: 9982 0388 -. 1.2146 0016 -. 1.8613 0016 -. 1.6121 0017 

.9996 2.5415 3.2071 3.1322 

.0195 -. 0008 -. 0008 -. 0008 

Table II 

Comparison of solution of Omnes equation with analytic form, 
using lo- and ZO-point quadrature rules 

lo-point 

20-point 

X Calculated 

.9739 9.4956253-z 

.4334 1.348063E-1 
-.8651 7.7371983-3 

Analytic 

9.4956303-z 
1.3480593-l 
7.737322313 

.9931 9.275896953-z 9.275896953-Z 

.3737 1.348314853-l 1.348314853-l 
-. 9931 3.197907323-4 3.197907333-4 
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Table III 

Comparison of radiative flux as found by present method, 

method of Ref. 9, and Chandrasekhar results 

I-1 Bareiss, Neumann, 50 points Present Method Chandrasekhar 

.05 .4027 .4031 .4032 

.35 .6154 .6159 .6159 

.65 .8097 .8102 .8102 

. 95 1.000 1.000 1.000 

Table IV 

Check on consistency of solution of Eq. (30b) by substitution 

of solution into Eq. (30a) 

N-l 

h 
c 

M 
Nj 

j=l 

l-AM 
NN 

1.14393 1.14402 . 008% 

% Difference 
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Table V 

Comparison of solutionto Lippmann-Schwinger equation with 

Yamaguchi potential to analytic solution 

20 points 

.9931 

.3737 
-.7463 
-. 9931 

30 points 
.9969 
. 3527 

-.7678 
-. 9969 

20 points 
.9931 
.3737 

-.7463 
-. 9931 

30 points 
.9969 
.3527 

-.7678 
-. 9969 

20 points 

.9931 

. 3737 
-.6361 
-.9931 

Calculated Analytic 

k; = 0.1 

.006721- .021557i .006722 - .021556i 

.4589 - 1.472Oi .4590 - 1.4719i 

.8803 - 2.8236i .8805 - 2.8235i 

.9401- 3.0153i .9403 - 3.0152i 

.0030451- .0097653i .0030453 - .0097652i 

.47038 - 1.50844i .47041- 1.50843i 

.88599 - 2.84125i .88604 - 2.8412li 

. 94111 - 3.017998i .94116 - 3.017959i 

k; = 10 

-.00194843 - .00029696i -.00194839 - .00029694i 
-.133043 - .020277i -.133040 - .020276i 
-.255214 - .038897i -.255208 - .038895i 
-.272543 - .041538i -.272536 - .041536i 

-.000882656 - .000134552i -.000882650 - .0001345191 
-.136343 - .0207793i -.136342 - .020779Oi 
-.256810 - .039139li -.256808 - .0391386i 
-.272785 - .0415739i -.272783 - .0415733i 

k; = .22 (E = -.6361) 

-.00041236 - .01673687i -.00041238 - .01673687i 
-.028157 - 1.142829i -.028156 - 1.1428291‘ 
-.052206 - 2.11893Oi -.052204 - 2.11893Oi 
-.057680 - 2.341118i -.057678 - 2.341118i 
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Table VI 

Comparison of calculated and analytic solutions to Eq. (IS6) and 

(BB). G6 and C#J~ are, respectively, the solutions to these two 

equations, presentedatrepresentative values ofxandh. 

X A $6 '8 
Analytic $(exp[x2j) 

10 points 
. 9739 .5 

20 
200 

2.5818186 
2.5816087 
2.5816501 

2.5818230 2.5818183 
2.5815079 
2.5814394 

. 1480 .5 1.0224163 1.0224232 1.0224110 
20 1.0224905 1.0223935 
200 1.0224327 1.0223866 

20 points 
.9931 .5 

20 
200 

.0765 .5 1.00587349 1.00587349 1.00587349 
20 1.00587350 1.00587349 
200 1.00587348 1.00587349 

2.68130714 2.68130714 2.68130714 
2.68130713 2.68130720 
2.68130726 2.68130720 


